minimize.cc 18 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
3
// Copyright (C) 2010, 2011, 2012, 2013, 2014 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19

20
21
22
23
24
25
26
27
28

//#define TRACE

#ifdef TRACE
#  define trace std::cerr
#else
#  define trace while (0) std::cerr
#endif

29
#include <queue>
30
31
32
#include <deque>
#include <set>
#include <list>
33
#include <vector>
34
#include <sstream>
35
36
37
#include "minimize.hh"
#include "ltlast/allnodes.hh"
#include "misc/hash.hh"
38
#include "misc/bddlt.hh"
39
#include "tgba/tgbaproduct.hh"
40
#include "tgba/wdbacomp.hh"
41
#include "tgbaalgos/powerset.hh"
42
43
44
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/sccfilter.hh"
45
#include "tgbaalgos/scc.hh"
46
#include "tgbaalgos/ltl2tgba_fm.hh"
47
#include "tgbaalgos/bfssteps.hh"
48
#include "tgbaalgos/isdet.hh"
49
#include "tgbaalgos/dtgbacomp.hh"
50
51
52

namespace spot
{
53
54
  // FIXME: do we really want to use unordered_set instead of set here?
  // This calls for benchmarking.
55
56
57
58
  typedef std::unordered_set<const state*,
			     state_ptr_hash, state_ptr_equal> hash_set;
  typedef std::unordered_map<const state*, unsigned,
			     state_ptr_hash, state_ptr_equal> hash_map;
59

60
61
62
63
64
  namespace
  {
    static std::ostream&
    dump_hash_set(const hash_set* hs, const tgba* aut, std::ostream& out)
    {
65
      out << '{';
66
67
68
69
70
71
      const char* sep = "";
      for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
	{
	  out << sep << aut->format_state(*i);
	  sep = ", ";
	}
72
      out << '}';
73
74
75
76
77
78
79
80
81
82
83
84
      return out;
    }

    static std::string
    format_hash_set(const hash_set* hs, const tgba* aut)
    {
      std::ostringstream s;
      dump_hash_set(hs, aut, s);
      return s.str();
    }
  }

85
  // Find all states of an automaton.
86
  void build_state_set(const tgba* a, hash_set* seen)
87
  {
Felix Abecassis's avatar
Felix Abecassis committed
88
    std::queue<const state*> tovisit;
89
    // Perform breadth-first traversal.
Felix Abecassis's avatar
Felix Abecassis committed
90
    const state* init = a->get_init_state();
91
    tovisit.push(init);
92
    seen->insert(init);
93
94
    while (!tovisit.empty())
      {
95
96
97
98
	const state* src = tovisit.front();
	tovisit.pop();

	for (auto sit: a->succ(src))
99
	  {
100
101
102
103
104
105
106
107
108
109
	    const state* dst = sit->current_state();
	    // Is it a new state ?
	    if (seen->find(dst) == seen->end())
	      {
		// Register the successor for later processing.
		tovisit.push(dst);
		seen->insert(dst);
	      }
	    else
	      dst->destroy();
110
	  }
111
112
113
114
115
      }
  }

  // From the base automaton and the list of sets, build the minimal
  // resulting automaton
116
117
118
  tgba_digraph* build_result(const tgba* a,
			     std::list<hash_set*>& sets,
			     hash_set* final)
119
  {
120
121
    auto dict = a->get_dict();
    auto res = new tgba_digraph(dict);
122
    res->copy_ap_of(a);
123
124
    res->set_bprop(tgba_digraph::StateBasedAcc);

125
126
127
128
129
130
    // For each set, create a state in the resulting automaton.
    // For a state s, state_num[s] is the number of the state in the minimal
    // automaton.
    hash_map state_num;
    std::list<hash_set*>::iterator sit;
    for (sit = sets.begin(); sit != sets.end(); ++sit)
131
132
133
      {
	hash_set::iterator hit;
	hash_set* h = *sit;
134
	unsigned num = res->new_state();
135
136
137
	for (hit = h->begin(); hit != h->end(); ++hit)
	  state_num[*hit] = num;
      }
138

139
140
    // For each transition in the initial automaton, add the corresponding
    // transition in res.
141

142
    if (!final->empty())
143
      res->set_single_acceptance_set();
144

145
    for (sit = sets.begin(); sit != sets.end(); ++sit)
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
      {
	hash_set::iterator hit;
	hash_set* h = *sit;

