genltl.cc 30.4 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
3
// Copyright (C) 2012, 2013, 2015, 2016 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

// Families defined here come from the following papers:
//
// @InProceedings{cichon.09.depcos,
//   author = {Jacek Cicho{\'n} and Adam Czubak and Andrzej Jasi{\'n}ski},
//   title = {Minimal {B\"uchi} Automata for Certain Classes of {LTL} Formulas},
//   booktitle = {Proceedings of the Fourth International Conference on
//                Dependability of Computer Systems},
//   pages = {17--24},
//   year = 2009,
//   publisher = {IEEE Computer Society},
// }
//
// @InProceedings{geldenhuys.06.spin,
//   author = {Jaco Geldenhuys and Henri Hansen},
//   title = {Larger Automata and Less Work for LTL Model Checking},
//   booktitle = {Proceedings of the 13th International SPIN Workshop},
//   year = {2006},
//   pages = {53--70},
//   series = {Lecture Notes in Computer Science},
//   volume = {3925},
//   publisher = {Springer}
// }
//
// @InProceedings{gastin.01.cav,
//   author = {Paul Gastin and Denis Oddoux},
//   title = {Fast {LTL} to {B\"u}chi Automata Translation},
46
47
//   booktitle        = {Proceedings of the 13th International Conference on
//                   Computer Aided Verification (CAV'01)},
48
49
50
51
52
53
54
55
56
57
58
59
60
//   pages = {53--65},
//   year = 2001,
//   editor = {G. Berry and H. Comon and A. Finkel},
//   volume = {2102},
//   series = {Lecture Notes in Computer Science},
//   address = {Paris, France},
//   publisher = {Springer-Verlag}
// }
//
// @InProceedings{rozier.07.spin,
//   author = {Kristin Y. Rozier and Moshe Y. Vardi},
//   title = {LTL Satisfiability Checking},
//   booktitle = {Proceedings of the 12th International SPIN Workshop on
61
//                   Model Checking of Software (SPIN'07)},
62
63
64
65
66
67
//   pages = {149--167},
//   year = {2007},
//   volume = {4595},
//   series = {Lecture Notes in Computer Science},
//   publisher = {Springer-Verlag}
// }
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
//
// @InProceedings{dwyer.98.fmsp,
//   author = {Matthew B. Dwyer and George S. Avrunin and James C. Corbett},
//   title         = {Property Specification Patterns for Finite-state
//                   Verification},
//   booktitle     = {Proceedings of the 2nd Workshop on Formal Methods in
//                   Software Practice (FMSP'98)},
//   publisher     = {ACM Press},
//   address       = {New York},
//   editor        = {Mark Ardis},
//   month         = mar,
//   year          = {1998},
//   pages         = {7--15}
// }
//
// @InProceedings{etessami.00.concur,
//   author = {Kousha Etessami and Gerard J. Holzmann},
//   title = {Optimizing {B\"u}chi Automata},
//   booktitle = {Proceedings of the 11th International Conference on
//                Concurrency Theory (Concur'00)},
//   pages = {153--167},
//   year = {2000},
//   editor = {C. Palamidessi},
//   volume = {1877},
//   series = {Lecture Notes in Computer Science},
//   address = {Pennsylvania, USA},
//   publisher = {Springer-Verlag}
// }
//
// @InProceedings{somenzi.00.cav,
//   author = {Fabio Somenzi and Roderick Bloem},
//   title = {Efficient {B\"u}chi Automata for {LTL} Formul{\ae}},
//   booktitle = {Proceedings of the 12th International Conference on
//                Computer Aided Verification (CAV'00)},
//   pages = {247--263},
//   year = {2000},
//   volume = {1855},
//   series = {Lecture Notes in Computer Science},
//   address = {Chicago, Illinois, USA},
//   publisher = {Springer-Verlag}
// }
109

110
#include "common_sys.hh"
111
112
113
114
115
116
117
118

#include <iostream>
#include <fstream>
#include <argp.h>
#include <cstdlib>
#include "error.h"
#include <vector>

119
#include "common_setup.hh"
120
#include "common_output.hh"
121
#include "common_range.hh"
122
#include "common_cout.hh"
123
124
125
126
127
128
129
130

#include <cassert>
#include <iostream>
#include <sstream>
#include <set>
#include <string>
#include <cstdlib>
#include <cstring>
131
132
#include <spot/tl/formula.hh>
#include <spot/tl/relabel.hh>
133
#include <spot/tl/parse.hh>
134
135
136
137

using namespace spot;

const char argp_program_doc[] ="\
138
Generate temporal logic formulas from predefined patterns.";
139

