dtbasat.cc 21 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
// Copyright (C) 2013, 2014 Laboratoire de Recherche et Développement
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

#include <iostream>
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
21
#include <fstream>
22
23
24
25
26
27
28
29
#include <sstream>
#include "dtbasat.hh"
#include "reachiter.hh"
#include <map>
#include <utility>
#include "scc.hh"
#include "tgba/bddprint.hh"
#include "stats.hh"
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
30
#include "misc/satsolver.hh"
31
32
#include "misc/timer.hh"
#include "dotty.hh"
33

34
35
36
// If you set the SPOT_TMPKEEP environment variable the temporary
// file used to communicate with the sat solver will be left in
// the current directory.
37
//
38
39
40
41
// Additionally, if the following DEBUG macro is set to 1, the CNF
// file will be output with a comment before each clause, and an
// additional output file (dtba-sat.dbg) will be created with a list
// of all positive variables in the result and their meaning.
42
43
44
45

#define DEBUG 0
#if DEBUG
#define dout out << "c "
46
#define trace std::cerr
47
#else
48
49
#define dout while (0) std::cout
#define trace dout
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#endif

namespace spot
{
  namespace
  {
    static bdd_dict* debug_dict = 0;

    struct transition
    {
      int src;
      bdd cond;
      int dst;

      transition(int src, bdd cond, int dst)
	: src(src), cond(cond), dst(dst)
      {
      }

      bool operator<(const transition& other) const
      {
	if (this->src < other.src)
	  return true;
	if (this->src > other.src)
	  return false;
	if (this->dst < other.dst)
	  return true;
	if (this->dst > other.dst)
	  return false;
	return this->cond.id() < other.cond.id();
      }

      bool operator==(const transition& other) const
      {
	return (this->src == other.src
		&& this->dst == other.dst
		&& this->cond.id() == other.cond.id());
      }
    };

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    struct src_cond
    {
      int src;
      bdd cond;

      src_cond(int src, bdd cond)
	: src(src), cond(cond)
      {
      }

      bool operator<(const src_cond& other) const
      {
	if (this->src < other.src)
	  return true;
	if (this->src > other.src)
	  return false;
	return this->cond.id() < other.cond.id();
      }

      bool operator==(const src_cond& other) const
      {
	return (this->src == other.src
		&& this->cond.id() == other.cond.id());
      }
    };

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    struct state_pair
    {
      int a;
      int b;

      state_pair(int a, int b)
	: a(a), b(b)
      {
      }

      bool operator<(const state_pair& other) const
      {
	if (this->a < other.a)
	  return true;
	if (this->a > other.a)
	  return false;
	if (this->b < other.b)
	  return true;
	if (this->b > other.b)
	  return false;
	return false;
      }
    };

    struct path
    {
      int src_cand;
      int src_ref;
      int dst_cand;
      int dst_ref;

      path(int src_cand, int src_ref,
	   int dst_cand, int dst_ref)
	: src_cand(src_cand), src_ref(src_ref),
	  dst_cand(dst_cand), dst_ref(dst_ref)
      {
      }

      bool operator<(const path& other) const
      {
	if (this->src_cand < other.src_cand)
	  return true;
	if (this->src_cand > other.src_cand)
	  return false;
	if (this->src_ref < other.src_ref)
	  return true;
	if (this->src_ref > other.src_ref)
	  return false;
	if (this->dst_cand < other.dst_cand)
	  return true;
	if (this->dst_cand > other.dst_cand)
	  return false;
	if (this->dst_ref < other.dst_ref)
	  return true;
	if (this->dst_ref > other.dst_ref)
	  return false;
	return false;
      }