	// Pick one state.
	const state* src = *h->begin();
	unsigned src_num = state_num[src];
	bool accepting = (final->find(src) != final->end());

	// Connect it to all destinations.
	for (auto succit: a->succ(src))
	  {
	    const state* dst = succit->current_state();
	    hash_map::const_iterator i = state_num.find(dst);
	    dst->destroy();
	    if (i == state_num.end()) // Ignore useless destinations.
	      continue;
163
164
	    res->new_acc_transition(src_num, i->second,
				    succit->current_condition(), accepting);
165
166
	  }
      }
167
    res->merge_transitions();
168
169
170
171
172
173
174
    if (res->num_states() > 0)
      {
	const state* init_state = a->get_init_state();
	unsigned init_num = state_num[init_state];
	init_state->destroy();
	res->set_init_state(init_num);
      }
175
176
177
    return res;
  }

178
179
180
181
182
183
184
185
186
187
188

  namespace
  {

    struct wdba_search_acc_loop : public bfs_steps
    {
      wdba_search_acc_loop(const tgba* det_a,
			   unsigned scc_n, scc_map& sm,
			   power_map& pm, const state* dest)
	: bfs_steps(det_a), scc_n(scc_n), sm(sm), pm(pm), dest(dest)
      {
189
	seen(dest);
190
191
192
193
194
      }

      virtual const state*
      filter(const state* s)
      {
195
	s = seen(s);
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
	if (sm.scc_of_state(s) != scc_n)
	  return 0;
	return s;
      }

      virtual bool
      match(tgba_run::step&, const state* to)
      {
	return to == dest;
      }

      unsigned scc_n;
      scc_map& sm;
      power_map& pm;
      const state* dest;
211
      state_unicity_table seen;
212
213
214
215
    };


    bool
216
    wdba_scc_is_accepting(const tgba_digraph* det_a, unsigned scc_n,
217
218
			  const tgba* orig_a, scc_map& sm, power_map& pm)
    {
219

220
221
222
223
224
225
226
227
228
229
230
      // Get some state from the SCC #n.
      const state* start = sm.one_state_of(scc_n)->clone();

      // Find a loop around START in SCC #n.
      wdba_search_acc_loop wsal(det_a, scc_n, sm, pm, start);
      tgba_run::steps loop;
      const state* reached = wsal.search(start, loop);
      assert(reached == start);
      (void)reached;

      // Build an automaton representing this loop.
231
      tgba_digraph loop_a(det_a->get_dict());
232
233
      tgba_run::steps::const_iterator i;
      int loop_size = loop.size();
234
      loop_a.new_states(loop_size);
235
236
237
      int n;
      for (n = 1, i = loop.begin(); n < loop_size; ++n, ++i)
	{
238
	  loop_a.new_transition(n - 1, n, i->label);
239
	  i->s->destroy();
240
241
	}
      assert(i != loop.end());
242
      loop_a.new_transition(n - 1, 0, i->label);
243
      i->s->destroy();
244
245
      assert(++i == loop.end());

246
      loop_a.set_init_state(0U);
247
248
249
250
251
252
      const state* loop_a_init = loop_a.get_init_state();

      // Check if the loop is accepting in the original automaton.
      bool accepting = false;

      // Iterate on each original state corresponding to start.
253
254
255
      const power_map::power_state& ps =
	pm.states_of(det_a->state_number(start));
      for (auto& it: ps)
256
257
258
	{
	  // Contrustruct a product between
	  // LOOP_A, and ORIG_A starting in *IT.
259
	  // FIXME: This could be sped up a lot!
260
	  tgba* p = new tgba_product_init(&loop_a, orig_a, loop_a_init, it);
261
262
263
264
265
	  emptiness_check* ec = couvreur99(p);
	  emptiness_check_result* res = ec->check();
	  delete res;
	  delete ec;
	  delete p;
266
267
268
269
270
271

	  if (res)
	    {
	      accepting = true;
	      break;
	    }
272
273
	}

274
      loop_a_init->destroy();
275
276
277
278
279
      return accepting;
    }

  }

280
281
  tgba_digraph* minimize_dfa(const tgba_digraph* det_a,
			     hash_set* final, hash_set* non_final)
282
  {
283
284
285
    typedef std::list<hash_set*> partition_t;
    partition_t cur_run;
    partition_t next_run;
286

