breadth_first_thinning.hh 6.15 KB
Newer Older
1
// Copyright (C) 2009, 2010 EPITA Research and Development Laboratory (LRDE)
2
//
3
// This file is part of Olena.
4
//
5
6
7
8
9
// Olena is free software: you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation, version 2 of the License.
//
// Olena is distributed in the hope that it will be useful,
10
11
12
13
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
15
// along with Olena.  If not, see <http://www.gnu.org/licenses/>.
16
17
//
// As a special exception, you may use this file as part of a free
18
// software project without restriction.  Specifically, if other files
19
// instantiate templates or use macros or inline functions from this
20
21
22
23
24
// file, or you compile this file and link it with other files to produce
// an executable, this file does not by itself cause the resulting
// executable to be covered by the GNU General Public License.  This
// exception does not however invalidate any other reasons why the
// executable file might be covered by the GNU General Public License.
25
26
27
28

#ifndef MLN_TOPO_SKELETON_BREADTH_FIRST_THINNING_HH
# define MLN_TOPO_SKELETON_BREADTH_FIRST_THINNING_HH

29
/// \file
30
31
32
33
34
35
36
/// \brief Computing a skeleton by using breadth-first thinning on a
/// binary image.

# include <algorithm>

# include <mln/core/routine/duplicate.hh>

37
38
39
# include <mln/core/concept/image.hh>
# include <mln/core/concept/neighborhood.hh>

40
41
42
43
44
45
46
47
48
49
50
51
52
# include <mln/core/site_set/p_set.hh>

# include <mln/fun/p2b/tautology.hh>

namespace mln
{

  namespace topo
  {

    namespace skeleton
    {

53
      /** \brief Skeleton by Breadth-First Thinning.
54

55
56
	  A generic implementation of the computation of a skeleton
	  using a breadth-first thinning on a binary.
57
58
59

          \param input      The input image.
          \param nbh        The adjacency relation between triangles.
60
61
62
63
          \param is_simple  The predicate on the simplicity of points
                            (sites).  This functor must provide a method
                            <tt>void set_image(const Image<I>&)</tt>.
	  \param detach     A function used to detach a cell from \a input.
64
65
66
          \param constraint A constraint on point (site); if it
       	                    returns \c false for a point, this point
                            will not be removed.  */
67
68
69
      template <typename I, typename N, typename F, typename G, typename H>
      mln_concrete(I)
      breadth_first_thinning(const Image<I>& input,
70
			     const Neighborhood<N>& nbh,
71
			     Function_v2b<F>& is_simple,
72
			     G detach,
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
			     const Function_v2b<H>& constraint);


      /** \brief Skeleton by Breadth-First Thinning with no constraint.

	  A generic implementation of the computation of a skeleton
	  using a breadth-first thinning on a binary.

          \param input      The input image.
          \param nbh        The adjacency relation between triangles.
          \param is_simple  The predicate on the simplicity of points
                            (sites).  This functor must provide a method
                            <tt>void set_image(const Image<I>&)</tt>.
	  \param detach     A function used to detach a cell from
                            \a input.  */
      template <typename I, typename N, typename F, typename G>
      mln_concrete(I)
      breadth_first_thinning(const Image<I>& input,
			     const Neighborhood<N>& nbh,
			     Function_v2b<F>& is_simple,
			     G detach);
94
95
96
97


# ifndef MLN_INCLUDE_ONLY

98
      template <typename I, typename N, typename F, typename G, typename H>
99
      inline
100
101
      mln_concrete(I)
      breadth_first_thinning(const Image<I>& input_,
102
			     const Neighborhood<N>& nbh_,
103
			     Function_v2b<F>& is_simple_,
104
			     G detach,
105
			     const Function_v2b<H>& constraint_)
106
      {
107
	const I& input = exact(input_);
108
109
	const N& nbh = exact(nbh_);
	F& is_simple = exact(is_simple_);
110
	const H& constraint = exact(constraint_);
111

112
	mln_concrete(I) output = duplicate(input);
113
114
115
	// Attach the work image to IS_SIMPLE.
	is_simple.set_image(output);

116
	typedef mln_psite(I) psite;
117
118
	typedef p_set<psite> set_t;
	set_t set;
119
	// Populate SET with candidate simple points.
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
	mln_piter(I) p_(output.domain());
	for_all(p_)
	{
	  /* CONSTRAINTS and IS_SIMPLE are site-to-boolean (p2b)
	     predicate functors; passing an iterator as argument might
	     not be possible (C++ cannot resolve template routines if
	     an implicit conversion of the argument is needed).  Help
	     the compiler and pass an actual, explicit psite.  */
	  psite p = p_;
	  if (output(p) && constraint(p) && is_simple(p))
	    set.insert(p);
	}

	while (!set.is_empty())
	  {
	    set_t next_set;
136
137

	    mln_piter(set_t) ps(set);
138
	    for_all(ps)
139
	    {
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
	      // Same remark as above.
	      psite p = ps;

	      /* FIXME: We compute the cell and attachment of P twice:
		 during the call to is_simple() and within detach().
		 How could we reuse this elegantly, without breaking
		 the genericity of the skeleton algorithm?
		 Also, keep in mind that functors can maintain an
		 internal state and make side effects, meaning that
		 e.g. constraint(p) might not be constant for a
		 given p during the thinning.  */
	      if (constraint(p) && is_simple(p))
		{
		  detach(p, output);
		  mln_niter(N) n_(nbh, p);
		  for_all(n_)
156
		  {
157
158
159
160
161
		    // Same remark as above regarding P and P_.
		    psite n = n_;
		    if (output.domain().has(n)
			&& output(n) && constraint(n) && is_simple(n))
		      next_set.insert(n);
162
		  }
163
164
		}
	    }
165
166
167
168
169
170
	    set.clear();
	    std::swap(set, next_set);
	  }
	return output;
      }

171
172
173
174
175
176
177
178
179
180
181
182
183

      template <typename I, typename N, typename F, typename G>
      inline
      mln_concrete(I)
      breadth_first_thinning(const Image<I>& input,
			     const Neighborhood<N>& nbh,
			     Function_v2b<F>& is_simple,
			     G detach)
      {
	return breadth_first_thinning(input, nbh, is_simple, detach,
				      fun::p2b::tautology());
      }

184
185
186
187
188
189
190
191
192
# endif // MLN_INCLUDE_ONLY

    } // end of namespace mln::topo::skeleton

  } // end of namespace mln::topo

} // end of namespace mln

#endif // ! MLN_TOPO_SKELETON_BREADTH_FIRST_THINNING_HH