    };

    std::ostream& operator<<(std::ostream& os, const state_pair& p)
    {
179
      os << '<' << p.a << ',' << p.b << '>';
180
181
182
183
184
      return os;
    }

    std::ostream& operator<<(std::ostream& os, const transition& t)
    {
185
      os << '<' << t.src << ','
186
	 << bdd_format_formula(debug_dict, t.cond)
187
	 << ',' << t.dst << '>';
188
189
190
191
192
      return os;
    }

    std::ostream& operator<<(std::ostream& os, const path& p)
    {
193
194
195
196
197
      os << '<'
	 << p.src_cand << ','
	 << p.src_ref << ','
	 << p.dst_cand << ','
	 << p.dst_ref << '>';
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
      return os;
    }

    struct dict
    {
      typedef std::map<transition, int> trans_map;
      trans_map transid;
      trans_map transacc;
      typedef std::map<int, transition> rev_map;
      rev_map revtransid;
      rev_map revtransacc;

      std::map<state_pair, int> prodid;
      std::map<path, int> pathid_ref;
      std::map<path, int> pathid_cand;
      int nvars;
214
215
216
      typedef std::unordered_map<const state*, int,
				 state_ptr_hash, state_ptr_equal> state_map;
      typedef std::unordered_map<int, const state*> int_map;
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
      state_map state_to_int;
      int_map int_to_state;
      int cand_size;

      ~dict()
      {
	state_map::const_iterator s = state_to_int.begin();
	while (s != state_to_int.end())
	  // Always advance the iterator before deleting the key.
	  s++->first->destroy();
      }
    };


    class filler_dfs: public tgba_reachable_iterator_depth_first
    {
    protected:
      dict& d;
      int size_;
      bdd ap_;
237
      bool state_based_;
238
      scc_map& sm_;
239
    public:
240
241
      filler_dfs(const tgba* aut, dict& d, bdd ap, bool state_based,
		 scc_map& sm)
242
	: tgba_reachable_iterator_depth_first(aut), d(d), ap_(ap),
243
	  state_based_(state_based), sm_(sm)
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
      {
	d.nvars = 0;
      }

      int size()
      {
	return size_;
      }

      void end()
      {
	size_ = seen.size();

	if (d.cand_size == -1)
	  d.cand_size = size_ - 1;

260
	// Reverse the "seen" map.  States are labeled from 1 to size_.
261
262
	for (dict::state_map::const_iterator i2 = seen.begin();
	     i2 != seen.end(); ++i2)
263
264
265
	  d.int_to_state[i2->second] = i2->first;

	for (int i = 1; i <= size_; ++i)
266
	  {
267
268
	    unsigned i_scc = sm_.scc_of_state(d.int_to_state[i]);

269
	    bool is_trivial = sm_.trivial(i_scc);
270

271
272
273
274
	    for (int j = 1; j <= d.cand_size; ++j)
	      {
		d.prodid[state_pair(j, i)] = ++d.nvars;

275
276
		// skip trivial SCCs
		if (is_trivial)
277
		  continue;
278

279
		for (int k = 1; k <= size_; ++k)
280
		  {
281
		    if (sm_.scc_of_state(d.int_to_state[k]) != i_scc)
282
283
		      continue;
		    for (int l = 1; l <= d.cand_size; ++l)
284
		    {
285
286
		      if (i == k && j == l)
			continue;
287
288
289
290
		      path p(j, i, l, k);
		      d.pathid_ref[p] = ++d.nvars;
		      d.pathid_cand[p] = ++d.nvars;
		    }
291
		  }
292
293
294
295
296
297
	      }
	  }

	std::swap(d.state_to_int, seen);

	for (int i = 1; i <= d.cand_size; ++i)
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
	  {
	    int transacc = -1;
	    if (state_based_)
	      // All outgoing transitions use the same acceptance variable.
	      transacc = ++d.nvars;

	    for (int j = 1; j <= d.cand_size; ++j)
	      {
		bdd all = bddtrue;
		while (all != bddfalse)
		  {
		    bdd one = bdd_satoneset(all, ap_, bddfalse);
		    all -= one;

		    transition t(i, one, j);
		    d.transid[t] = ++d.nvars;
314
		    d.revtransid.emplace(d.nvars, t);
315
316
		    int ta = d.transacc[t] =
		      state_based_ ? transacc : ++d.nvars;
317
		    d.revtransacc.emplace(ta, t);
318
319
320
		  }
	      }
	  }
321
322
323
      }
    };