140
141
142
143
144
145
146
enum {
  OPT_AND_F = 1,
  OPT_AND_FG,
  OPT_AND_GF,
  OPT_CCJ_ALPHA,
  OPT_CCJ_BETA,
  OPT_CCJ_BETA_PRIME,
147
148
  OPT_DAC_PATTERNS,
  OPT_EH_PATTERNS,
149
150
151
152
153
154
155
156
157
158
159
160
  OPT_GH_Q,
  OPT_GH_R,
  OPT_GO_THETA,
  OPT_OR_FG,
  OPT_OR_G,
  OPT_OR_GF,
  OPT_R_LEFT,
  OPT_R_RIGHT,
  OPT_RV_COUNTER,
  OPT_RV_COUNTER_CARRY,
  OPT_RV_COUNTER_CARRY_LINEAR,
  OPT_RV_COUNTER_LINEAR,
161
  OPT_SB_PATTERNS,
162
163
164
  OPT_U_LEFT,
  OPT_U_RIGHT,
  LAST_CLASS,
165
166
  OPT_POSITIVE,
  OPT_NEGATIVE,
167
};
168
169
170
171
172
173
174
175
176

const char* const class_name[LAST_CLASS] =
  {
    "and-f",
    "and-fg",
    "and-gf",
    "ccj-alpha",
    "ccj-beta",
    "ccj-beta-prime",
177
178
    "dac-patterns",
    "eh-patterns",
179
180
181
182
183
184
185
186
187
188
189
190
    "gh-q",
    "gh-r",
    "go-theta",
    "or-fg",
    "or-g",
    "or-gf",
    "or-r-left",
    "or-r-right",
    "rv-counter",
    "rv-counter-carry",
    "rv-counter-carry-linear",
    "rv-counter-linear",
191
    "sb-patterns",
192
193
194
195
    "u-left",
    "u-right",
  };

196

197
#define OPT_ALIAS(o) { #o, 0, nullptr, OPTION_ALIAS, nullptr, 0 }
198
199
200
201
202

static const argp_option options[] =
  {
    /**************************************************/
    // Keep this alphabetically sorted (expect for aliases).
203
    { nullptr, 0, nullptr, 0, "Pattern selection:", 1},
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    // J. Geldenhuys and H. Hansen (Spin'06): Larger automata and less
    // work for LTL model checking.
    { "and-f", OPT_AND_F, "RANGE", 0, "F(p1)&F(p2)&...&F(pn)", 0 },
    OPT_ALIAS(gh-e),
    { "and-fg", OPT_AND_FG, "RANGE", 0, "FG(p1)&FG(p2)&...&FG(pn)", 0 },
    { "and-gf", OPT_AND_GF, "RANGE", 0, "GF(p1)&GF(p2)&...&GF(pn)", 0 },
    OPT_ALIAS(ccj-phi),
    OPT_ALIAS(gh-c2),
    { "ccj-alpha", OPT_CCJ_ALPHA, "RANGE", 0,
      "F(p1&F(p2&F(p3&...F(pn)))) & F(q1&F(q2&F(q3&...F(qn))))", 0 },
    { "ccj-beta", OPT_CCJ_BETA, "RANGE", 0,
      "F(p&X(p&X(p&...X(p)))) & F(q&X(q&X(q&...X(q))))", 0 },
    { "ccj-beta-prime", OPT_CCJ_BETA_PRIME, "RANGE", 0,
      "F(p&(Xp)&(XXp)&...(X...X(p))) & F(q&(Xq)&(XXq)&...(X...X(q)))", 0 },
218
219
220
221
222
223
    { "dac-patterns", OPT_DAC_PATTERNS, "RANGE", OPTION_ARG_OPTIONAL,
      "Dwyer et al. [FMSP'98] Spec. Patterns for LTL "
      "(range should be included in 1..45)", 0 },
    { "eh-patterns", OPT_EH_PATTERNS, "RANGE", OPTION_ARG_OPTIONAL,
      "Etessami and Holzmann [Concur'00] patterns "
      "(range should be included in 1..12)", 0 },
224
    { "gh-q", OPT_GH_Q, "RANGE", 0,
225
      "(F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))", 0 },
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    { "gh-r", OPT_GH_R, "RANGE", 0,
      "(GF(p1)|FG(p2))&(GF(p2)|FG(p3))&... &(GF(pn)|FG(p{n+1}))", 0},
    { "go-theta", OPT_GO_THETA, "RANGE", 0,
      "!((GF(p1)&GF(p2)&...&GF(pn)) -> G(q->F(r)))", 0 },
    { "or-fg", OPT_OR_FG, "RANGE", 0, "FG(p1)|FG(p2)|...|FG(pn)", 0 },
    OPT_ALIAS(ccj-xi),
    { "or-g", OPT_OR_G, "RANGE", 0, "G(p1)|G(p2)|...|G(pn)", 0 },
    OPT_ALIAS(gh-s),
    { "or-gf", OPT_OR_GF, "RANGE", 0, "GF(p1)|GF(p2)|...|GF(pn)", 0 },
    OPT_ALIAS(gh-c1),
    { "r-left", OPT_R_LEFT, "RANGE", 0, "(((p1 R p2) R p3) ... R pn)", 0 },
    { "r-right", OPT_R_RIGHT, "RANGE", 0, "(p1 R (p2 R (... R pn)))", 0 },
    { "rv-counter", OPT_RV_COUNTER, "RANGE", 0,
      "n-bit counter", 0 },
    { "rv-counter-carry", OPT_RV_COUNTER_CARRY, "RANGE", 0,
      "n-bit counter w/ carry", 0 },
    { "rv-counter-carry-linear", OPT_RV_COUNTER_CARRY_LINEAR, "RANGE", 0,
      "n-bit counter w/ carry (linear size)", 0 },
    { "rv-counter-linear", OPT_RV_COUNTER_LINEAR, "RANGE", 0,
      "n-bit counter (linear size)", 0 },
246
247
248
    { "sb-patterns", OPT_SB_PATTERNS, "RANGE", OPTION_ARG_OPTIONAL,
      "Somenzi and Bloem [CAV'00] patterns "
      "(range should be included in 1..27)", 0 },
249
250
251
252
253
    { "u-left", OPT_U_LEFT, "RANGE", 0, "(((p1 U p2) U p3) ... U pn)", 0 },
    OPT_ALIAS(gh-u),
    { "u-right", OPT_U_RIGHT, "RANGE", 0, "(p1 U (p2 U (... U pn)))", 0 },
    OPT_ALIAS(gh-u2),
    OPT_ALIAS(go-phi),
254
    RANGE_DOC,
255
  /**************************************************/
256
    { nullptr, 0, nullptr, 0, "Output options:", -20 },
257
258
259
260
261
262
    { "negative", OPT_NEGATIVE, nullptr, 0,
      "output the negated versions of all formulas", 0 },
    OPT_ALIAS(negated),
    { "positive", OPT_POSITIVE, nullptr, 0,
      "output the positive versions of all formulas (done by default, unless"
      " --negative is specified without --positive)", 0 },
263
    { nullptr, 0, nullptr, 0, "The FORMAT string passed to --format may use "
264
      "the following interpreted sequences:", -19 },
265
    { "%f", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
266
      "the formula (in the selected syntax)", 0 },
267
    { "%F", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
268
      "the name of the pattern", 0 },
269
    { "%L", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
270
      "the argument of the pattern", 0 },
271
    { "%%", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
272
      "a single %", 0 },
273
274
    { nullptr, 0, nullptr, 0, "Miscellaneous options:", -1 },
    { nullptr, 0, nullptr, 0, nullptr, 0 }
275
276
277
278
279
  };