287
288
    // The list of equivalent states.
    partition_t done;
289

290
    hash_map state_set_map;
291

292
293
    // Size of det_a
    unsigned size = final->size() + non_final->size();
294
295
    // Use bdd variables to number sets.  set_num is the first variable
    // available.
296
297
    unsigned set_num =
      det_a->get_dict()->register_anonymous_variables(size, det_a);
298
299
300
301
302
303

    std::set<int> free_var;
    for (unsigned i = set_num; i < set_num + size; ++i)
      free_var.insert(i);
    std::map<int, int> used_var;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
304
305
    hash_set* final_copy;

306
307
308
309
310
311
    if (!final->empty())
      {
	unsigned s = final->size();
	used_var[set_num] = s;
	free_var.erase(set_num);
	if (s > 1)
312
	  cur_run.push_back(final);
313
314
315
316
317
	else
	  done.push_back(final);
	for (hash_set::const_iterator i = final->begin();
	     i != final->end(); ++i)
	  state_set_map[*i] = set_num;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
318
319

	final_copy = new hash_set(*final);
320
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
321
322
323
324
325
    else
      {
	final_copy = final;
      }

326
327
328
329
330
331
332
    if (!non_final->empty())
      {
	unsigned s = non_final->size();
	unsigned num = set_num + 1;
	used_var[num] = s;
	free_var.erase(num);
	if (s > 1)
333
	  cur_run.push_back(non_final);
334
335
336
337
338
339
	else
	  done.push_back(non_final);
	for (hash_set::const_iterator i = non_final->begin();
	     i != non_final->end(); ++i)
	  state_set_map[*i] = num;
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
340
341
342
343
    else
      {
	delete non_final;
      }
344

345
346
    // A bdd_states_map is a list of formulae (in a BDD form) associated with a
    // destination set of states.
347
348
349
350
351
    typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;

    bool did_split = true;

    while (did_split)
352
      {
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
	did_split = false;
	while (!cur_run.empty())
	  {
	    // Get a set to process.
	    hash_set* cur = cur_run.front();
	    cur_run.pop_front();

	    trace << "processing " << format_hash_set(cur, det_a) << std::endl;

	    hash_set::iterator hi;
	    bdd_states_map bdd_map;
	    for (hi = cur->begin(); hi != cur->end(); ++hi)
	      {
		const state* src = *hi;
		bdd f = bddfalse;
368
		for (auto si: det_a->succ(src))
369
370
		  {
		    const state* dst = si->current_state();
371
		    hash_map::const_iterator i = state_set_map.find(dst);
372
		    dst->destroy();
373
374
375
376
377
378
379
380
381
		    if (i == state_set_map.end())
		      // The destination state is not in our
		      // partition.  This can happen if the initial
		      // FINAL and NON_FINAL supplied to the algorithm
		      // do not cover the whole automaton (because we
		      // want to ignore some useless states).  Simply
		      // ignore these states here.
		      continue;
		    f |= (bdd_ithvar(i->second) & si->current_condition());
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
		  }

		// Have we already seen this formula ?
		bdd_states_map::iterator bsi = bdd_map.find(f);
		if (bsi == bdd_map.end())
		  {
		    // No, create a new set.
		    hash_set* new_set = new hash_set;
		    new_set->insert(src);
		    bdd_map[f] = new_set;
		  }
		else
		  {
		    // Yes, add the current state to the set.
		    bsi->second->insert(src);
		  }
	      }

	    bdd_states_map::iterator bsi = bdd_map.begin();
	    if (bdd_map.size() == 1)
	      {
		// The set was not split.
		trace << "set " << format_hash_set(bsi->second, det_a)
		      << " was not split" << std::endl;
		next_run.push_back(bsi->second);
	      }
	    else
	      {
410
		did_split = true;
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
		for (; bsi != bdd_map.end(); ++bsi)
		  {
		    hash_set* set = bsi->second;
		    // Free the number associated to these states.
		    unsigned num = state_set_map[*set->begin()];
		    assert(used_var.find(num) != used_var.end());
		    unsigned left = (used_var[num] -= set->size());
		    // Make sure LEFT does not become negative (hence bigger
		    // than SIZE when read as unsigned)
		    assert(left < size);
		    if (left == 0)
		      {
			used_var.erase(num);
			free_var.insert(num);
		      }
		    // Pick a free number
		    assert(!free_var.empty());
		    num = *free_var.begin();
		    free_var.erase(free_var.begin());
		    used_var[num] = set->size();
		    for (hash_set::iterator hit = set->begin();
			 hit != set->end(); ++hit)
		      state_set_map[*hit] = num;
		    // Trivial sets can't be splitted any further.
		    if (set->size() == 1)
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " is minimal" << std::endl;
			done.push_back(set);
		      }
		    else
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " should be processed further" << std::endl;
			next_run.push_back(set);
		      }
		  }
	      }
	    delete cur;
	  }
	if (did_split)
	  trace << "splitting did occur during this pass." << std::endl;
	else
	  trace << "splitting did not occur during this pass." << std::endl;
	std::swap(cur_run, next_run);
456
      }
457
458
459
460
461
462