324
325
    typedef std::pair<int, int> sat_stats;

326
    static
327
328
    sat_stats dtba_to_sat(std::ostream& out, const tgba* ref,
			  dict& d, bool state_based)
329
    {
330
      clause_counter nclauses;
331
332
333
334
335
336
      int ref_size = 0;

      scc_map sm(ref);
      sm.build_map();
      bdd ap = sm.aprec_set_of(sm.initial());

337
338
339
340
341
342
343
344
345
346
347
348
      // Count the number of atomic propositions
      int nap = 0;
      {
	bdd cur = ap;
	while (cur != bddtrue)
	  {
	    ++nap;
	    cur = bdd_high(cur);
	  }
	nap = 1 << nap;
      }

349
350
      // Number all the SAT variable we may need.
      {
351
	filler_dfs f(ref, d, ap, state_based, sm);
352
353
354
355
356
357
358
359
	f.run();
	ref_size = f.size();
      }

      // empty automaton is impossible
      if (d.cand_size == 0)
	{
	  out << "p cnf 1 2\n-1 0\n1 0\n";
360
	  return std::make_pair(1, 2);
361
362
363
364
365
366
367
	}

      // An empty line for the header
      out << "                                                 \n";

#if DEBUG
      debug_dict = ref->get_dict();
368
369
      dout << "ref_size: " << ref_size << '\n';
      dout << "cand_size: " << d.cand_size << '\n';
370
371
#endif

372
373
374
375
376
377
378
379
380
381
382
383
      dout << "symmetry-breaking clauses\n";
      int j = 0;
      bdd all = bddtrue;
      while (all != bddfalse)
 	{
 	  bdd s = bdd_satoneset(all, ap, bddfalse);
 	  all -= s;
 	  for (int i = 1; i < d.cand_size; ++i)
 	    for (int k = (i - 1) * nap + j + 3; k <= d.cand_size; ++k)
	      {
		transition t(i, s, k);
		int ti = d.transid[t];
384
		dout << "¬" << t << '\n';
385
386
387
388
389
		out << -ti << " 0\n";
		++nclauses;
	      }
 	  ++j;
 	}
390
      if (!nclauses.nb_clauses())
391
 	dout << "(none)\n";
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
      dout << "(1) the candidate automaton is complete\n";
      for (int q1 = 1; q1 <= d.cand_size; ++q1)
	{
	  bdd all = bddtrue;
	  while (all != bddfalse)
	    {
	      bdd s = bdd_satoneset(all, ap, bddfalse);
	      all -= s;

#if DEBUG
	      dout;
	      for (int q2 = 1; q2 <= d.cand_size; q2++)
		{
		  transition t(q1, s, q2);
		  out << t << "δ";
		  if (q2 != d.cand_size)
		    out << " ∨ ";
		}
411
	      out << '\n';
412
413
414
415
416
417
418
#endif

	      for (int q2 = 1; q2 <= d.cand_size; q2++)
		{
		  transition t(q1, s, q2);
		  int ti = d.transid[t];

419
		  out << ti << ' ';
420
421
422
423
424
425
426
427
		}
	      out << "0\n";