struct job
{
  int pattern;
280
  struct range range;
281
282
283
284
};

typedef std::vector<job> jobs_t;
static jobs_t jobs;
285
286
bool opt_positive = false;
bool opt_negative = false;
287
288
289

const struct argp_child children[] =
  {
290
291
292
    { &output_argp, 0, nullptr, -20 },
    { &misc_argp, 0, nullptr, -1 },
    { nullptr, 0, nullptr, 0 }
293
  };
294
295

static void
296
enqueue_job(int pattern, const char* range_str)
297
298
299
{
  job j;
  j.pattern = pattern;
300
  j.range = parse_range(range_str);
301
302
303
  jobs.push_back(j);
}

304
305
306
307
308
309
310
311
312
static void
enqueue_job(int pattern, int min, int max)
{
  job j;
  j.pattern = pattern;
  j.range = {min, max};
  jobs.push_back(j);
}

313
static int
314
parse_opt(int key, char* arg, struct argp_state*)
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
{
  // This switch is alphabetically-ordered.
  switch (key)
    {
    case OPT_AND_F:
    case OPT_AND_FG:
    case OPT_AND_GF:
    case OPT_CCJ_ALPHA:
    case OPT_CCJ_BETA:
    case OPT_CCJ_BETA_PRIME:
    case OPT_GH_Q:
    case OPT_GH_R:
    case OPT_GO_THETA:
    case OPT_OR_FG:
    case OPT_OR_G:
    case OPT_OR_GF:
    case OPT_R_LEFT:
    case OPT_R_RIGHT:
    case OPT_RV_COUNTER:
    case OPT_RV_COUNTER_CARRY:
    case OPT_RV_COUNTER_CARRY_LINEAR:
    case OPT_RV_COUNTER_LINEAR:
337
338
    case OPT_U_LEFT:
    case OPT_U_RIGHT:
339
340
      enqueue_job(key, arg);
      break;
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    case OPT_DAC_PATTERNS:
      if (arg)
        enqueue_job(key, arg);
      else
        enqueue_job(key, 1, 55);
      break;
    case OPT_EH_PATTERNS:
      if (arg)
        enqueue_job(key, arg);
      else
        enqueue_job(key, 1, 12);
      break;
    case OPT_SB_PATTERNS:
      if (arg)
        enqueue_job(key, arg);
      else
        enqueue_job(key, 1, 27);
      break;
359
360
361
362
363
364
    case OPT_POSITIVE:
      opt_positive = true;
      break;
    case OPT_NEGATIVE:
      opt_negative = true;
      break;
365
366
367
368
369
370
    default:
      return ARGP_ERR_UNKNOWN;
    }
  return 0;
}

371
372
373
374
375
376
377
378
379
380
#define G_(x) formula::G(x)
#define F_(x) formula::F(x)
#define X_(x) formula::X(x)
#define Not_(x) formula::Not(x)

#define Implies_(x, y) formula::Implies((x), (y))
#define Equiv_(x, y) formula::Equiv((x), (y))
#define And_(x, y) formula::And({(x), (y)})
#define Or_(x, y) formula::Or({(x), (y)})
#define U_(x, y) formula::U((x), (y))
381
382

// F(p_1 & F(p_2 & F(p_3 & ... F(p_n))))
383
static formula
384
385
386
E_n(std::string name, int n)
{
  if (n <= 0)
387
    return formula::tt();
388

389
  formula result = nullptr;
390
391
392
393
394

  for (; n > 0; --n)
    {
      std::ostringstream p;
      p << name << n;
395
      formula f = formula::ap(p.str());
396
      if (result)
397
        result = And_(f, result);
398
      else
399
        result = f;
400
401
402
403
404
405
      result = F_(result);
    }
  return result;
}

// p & X(p & X(p & ... X(p)))
406
static formula
407
408
409
phi_n(std::string name, int n)
{
  if (n <= 0)
410
    return formula::tt();
411