    done.splice(done.end(), cur_run);

#ifdef TRACE
    trace << "Final partition: ";
    for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
463
      trace << format_hash_set(*i, det_a) << ' ';
464
465
    trace << std::endl;
#endif
Felix Abecassis's avatar
Felix Abecassis committed
466
467

    // Build the result.
468
    auto* res = build_result(det_a, done, final_copy);
Felix Abecassis's avatar
Felix Abecassis committed
469
470
471
472

    // Free all the allocated memory.
    delete final_copy;
    hash_map::iterator hit;
473
474
475
    for (hit = state_set_map.begin(); hit != state_set_map.end();)
      {
	hash_map::iterator old = hit++;
476
	old->first->destroy();
477
      }
Felix Abecassis's avatar
Felix Abecassis committed
478
479
480
481
482
    std::list<hash_set*>::iterator it;
    for (it = done.begin(); it != done.end(); ++it)
      delete *it;
    delete det_a;

483
484
    return res;
  }
485

486

487
  tgba_digraph* minimize_monitor(const tgba* a)
488
489
  {
    hash_set* final = new hash_set;
490
    hash_set* non_final = new hash_set;
491
    tgba_digraph* det_a;
492
493
494
495
496

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);
    }
497
498

    // non_final contain all states.
499
    // final is empty: there is no acceptance condition
500
    build_state_set(det_a, non_final);
501
502

    return minimize_dfa(det_a, final, non_final);
503
504
  }

505
  tgba_digraph* minimize_wdba(const tgba* a)
506
507
  {
    hash_set* final = new hash_set;
508
509
    hash_set* non_final = new hash_set;

510
    tgba_digraph* det_a;
511
512
513
514
515

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);

516
517
518
519
520
      // For each SCC of the deterministic automaton, determine if it
      // is accepting or not.

      // This corresponds to the algorithm in Fig. 1 of "Efficient
      // minimization of deterministic weak omega-automata" written by
521
      // Christof Löding and published in Information Processing
522
523
524
525
526
      // Letters 79 (2001) pp 105--109.

      // We also keep track of whether an SCC is useless
      // (i.e., it is not the start of any accepting word).

527
528
529
      scc_map sm(det_a);
      sm.build_map();
      unsigned scc_count = sm.scc_count();
530
531
      // SCC that have been marked as useless.
      std::vector<bool> useless(scc_count);
532
533
534
535
536
537
538
      // The "color".  Even number correspond to
      // accepting SCCs.
      std::vector<unsigned> d(scc_count);

      // An even number larger than scc_count.
      unsigned k = (scc_count | 1) + 1;

539
      // SCC are numbered in topological order
540
      // (but in the reverse order as Löding's)
541
      for (unsigned m = 0; m < scc_count; ++m)
542
	{
543
	  bool is_useless = true;
544
545
	  bool transient = sm.trivial(m);
	  const scc_map::succ_type& succ = sm.succ(m);
546

547
	  if (transient && succ.empty())
548
	    {
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
	      // A trivial SCC without successor is useless.
	      useless[m] = true;
	      d[m] = k - 1;
	      continue;
	    }

	  // Compute the minimum color l of the successors.
	  // Also SCCs are useless if all their successor are
	  // useless.
	  unsigned l = k;
	  for (scc_map::succ_type::const_iterator j = succ.begin();
	       j != succ.end(); ++j)
	    {
	      is_useless &= useless[j->first];
	      unsigned dj = d[j->first];
	      if (dj < l)
		l = dj;
	    }

	  if (transient)
	    {
	      d[m] = l;
571
572
573
574
	    }
	  else
	    {
	      // Regular SCCs are accepting if any of their loop
575
576
	      // corresponds to an accepted word in the original
	      // automaton.
577
	      if (wdba_scc_is_accepting(det_a, m, a, sm, pm))
578
579
		{
		  is_useless = false;
580
		  d[m] = l & ~1; // largest even number inferior or equal
581
582
583
		}
	      else
		{
584
		  d[m] = (l - 1) | 1; // largest odd number inferior or equal
585
		}
586
	    }
587