	      ++nclauses;
	    }
	}

      dout << "(2) the initial state is reachable\n";
428
      dout << state_pair(1, 1) << '\n';
429
430
431
432
433
434
435
436
437
438
439
      out << d.prodid[state_pair(1, 1)] << " 0\n";
      ++nclauses;

      for (std::map<state_pair, int>::const_iterator pit = d.prodid.begin();
	   pit != d.prodid.end(); ++pit)
	{
	  int q1 = pit->first.a;
	  int q1p = pit->first.b;

	  dout << "(3) augmenting paths based on Cand[" << q1
	       << "] and Ref[" << q1p << "]\n";
440
	  for (auto it: ref->succ(d.int_to_state[q1p]))
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
	    {
	      const state* dps = it->current_state();
	      int dp = d.state_to_int[dps];
	      dps->destroy();

	      bdd all = it->current_condition();
	      while (all != bddfalse)
		{
		  bdd s = bdd_satoneset(all, ap, bddfalse);
		  all -= s;

		  for (int q2 = 1; q2 <= d.cand_size; q2++)
		    {
		      transition t(q1, s, q2);
		      int ti = d.transid[t];

		      state_pair p2(q2, dp);
		      int succ = d.prodid[p2];

460
461
462
		      if (pit->second == succ)
			continue;

463
464
		      dout << pit->first << " ∧ " << t << "δ → " << p2 << '\n';
		      out << -pit->second << ' ' << -ti << ' '
465
466
467
468
469
470
471
472
473
474
475
476
			  << succ << " 0\n";
		      ++nclauses;
		    }
		}
	    }
	}

      bdd all_acc = ref->all_acceptance_conditions();

      // construction of contraints (4,5) : all loops in the product
      // where no accepting run is detected in the ref. automaton,
      // must also be marked as not accepting in the cand. automaton
477
478
479
      for (int q1p = 1; q1p <= ref_size; ++q1p)
	{
	  unsigned q1p_scc = sm.scc_of_state(d.int_to_state[q1p]);
480
481
	  if (sm.trivial(q1p_scc))
	    continue;
482
483
484
485
486
487
	  for (int q2p = 1; q2p <= ref_size; ++q2p)
	    {
	      // We are only interested in transition that can form a
	      // cycle, so they must belong to the same SCC.
	      if (sm.scc_of_state(d.int_to_state[q2p]) != q1p_scc)
		continue;
488
489
490
491
	      for (int q1 = 1; q1 <= d.cand_size; ++q1)
		for (int q2 = 1; q2 <= d.cand_size; ++q2)
		  {
		    path p1(q1, q1p, q2, q2p);
492

493
		    dout << "(4&5) matching paths from reference based on "
494
			 << p1 << '\n';
495

496
497
498
499
500
		    int pid1;
		    if (q1 == q2 && q1p == q2p)
		      pid1 = d.prodid[state_pair(q1, q1p)];
		    else
		      pid1 = d.pathid_ref[p1];
501

502
		    for (auto it: ref->succ(d.int_to_state[q2p]))
503
504
505
506
		      {
			const state* dps = it->current_state();
			// Skip destinations not in the SCC.
			if (sm.scc_of_state(dps) != q1p_scc)
507
508
			  {
			    dps->destroy();
509
510
511
512
			    continue;
			  }
			int dp = d.state_to_int[dps];
			dps->destroy();
513

514
515
516
517
518
			if (it->current_acceptance_conditions() == all_acc)
			  continue;
			for (int q3 = 1; q3 <= d.cand_size; ++q3)
			  {
			    if (dp == q1p && q3 == q1) // (4) looping
519
			      {
520
521
				bdd all = it->current_condition();
				while (all != bddfalse)
522
				  {
523
524
525
526
527
528
529
530
531
				    bdd s = bdd_satoneset(all, ap, bddfalse);
				    all -= s;

				    transition t(q2, s, q1);
				    int ti = d.transid[t];
				    int ta = d.transacc[t];

				    dout << p1 << "R ∧ " << t << "δ → ¬" << t
					 << "F\n";
532
				    out << -pid1 << ' ' << -ti << ' '
533
534
535
					<< -ta << " 0\n";
				    ++nclauses;
				  }
536
537