412
413
  formula result = nullptr;
  formula p = formula::ap(name);
414
415
416
  for (; n > 0; --n)
    {
      if (result)
417
        result = And_(p, X_(result));
418
      else
419
        result = p;
420
421
422
423
    }
  return result;
}

424
425
static formula
N_n(std::string name, int n)
426
{
427
  return formula::F(phi_n(name, n));
428
429
430
}

// p & X(p) & XX(p) & XXX(p) & ... X^n(p)
431
static formula
432
433
434
phi_prime_n(std::string name, int n)
{
  if (n <= 0)
435
    return formula::tt();
436

437
438
  formula result = nullptr;
  formula p = formula::ap(name);
439
440
441
  for (; n > 0; --n)
    {
      if (result)
442
443
444
445
        {
          p = X_(p);
          result = And_(result, p);
        }
446
      else
447
448
449
        {
          result = p;
        }
450
451
452
453
    }
  return result;
}

454
static formula
455
456
457
458
459
460
461
462
N_prime_n(std::string name, int n)
{
  return F_(phi_prime_n(name, n));
}


// GF(p_1) & GF(p_2) & ... & GF(p_n)   if conj == true
// GF(p_1) | GF(p_2) | ... | GF(p_n)   if conj == false
463
static formula
464
465
466
GF_n(std::string name, int n, bool conj = true)
{
  if (n <= 0)
467
    return conj ? formula::tt() : formula::ff();
468

469
  formula result = nullptr;
470

471
  op o = conj ? op::And : op::Or;
472
473
474
475
476

  for (int i = 1; i <= n; ++i)
    {
      std::ostringstream p;
      p << name << i;
477
      formula f = G_(F_(formula::ap(p.str())));
478
479

      if (result)
480
        result = formula::multop(o, {f, result});
481
      else
482
        result = f;
483
484
485
486
487
488
    }
  return result;
}

// FG(p_1) | FG(p_2) | ... | FG(p_n)   if conj == false
// FG(p_1) & FG(p_2) & ... & FG(p_n)   if conj == true
489
static formula
490
491
492
FG_n(std::string name, int n, bool conj = false)
{
  if (n <= 0)
493
    return conj ? formula::tt() : formula::ff();
494

495
  formula result = nullptr;
496

497
  op o = conj ? op::And : op::Or;
498
499
500
501
502

  for (int i = 1; i <= n; ++i)
    {
      std::ostringstream p;
      p << name << i;
503
      formula f = F_(G_(formula::ap(p.str())));
504
505

      if (result)
506
        result = formula::multop(o, {f, result});
507
      else
508
        result = f;
509
510
511
512
513
514
    }
  return result;
}

//  (((p1 OP p2) OP p3)...OP pn)   if right_assoc == false
//  (p1 OP (p2 OP (p3 OP (... pn)  if right_assoc == true
515
516
static formula
bin_n(std::string name, int n, op o, bool right_assoc = false)
517
518
519
520
{
  if (n <= 0)
    n = 1;

521
  formula result = nullptr;
522
523
524
525
526

  for (int i = 1; i <= n; ++i)
    {
      std::ostringstream p;
      p << name << (right_assoc ? (n + 1 - i) : i);
527
      formula f = formula::ap(p.str());
528
      if (!result)
529
        result = f;
530
      else if (right_assoc)
531
        result = formula::binop(o, f, result);
532
      else
533
        result = formula::binop(o, result, f);
534
535
536
537
538
    }
  return result;
}

// (GF(p1)|FG(p2))&(GF(p2)|FG(p3))&...&(GF(pn)|FG(p{n+1}))"
539
static formula
540
541
542
R_n(std::string name, int n)
{
  if (n <= 0)
543
    return formula::tt();
544

545
  formula pi;
546
547
548
549

  {
    std::ostringstream p;
    p << name << 1;
550
    pi = formula::ap(p.str());
551
552
  }

553
  formula result = nullptr;
554
555
556

  for (int i = 1; i <= n; ++i)
    {
557
      formula gf = G_(F_(pi));
558
559
      std::ostringstream p;
      p << name << i + 1;
560
      pi = formula::ap(p.str());
561

562
      formula fg = F_(G_(pi));
563

564
      formula f = Or_(gf, fg);
565
566

      if (result)
567
        result = And_(f, result);
568
      else
569
        result = f;
570
571
572
573
574
    }
  return result;
}

// (F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))"
575
static formula
576
577
578
Q_n(std::string name, int n)
{
  if (n <= 0)
579
    return formula::tt();
580

581
  formula pi;
582
583
584
585

  {
    std::ostringstream p;
    p << name << 1;
586
    pi = formula::ap(p.str());
587
588
  }

589
  formula result = nullptr;
590
591
592

  for (int i = 1; i <= n; ++i)
    {
593
      formula f = F_(pi);
594
595
596

      std::ostringstream p;
      p << name << i + 1;
597
      pi = formula::ap(p.str());
598

599
      formula g = G_(pi);
600
601
602
603

      f = Or_(f, g);

      if (result)
604
        result = And_(f, result);
605
      else
606
        result = f;
607
608
609
610
611
612
    }
  return result;
}

//  OP(p1) | OP(p2) | ... | OP(Pn) if conj == false
//  OP(p1) & OP(p2) & ... & OP(Pn) if conj == true
613
614
static formula
combunop_n(std::string name, int n, op o, bool conj = false)
615
616
{
  if (n <= 0)
617
    return conj ? formula::tt() : formula::ff();
618