588
	  useless[m] = is_useless;
589

590
591
	  if (!is_useless)
	    {
592
	      hash_set* dest_set = (d[m] & 1) ? non_final : final;
593
	      const std::list<const state*>& l = sm.states_of(m);
594
595
596
597
	      std::list<const state*>::const_iterator il;
	      for (il = l.begin(); il != l.end(); ++il)
		dest_set->insert((*il)->clone());
	    }
598
599
600
	}
    }

601
    return minimize_dfa(det_a, final, non_final);
602
603
  }

604
605
  tgba_digraph*
  minimize_obligation(const tgba_digraph* aut_f,
606
		      const ltl::formula* f, const tgba_digraph* aut_neg_f,
607
		      bool reject_bigger)
608
  {
609
    auto min_aut_f = minimize_wdba(aut_f);
610

611
612
613
    if (reject_bigger)
      {
	// Abort if min_aut_f has more states than aut_f.
614
	unsigned orig_states = aut_f->num_states();
615
	if (orig_states < min_aut_f->num_states())
616
617
	  {
	    delete min_aut_f;
618
	    return const_cast<tgba_digraph*>(aut_f);
619
620
621
	  }
      }

622
623
624
625
626
    // if f is a syntactic obligation formula, the WDBA minimization
    // must be correct.
    if (f && f->is_syntactic_obligation())
      return min_aut_f;

627
    // If aut_f is a guarantee automaton, the WDBA minimization must be
628
    // correct.
629
    if (is_guarantee_automaton(aut_f))
630
      return min_aut_f;
631
632
633
634
635
636

    const tgba* to_free = 0;

    // Build negation automaton if not supplied.
    if (!aut_neg_f)
      {
637
638
639
640
641
642
643
644
645
646
	if (f)
	  {
	    // If we know the formula, simply build the automaton for
	    // its negation.
	    const ltl::formula* neg_f =
	      ltl::unop::instance(ltl::unop::Not, f->clone());
	    aut_neg_f = ltl_to_tgba_fm(neg_f, aut_f->get_dict());
	    neg_f->destroy();

	    // Remove useless SCCs.
647
	    auto tmp = scc_filter(aut_neg_f, true);
648
649
650
651
652
653
654
	    delete aut_neg_f;
	    to_free = aut_neg_f = tmp;
	  }
	else if (is_deterministic(aut_f))
	  {
	    // If the automaton is deterministic, complementing is
	    // easy.
655
	    to_free = aut_neg_f = dtgba_complement(aut_f);
656
657
658
659
660
	  }
	else
	  {
	    // Otherwise, we cannot check if the minimization is safe.
	    delete min_aut_f;
661
	    return nullptr;
662
	  }
663
664
      }

665
    // If the negation is a guarantee automaton, then the
666
    // minimization is correct.
667
    if (is_guarantee_automaton(aut_neg_f))
668
669
670
671
672
673
674
675
676
677
678
679
680
681
      {
	delete to_free;
	return min_aut_f;
      }

    bool ok = false;

    tgba* p = new tgba_product(min_aut_f, aut_neg_f);
    emptiness_check* ec = couvreur99(p);
    emptiness_check_result* res = ec->check();
    if (!res)
      {
	delete ec;
	delete p;
682

683
	// Complement the minimized WDBA.
684
685
686
	tgba* neg_min_aut_f = wdba_complement(min_aut_f);

	tgba* p = new tgba_product(aut_f, neg_min_aut_f);
687
688
689
690
	emptiness_check* ec = couvreur99(p);
	res = ec->check();

	if (!res)
691
692
693
694
695
	  {
	    // Finally, we are now sure that it was safe
	    // to minimize the automaton.
	    ok = true;
	  }
696
697
698
699

	delete res;
	delete ec;
	delete p;
700
	delete neg_min_aut_f;
701
702
703
704
705
706
707
708
709
710
711
712
      }
    else
      {
	delete res;
	delete ec;
	delete p;
      }
    delete to_free;

    if (ok)
      return min_aut_f;
    delete min_aut_f;
713
    return const_cast<tgba_digraph*>(aut_f);
714
  }
715
}