538
539
540
541
542
			      }
			    else // (5) not looping
			      {
				path p2 = path(q1, q1p, q3, dp);
				int pid2 = d.pathid_ref[p2];
543

544
545
				if (pid1 == pid2)
				  continue;
546

547
548
				bdd all = it->current_condition();
				while (all != bddfalse)
549
				  {
550
551
552
553
554
555
556
557
				    bdd s = bdd_satoneset(all, ap, bddfalse);
				    all -= s;

				    transition t(q2, s, q3);
				    int ti = d.transid[t];

				    dout << p1 << "R ∧ " << t << "δ → " << p2
					 << "R\n";
558
				    out << -pid1 << ' ' << -ti << ' '
559
560
					<< pid2 << " 0\n";
				    ++nclauses;
561
562
563
564
				  }
			      }
			  }
		      }
565
		  }
566
567
	    }
	}
568
569
570
      // construction of contraints (6,7): all loops in the product
      // where accepting run is detected in the ref. automaton, must
      // also be marked as accepting in the candidate.
571
572
573
      for (int q1p = 1; q1p <= ref_size; ++q1p)
	{
	  unsigned q1p_scc = sm.scc_of_state(d.int_to_state[q1p]);
574
575
	  if (sm.trivial(q1p_scc))
	    continue;
576
577
578
579
580
581
582
583
584
585
586
	  for (int q2p = 1; q2p <= ref_size; ++q2p)
	    {
	      // We are only interested in transition that can form a
	      // cycle, so they must belong to the same SCC.
	      if (sm.scc_of_state(d.int_to_state[q2p]) != q1p_scc)
		continue;
	      for (int q1 = 1; q1 <= d.cand_size; ++q1)
		for (int q2 = 1; q2 <= d.cand_size; ++q2)
		  {
		    path p1(q1, q1p, q2, q2p);
		    dout << "(6&7) matching paths from candidate based on "
587
			 << p1 << '\n';
588
589
590
591
592
593

		    int pid1;
		    if (q1 == q2 && q1p == q2p)
		      pid1 = d.prodid[state_pair(q1, q1p)];
		    else
		      pid1 = d.pathid_cand[p1];
594

595
		    for (auto it: ref->succ(d.int_to_state[q2p]))
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
		      {
			const state* dps = it->current_state();
			// Skip destinations not in the SCC.
			if (sm.scc_of_state(dps) != q1p_scc)
			  {
			    dps->destroy();
			    continue;
			  }
			int dp = d.state_to_int[dps];
			dps->destroy();
			for (int q3 = 1; q3 <= d.cand_size; q3++)
			  {
			    if (dp == q1p && q3 == q1) // (6) looping
			      {
				// We only care about the looping case if
				// it is accepting in the reference.
				if (it->current_acceptance_conditions()
				    != all_acc)
				  continue;
				bdd all = it->current_condition();
				while (all != bddfalse)
				  {
				    bdd s = bdd_satoneset(all, ap, bddfalse);
				    all -= s;

				    transition t(q2, s, q1);
				    int ti = d.transid[t];
				    int ta = d.transacc[t];

				    dout << p1 << "C ∧ " << t << "δ → " << t
					 << "F\n";
627
				    out << -pid1 << ' ' << -ti << ' ' << ta
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
					<< " 0\n";
				    ++nclauses;
				  }
			      }
			    else // (7) no loop
			      {
				path p2 = path(q1, q1p, q3, dp);
				int pid2 = d.pathid_cand[p2];

				if (pid1 == pid2)
				  continue;

				bdd all = it->current_condition();
				while (all != bddfalse)
				  {
				    bdd s = bdd_satoneset(all, ap, bddfalse);
				    all -= s;

				    transition t(q2, s, q3);
				    int ti = d.transid[t];
				    int ta = d.transacc[t];

				    dout << p1 << "C ∧ " << t << "δ ∧ ¬"
					 << t << "F → " << p2 << "C\n";