619
  formula result = nullptr;
620

621
  op cop = conj ? op::And : op::Or;
622
623
624
625
626

  for (int i = 1; i <= n; ++i)
    {
      std::ostringstream p;
      p << name << i;
627
      formula f = formula::unop(o, formula::ap(p.str()));
628
629

      if (result)
630
        result = formula::multop(cop, {f, result});
631
      else
632
        result = f;
633
634
635
636
637
638
    }
  return result;
}

// !((GF(p1)&GF(p2)&...&GF(pn))->G(q -> F(r)))
// From "Fast LTL to Büchi Automata Translation" [gastin.01.cav]
639
static formula
640
641
fair_response(std::string p, std::string q, std::string r, int n)
{
642
643
  formula fair = GF_n(p, n);
  formula resp = G_(Implies_(formula::ap(q), F_(formula::ap(r))));
644
645
646
647
648
  return Not_(Implies_(fair, resp));
}


// Builds X(X(...X(p))) with n occurrences of X.
649
650
static formula
X_n(formula p, int n)
651
652
{
  assert(n >= 0);
653
  formula res = p;
654
655
656
657
658
659
660
  while (n--)
    res = X_(res);
  return res;
}

// Based on LTLcounter.pl from Kristin Rozier.
// http://shemesh.larc.nasa.gov/people/kyr/benchmarking_scripts/
661
static formula
662
663
ltl_counter(std::string bit, std::string marker, int n, bool linear)
{
664
665
666
667
  formula b = formula::ap(bit);
  formula neg_b = Not_(b);
  formula m = formula::ap(marker);
  formula neg_m = Not_(m);
668

669
  std::vector<formula> res(4);
670
671
672
673
674
675

  // The marker starts with "1", followed by n-1 "0", then "1" again,
  // n-1 "0", etc.
  if (!linear)
    {
      // G(m -> X(!m)&XX(!m)&XXX(m))          [if n = 3]
676
      std::vector<formula> v(n);
677
      for (int i = 0; i + 1 < n; ++i)
678
        v[i] = X_n(neg_m, i + 1);
679
680
      v[n - 1] = X_n(m, n);
      res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v)))));
681
682
683
684
    }
  else
    {
      // G(m -> X(!m & X(!m X(m))))          [if n = 3]
685
      formula p = m;
686
      for (int i = n - 1; i > 0; --i)
687
        p = And_(neg_m, X_(p));
688
      res[0] = And_(m, G_(Implies_(m, X_(p))));
689
690
691
692
693
694
    }

  // All bits are initially zero.
  if (!linear)
    {
      // !b & X(!b) & XX(!b)    [if n = 3]
695
      std::vector<formula> v2(n);
696
      for (int i = 0; i < n; ++i)
697
        v2[i] = X_n(neg_b, i);
698
      res[1] = formula::And(std::move(v2));
699
700
701
702
    }
  else
    {
      // !b & X(!b & X(!b))     [if n = 3]
703
      formula p = neg_b;
704
      for (int i = n - 1; i > 0; --i)
705
        p = And_(neg_b, X_(p));
706
      res[1] = p;
707
708
709
710
711
712
    }

#define AndX_(x, y) (linear ? X_(And_((x), (y))) : And_(X_(x), X_(y)))

  // If the least significant bit is 0, it will be 1 at the next time,
  // and other bits stay the same.
713
714
715
  formula Xnm1_b = X_n(b, n - 1);
  formula Xn_b = X_(Xnm1_b);
  res[2] = G_(Implies_(And_(m, neg_b),
716
                       AndX_(Xnm1_b, U_(And_(Not_(m), Equiv_(b, Xn_b)), m))));
717
718
719

  // From the least significant bit to the first 0, all the bits
  // are flipped on the next value.  Remaining bits are identical.
720
721
722
  formula Xnm1_negb = X_n(neg_b, n - 1);
  formula Xn_negb = X_(Xnm1_negb);
  res[3] = G_(Implies_(And_(m, b),
723
724
725
726
727
728
729
                       AndX_(Xnm1_negb,
                             U_(And_(And_(b, neg_m), Xn_negb),
                                Or_(m, And_(And_(neg_m, neg_b),
                                            AndX_(Xnm1_b,
                                                  U_(And_(neg_m,
                                                          Equiv_(b, Xn_b)),
                                                     m))))))));
730
  return formula::And(std::move(res));
731
732
}

733
static formula
734
ltl_counter_carry(std::string bit, std::string marker,
735
                  std::string carry, int n, bool linear)
736
{
737
738
739
740
741
742
  formula b = formula::ap(bit);
  formula neg_b = Not_(b);
  formula m = formula::ap(marker);
  formula neg_m = Not_(m);
  formula c = formula::ap(carry);
  formula neg_c = Not_(c);
743

744
  std::vector<formula> res(6);
745
746
747
748
749
750

  // The marker starts with "1", followed by n-1 "0", then "1" again,
  // n-1 "0", etc.
  if (!linear)
    {
      // G(m -> X(!m)&XX(!m)&XXX(m))          [if n = 3]
751
      std::vector<formula> v(n);
752
      for (int i = 0; i + 1 < n; ++i)
753
        v[i] = X_n(neg_m, i + 1);
754
755
      v[n - 1] = X_n(m, n);
      res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v)))));
756
757
758
759
    }
  else
    {
      // G(m -> X(!m & X(!m X(m))))          [if n = 3]
760
      formula p = m;
761
      for (int i = n - 1; i > 0; --i)
762
        p = And_(neg_m, X_(p));
763
      res[0] = And_(m, G_(Implies_(m, X_(p))));
764
765
766
767
768
769
    }

  // All bits are initially zero.
  if (!linear)
    {
      // !b & X(!b) & XX(!b)    [if n = 3]
770
      std::vector<formula> v2(n);
771
      for (int i = 0; i < n; ++i)
772
        v2[i] = X_n(neg_b, i);
773
      res[1] = formula::And(std::move(v2));
774
775
776
777
    }
  else
    {
      // !b & X(!b & X(!b))     [if n = 3]
778
      formula p = neg_b;
779
      for (int i = n - 1; i > 0; --i)
780
        p = And_(neg_b, X_(p));
781
      res[1] = p;
782
783
    }

784
785
  formula Xn_b = X_n(b, n);
  formula Xn_negb = X_n(neg_b, n);
786
787

  // If m is 1 and b is 0 then c is 0 and n steps later b is 1.
788
  res[2] = G_(Implies_(And_(m, neg_b), And_(neg_c, Xn_b)));
789
790

  // If m is 1 and b is 1 then c is 1 and n steps later b is 0.
791
  res[3] = G_(Implies_(And_(m, b), And_(c, Xn_negb)));
792
793
794
795

  if (!linear)
    {
      // If there's no carry, then all of the bits stay the same n steps later.
796
      res[4] = G_(Implies_(And_(neg_c, X_(neg_m)),
797
                           And_(X_(Not_(c)), Equiv_(X_(b), X_(Xn_b)))));
798
799
800

      // If there's a carry, then add one: flip the bits of b and
      // adjust the carry.
801
      res[5] = G_(Implies_(c, And_(Implies_(X_(neg_b),
802
803
804
                                            And_(X_(neg_c), X_(Xn_b))),
                                   Implies_(X_(b),
                                            And_(X_(c), X_(Xn_negb))))));
805
806
807
808
    }
  else
    {
      // If there's no carry, then all of the bits stay the same n steps later.
809
      res[4] = G_(Implies_(And_(neg_c, X_(neg_m)),
810
                           X_(And_(Not_(c), Equiv_(b, Xn_b)))));
811
812
      // If there's a carry, then add one: flip the bits of b and
      // adjust the carry.
813
      res[5] = G_(Implies_(c, X_(And_(Implies_(neg_b, And_(neg_c, Xn_b)),
814
                                      Implies_(b, And_(c, Xn_negb))))));
815
    }
816
  return formula::And(std::move(res));
817
818
}

819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
static void bad_number(const char* pattern, int n, int max)
{
  std::ostringstream err;
  err << "no pattern " << n << " for " << pattern
      << ", supported range is 1.." << max;
  throw std::runtime_error(err.str());
}

static formula
dac_pattern(int n)
{
  static const char* formulas[] = {
    "[](!p0)",
    "<>p2 -> (!p0 U p2)",
    "[](p1 -> [](!p0))",
    "[]((p1 & !p2 & <>p2) -> (!p0 U p2))",
    "[](p1 & !p2 -> (!p0 W p2))",

    "<>(p0)",
    "!p2 W (p0 & !p2)",
    "[](!p1) | <>(p1 & <>p0)",
    "[](p1 & !p2 -> (!p2 W (p0 & !p2)))",
    "[](p1 & !p2 -> (!p2 U (p0 & !p2)))",

    "(!p0 W (p0 W (!p0 W (p0 W []!p0))))",
    "<>p2 -> ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 |"
    " ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 | (!p0 U p2)))))))))",
    "<>p1 -> (!p1 U (p1 & (!p0 W (p0 W (!p0 W (p0 W []!p0))))))",
    "[]((p1 & <>p2) -> ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 |"
    "((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 | (!p0 U p2))))))))))",
    "[](p1 -> ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 | ((!p0 & !p2) U"
    "(p2 | ((p0 & !p2) U (p2 | (!p0 W p2) | []p0)))))))))",

    "[](p0)",
    "<>p2 -> (p0 U p2)",
    "[](p1 -> [](p0))",
    "[]((p1 & !p2 & <>p2) -> (p0 U p2))",
    "[](p1 & !p2 -> (p0 W p2))",

    "!p0 W p3",
    "<>p2 -> (!p0 U (p3 | p2))",
    "[]!p1 | <>(p1 & (!p0 W p3))",
    "[]((p1 & !p2 & <>p2) -> (!p0 U (p3 | p2)))",
    "[](p1 & !p2 -> (!p0 W (p3 | p2)))",

    "[](p0 -> <>p3)",
    "<>p2 -> (p0 -> (!p2 U (p3 & !p2))) U p2",
    "[](p1 -> [](p0 -> <>p3))",
    "[]((p1 & !p2 & <>p2) -> ((p0 -> (!p2 U (p3 & !p2))) U p2))",
    "[](p1 & !p2 -> ((p0 -> (!p2 U (p3 & !p2))) W p2))",