653
654
				    out << -pid1 << ' ' << -ti << ' '
					<< ta << ' ' << pid2 << " 0\n";
655
656
657
658
659
660
661
662
				    ++nclauses;
				  }
			      }
			  }
		      }
		  }
	    }
	}
663
      out.seekp(0);
664
      out << "p cnf " << d.nvars << ' ' << nclauses.nb_clauses();
665
      return std::make_pair(d.nvars, nclauses.nb_clauses());
666
667
    }

668
    static tgba_digraph*
669
670
    sat_build(const satsolver::solution& solution, dict& satdict,
	      const tgba* aut, bool state_based)
671
    {
672
673
      auto autdict = aut->get_dict();
      auto a = new tgba_digraph(autdict);
674
      a->copy_ap_of(aut);
675
      bdd acc = a->set_single_acceptance_set();
676
      a->new_states(satdict.cand_size);
677

678
679
      unsigned last_aut_trans = -1U;
      const transition* last_sat_trans = nullptr;
680
681
682
683

#if DEBUG
      std::fstream out("dtba-sat.dbg",
		       std::ios_base::trunc | std::ios_base::out);
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
684
      out.exceptions(std::ifstream::failbit | std::ifstream::badbit);
685
686
687
688
      std::set<int> positive;
#endif

      dout << "--- transition variables ---\n";
689
      std::set<int> acc_states;
690
      std::set<src_cond> seen_trans;
691
      for (int v: solution)
692
693
694
695
696
697
698
699
700
701
702
703
	{
	  if (v < 0)  // FIXME: maybe we can have (v < NNN)?
	    continue;

#if DEBUG
	  positive.insert(v);
#endif

	  dict::rev_map::const_iterator t = satdict.revtransid.find(v);

	  if (t != satdict.revtransid.end())
	    {
704
705
706
707
708
	      // Skip (s,l,d2) if we have already seen some (s,l,d1).
	      if (seen_trans.insert(src_cond(t->second.src,
					     t->second.cond)).second)
		{
		  // Mark the transition as accepting if the source is.
709
710
711
712
713
714
		  bool accept = state_based
		    && acc_states.find(t->second.src) != acc_states.end();

		  last_aut_trans =
		    a->new_acc_transition(t->second.src - 1, t->second.dst - 1,
					  t->second.cond, accept);
715
716
717
		  last_sat_trans = &t->second;

		  dout << v << '\t' << t->second << \n";
718
		}
719
720
721
722
723
724
	    }
	  else
	    {
	      t = satdict.revtransacc.find(v);
	      if (t != satdict.revtransacc.end())
		{
725
		  dout << v << '\t' << t->second << "F\n";
726
		  if (last_sat_trans && t->second == *last_sat_trans)
727
728
729
730
		    {
		      assert(!state_based);
		      // This assumes that the SAT solvers output
		      // variables in increasing order.
731
		      a->trans_data(last_aut_trans).acc = acc;
732
733
734
735
736
737
738
739
740
741
		    }
		  else if (state_based)
		    {
		      // Accepting translations actually correspond to
		      // states and are announced before listing
		      // outgoing transitions.  Again, this assumes
		      // that the SAT solvers output variables in
		      // increasing order.
		      acc_states.insert(t->second.src);
		    }
742
743
744
745
746
		}
	    }
	}
#if DEBUG
      dout << "--- state_pair variables ---\n";
747
748
749
      for (auto pit: satdict.prodid)
	if (positive.find(pit.second) != positive.end())
	  dout << pit.second << '\t' << pit.first << "C\n";
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
750
	else
751
	  dout << -pit.second << "\t¬" << pit.first << "C\n";
752
753

      dout << "--- pathid_cand variables ---\n";
754
755
756
      for (auto pit: satdict.pathid_cand)
	if (positive.find(pit.second) != positive.end())
	  dout << pit.second << '\t' << pit.first << "C\n";
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
757
	else
758
	  dout << -pit.second << "\t¬" << pit.first << "C\n";
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
759