    "<>p0 -> (!p0 U (p3 & !p0 & X(!p0 U p4)))",
    "<>p2 -> (!p0 U (p2 | (p3 & !p0 & X(!p0 U p4))))",
    "([]!p1) | (!p1 U (p1 & <>p0 -> (!p0 U (p3 & !p0 & X(!p0 U p4)))))",
    "[]((p1 & <>p2) -> (!p0 U (p2 | (p3 & !p0 & X(!p0 U p4)))))",
    "[](p1 -> (<>p0 -> (!p0 U (p2 | (p3 & !p0 & X(!p0 U p4))))))",

    "(<>(p3 & X<>p4)) -> ((!p3) U p0)",
    "<>p2 -> ((!(p3 & (!p2) & X(!p2 U (p4 & !p2)))) U (p2 | p0))",
    "([]!p1) | ((!p1) U (p1 & ((<>(p3 & X<>p4)) -> ((!p3) U p0))))",
    "[]((p1 & <>p2) -> ((!(p3 & (!p2) & X(!p2 U (p4 & !p2)))) U (p2 | p0)))",
    "[](p1 -> (!(p3 & (!p2) & X(!p2 U (p4 & !p2))) U (p2 | p0) |"
    " [](!(p3 & X<>p4))))",

    "[] (p3 & X<> p4 -> X(<>(p4 & <> p0)))",
    "<>p2 -> (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0))) U p2",
    "[] (p1 -> [] (p3 & X<> p4 -> X(!p4 U (p4 & <> p0))))",
    "[] ((p1 & <>p2) -> (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0))) U p2)",
    "[] (p1 -> (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0))) U (p2 |"
    "[] (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0)))))",

    "[] (p0 -> <>(p3 & X<>p4))",
    "<>p2 -> (p0 -> (!p2 U (p3 & !p2 & X(!p2 U p4)))) U p2",
    "[] (p1 -> [] (p0 -> (p3 & X<> p4)))",
    "[] ((p1 & <>p2) -> (p0 -> (!p2 U (p3 & !p2 & X(!p2 U p4)))) U p2)",
    "[] (p1 -> (p0 -> (!p2 U (p3 & !p2 & X(!p2 U p4)))) U (p2 | []"
    "(p0 -> (p3 & X<> p4))))",

    "[] (p0 -> <>(p3 & !p5 & X(!p5 U p4)))",
    "<>p2 -> (p0 -> (!p2 U (p3 & !p2 & !p5 & X((!p2 & !p5) U p4)))) U p2",
    "[] (p1 -> [] (p0 -> (p3 & !p5 & X(!p5 U p4))))",
    "[] ((p1 & <>p2) -> (p0 -> (!p2 U (p3 & !p2 & !p5 & X((!p2 & !p5) U"
    " p4)))) U p2)",
    "[] (p1 -> (p0 -> (!p2 U (p3 & !p2 & !p5 & X((!p2 & !p5) U p4)))) U (p2 |"
    "[] (p0 -> (p3 & !p5 & X(!p5 U p4)))))",
  };

  constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
  if (n < 1 || (unsigned) n > max)
    bad_number("--dac-patterns", n, max);
  return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
}

static formula
eh_pattern(int n)
{
  static const char* formulas[] = {
    "p0 U (p1 & G(p2))",
    "p0 U (p1 & X(p2 U p3))",
    "p0 U (p1 & X(p2 & (F(p3 & X(F(p4 & X(F(p5 & X(F(p6))))))))))",
    "F(p0 & X(G(p1)))",
    "F(p0 & X(p1 & X(F(p2))))",
    "F(p0 & X(p1 U p2))",
    "(F(G(p0))) | (G(F(p1)))",
    "G(p0 -> (p1 U p2))",
    "G(p0 & X(F(p1 & X(F(p2 & X(F(p3)))))))",
    "(G(F(p0))) & (G(F(p1))) & (G(F(p2))) & (G(F(p3))) & (G(F(p4)))",
    "(p0 U (p1 U p2)) | (p1 U (p2 U p0)) | (p2 U (p0 U p1))",
    "G(p0 -> (p1 U ((G(p2)) | (G(p3)))))",
  };

  constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
  if (n < 1 || (unsigned) n > max)
    bad_number("--eh-patterns", n, max);
  return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
}

static formula
sb_pattern(int n)
{
  static const char* formulas[] = {
    "p0 U p1",
    "p0 U (p1 U p2)",
    "!(p0 U (p1 U p2))",
    "G(F(p0)) -> G(F(p1))",
    "(F(p0)) U (G(p1))",
    "(G(p0)) U p1",
    "!((F(F(p0))) <-> (F(p)))",
    "!((G(F(p0))) -> (G(F(p))))",
    "!((G(F(p0))) <-> (G(F(p))))",
    "p0 R (p0 | p1)",
    "(Xp0 U Xp1) | !X(p0 U p1)",
    "(Xp0 U p1) | !X(p0 U (p0 & p1))",
    "G(p0 -> F(p1)) & (((X(p0)) U p1) | !X(p0 U (p0 & p1)))",
    "G(p0 -> F(p1)) & (((X(p0)) U X(p1)) | !X(p0 U p1))",
    "G(p0 -> F(p1))",
    "!G(p0 -> X(p1 R p2))",
    "!(F(G(p0)) | F(G(p1)))",
    "G(F(p0) & F(p1))",
    "F(p0) & F(!p0)",
    "(X(p1) & p2) R X(((p3 U p0) R p2) U (p3 R p2))",
    "(G(p1 | G(F(p0))) & G(p2 | G(F(!p0)))) | G(p1) | G(p2)",
    "(G(p1 | F(G(p0))) & G(p2 | F(G(!p0)))) | G(p1) | G(p2)",
    "!((G(p1 | G(F(p0))) & G(p2 | G(F(!p0)))) | G(p1) | G(p2))",
    "!((G(p1 | F(G(p0))) & G(p2 | F(G(!p0)))) | G(p1) | G(p2))",
    "(G(p1 | X(G p0))) & (G (p2 | X(G !p0)))",
    "G(p1 | (Xp0 & X!p0))",
    // p0 U p0 can't be represented other than as p0 in Spot
    "(p0 U p0) | (p1 U p0)",
  };

  constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
  if (n < 1 || (unsigned) n > max)
    bad_number("--sb-patterns", n, max);
  return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
}
975
976
977
978

static void
output_pattern(int pattern, int n)
{
979
  formula f = nullptr;
980
981
982
983
  switch (pattern)
    {
      // Keep this alphabetically-ordered!
    case OPT_AND_F:
984
      f = combunop_n("p", n, op::F, true);
985
986
987
988
989
990
991
992
      break;
    case OPT_AND_FG:
      f = FG_n("p", n, true);
      break;
    case OPT_AND_GF:
      f = GF_n("p", n, true);
      break;
    case OPT_CCJ_ALPHA:
993
      f = formula::And({E_n("p", n), E_n("q", n)});
994
995
      break;
    case OPT_CCJ_BETA:
996
      f = formula::And({N_n("p", n), N_n("q", n)});
997
998
      break;
    case OPT_CCJ_BETA_PRIME:
999
      f = formula::And({N_prime_n("p", n), N_prime_n("q", n)});
1000
      break;
1001
1002
1003
1004
1005
1006
    case OPT_DAC_PATTERNS:
      f = dac_pattern(n);
      break;
    case OPT_EH_PATTERNS:
      f = eh_pattern(n);
      break;
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
    case OPT_GH_Q:
      f = Q_n("p", n);
      break;
    case OPT_GH_R:
      f = R_n("p", n);
      break;
    case OPT_GO_THETA:
      f = fair_response("p", "q", "r", n);
      break;
    case OPT_OR_FG:
      f = FG_n("p", n, false);
      break;
    case OPT_OR_G:
1020
      f = combunop_n("p", n, op::G, false);
1021
1022
1023
1024
1025
      break;
    case OPT_OR_GF:
      f = GF_n("p", n, false);
      break;
    case OPT_R_LEFT:
1026
      f = bin_n("p", n, op::R, false);
1027
1028
      break;
    case OPT_R_RIGHT:
1029
      f = bin_n("p", n, op::R, true);
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
      break;
    case OPT_RV_COUNTER_CARRY:
      f = ltl_counter_carry("b", "m", "c", n, false);
      break;
    case OPT_RV_COUNTER_CARRY_LINEAR:
      f = ltl_counter_carry("b", "m", "c", n, true);
      break;
    case OPT_RV_COUNTER:
      f = ltl_counter("b", "m", n, false);
      break;
    case OPT_RV_COUNTER_LINEAR:
      f = ltl_counter("b", "m", n, true);
      break;
1043
1044
1045
    case OPT_SB_PATTERNS:
      f = sb_pattern(n);
      break;
1046
    case OPT_U_LEFT:
1047
      f = bin_n("p", n, op::U, false);
1048
1049
      break;
    case OPT_U_RIGHT:
1050
      f = bin_n("p", n, op::U, true);
1051
1052
1053
1054
1055
      break;
    default:
      error(100, 0, "internal error: pattern not implemented");
    }

1056
1057
  // Make sure we use only "p42"-style of atomic propositions
  // in lbt's output.
1058
1059
  if (output_format == lbt_output && !f.has_lbt_atomic_props())
    f = relabel(f, Pnn);
1060

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
  if (opt_positive || !opt_negative)
    {
      output_formula_checked(f, class_name[pattern - 1], n);
    }
  if (opt_negative)
    {
      std::string tmp = "!";
      tmp += class_name[pattern - 1];
      output_formula_checked(spot::formula::Not(f), tmp.c_str(), n);
    }
1071
1072
1073
1074
1075
}

static void
run_jobs()
{
1076
  for (auto& j: jobs)
1077
    {
1078
1079
      int inc = (j.range.max < j.range.min) ? -1 : 1;
      int n = j.range.min;
1080
      for (;;)
1081
1082
1083
1084
1085
1086
        {
          output_pattern(j.pattern, n);
          if (n == j.range.max)
            break;
          n += inc;
        }
1087
1088
1089
1090
1091
1092
1093
    }
}


int
main(int argc, char** argv)
{
1094
  setup(argv);
1095

1096
  const argp ap = { options, parse_opt, nullptr, argp_program_doc,
1097
                    children, nullptr, nullptr };
1098

1099
  if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, nullptr, nullptr))
1100
1101
1102
1103
    exit(err);

  if (jobs.empty())
    error(1, 0, "Nothing to do.  Try '%s --help' for more information.",
1104
          program_name);
1105

1106
1107
1108
1109
1110
1111
1112
1113
1114
  try
    {
      run_jobs();
    }
  catch (const std::runtime_error& e)
    {
      error(2, 0, "%s", e.what());
    }

1115
  flush_cout();
1116
1117
  return 0;
}