760
      dout << "--- pathid_ref variables ---\n";
761
762
763
      for (auto pit: satdict.pathid_ref)
	if (positive.find(pit.second) != positive.end())
	  dout << pit.second << '\t' << pit.first << "R\n";
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
764
	else
765
	  dout << -pit.second << "\t¬" << pit.first << "C\n";
766
767
768
769
770
771
#endif
      a->merge_transitions();
      return a;
    }
  }

772
  tgba_digraph*
773
774
  dtba_sat_synthetize(const tgba* a, int target_state_number,
		      bool state_based)
775
  {
776
    if (target_state_number == 0)
777
      return nullptr;
778
779
    trace << "dtba_sat_synthetize(..., states = " << target_state_number
	  << ", state_based = " << state_based << ")\n";
780
781
    dict d;
    d.cand_size = target_state_number;
782

783
784
    satsolver solver;
    satsolver::solution_pair solution;
785

786
787
788
789
790
    timer_map t;
    t.start("encode");
    sat_stats s = dtba_to_sat(solver(), a, d, state_based);
    t.stop("encode");
    t.start("solve");
791
    solution = solver.get_solution();
792
    t.stop("solve");
793

794
    tgba_digraph* res = nullptr;
795
796
    if (!solution.second.empty())
      res = sat_build(solution.second, d, a, state_based);
797

798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
    static const char* log = getenv("SPOT_SATLOG");
    if (log)
      {
	std::fstream out(log,
			 std::ios_base::app | std::ios_base::out);
	out.exceptions(std::ifstream::failbit | std::ifstream::badbit);
	const timer& te = t.timer("encode");
	const timer& ts = t.timer("solve");
	out << target_state_number << ',';
	if (res)
	  {
	    tgba_sub_statistics st = sub_stats_reachable(res);
	    out << st.states << ',' << st.transitions
		<< ',' << st.sub_transitions;
	  }
	else
	  {
	    out << ",,";
	  }
	out << ','
	    << s.first << ',' << s.second << ','
	    << te.utime() << ',' << te.stime() << ','
	    << ts.utime() << ',' << ts.stime() << '\n';
      }
    static const char* show = getenv("SPOT_SATSHOW");
    if (show && res)
      dotty_reachable(std::cout, res);

826
    trace << "dtba_sat_synthetize(...) = " << res << '\n';
827
828
829
    return res;
  }

830
  tgba_digraph*
831
832
833
834
  dtba_sat_minimize(const tgba* a, bool state_based)
  {
    int n_states = stats_reachable(a).states;

835
    tgba_digraph* prev = nullptr;
836
    for (;;)
837
      {
838
	tgba_digraph* next =
839
	  dtba_sat_synthetize(prev ? prev : a, --n_states, state_based);
840
	if (!next)
841
	  break;
842
843
844
	else
	  n_states = stats_reachable(next).states;

845
846
	delete prev;
	prev = next;
847
      }
848
849
    return prev;
  }
850

851
  tgba_digraph*
852
853
854
855
856
  dtba_sat_minimize_dichotomy(const tgba* a, bool state_based)
  {
    int max_states = stats_reachable(a).states - 1;
    int min_states = 1;

857
    tgba_digraph* prev = nullptr;
858
    while (min_states <= max_states)
859
      {
860
	int target = (max_states + min_states) / 2;
861
	tgba_digraph* next =
862
	  dtba_sat_synthetize(prev ? prev : a, target, state_based);
863
	if (!next)
864
	  {
865
866
867
868
869
870
	    min_states = target + 1;
	  }
	else
	  {
	    delete prev;
	    prev = next;
871
	    max_states = stats_reachable(next).states - 1;
872
873
	  }
      }
874
    return prev;
875
876
  }
}