minimize.cc 17.7 KB
Newer Older
1
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Développement
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

21
22
23
24
25
26
27
28
29

//#define TRACE

#ifdef TRACE
#  define trace std::cerr
#else
#  define trace while (0) std::cerr
#endif

30
#include <queue>
31
32
33
#include <deque>
#include <set>
#include <list>
34
#include <vector>
35
#include <sstream>
36
37
38
#include "minimize.hh"
#include "ltlast/allnodes.hh"
#include "misc/hash.hh"
39
#include "misc/bddlt.hh"
40
41
#include "tgba/tgbaproduct.hh"
#include "tgba/tgbatba.hh"
42
#include "tgba/wdbacomp.hh"
43
#include "tgbaalgos/powerset.hh"
44
45
46
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/sccfilter.hh"
47
#include "tgbaalgos/scc.hh"
48
#include "tgbaalgos/ltl2tgba_fm.hh"
49
#include "tgbaalgos/bfssteps.hh"
50
51
52
53
54
55
56
57

namespace spot
{
  typedef Sgi::hash_set<const state*,
                        state_ptr_hash, state_ptr_equal> hash_set;
  typedef Sgi::hash_map<const state*, unsigned,
                        state_ptr_hash, state_ptr_equal> hash_map;

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  namespace
  {
    static std::ostream&
    dump_hash_set(const hash_set* hs, const tgba* aut, std::ostream& out)
    {
      out << "{";
      const char* sep = "";
      for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
	{
	  out << sep << aut->format_state(*i);
	  sep = ", ";
	}
      out << "}";
      return out;
    }

    static std::string
    format_hash_set(const hash_set* hs, const tgba* aut)
    {
      std::ostringstream s;
      dump_hash_set(hs, aut, s);
      return s.str();
    }
  }

83
84
  // Find all states of an automaton.
  void state_set(const tgba* a, hash_set* seen)
85
  {
Felix Abecassis's avatar
Felix Abecassis committed
86
    std::queue<const state*> tovisit;
87
    // Perform breadth-first traversal.
Felix Abecassis's avatar
Felix Abecassis committed
88
    const state* init = a->get_init_state();
89
    tovisit.push(init);
90
    seen->insert(init);
91
92
    while (!tovisit.empty())
    {
Felix Abecassis's avatar
Felix Abecassis committed
93
      const state* src = tovisit.front();
94
      tovisit.pop();
95

96
97
98
      tgba_succ_iterator* sit = a->succ_iter(src);
      for (sit->first(); !sit->done(); sit->next())
      {
Felix Abecassis's avatar
Felix Abecassis committed
99
        const state* dst = sit->current_state();
100
        // Is it a new state ?
101
102
103
104
105
106
        if (seen->find(dst) == seen->end())
	  {
	    // Register the successor for later processing.
	    tovisit.push(dst);
	    seen->insert(dst);
	  }
107
        else
108
          dst->destroy();
109
      }
Felix Abecassis's avatar
Felix Abecassis committed
110
      delete sit;
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    }
  }

  // From the base automaton and the list of sets, build the minimal
  // resulting automaton
  tgba_explicit_number* build_result(const tgba* a,
                                     std::list<hash_set*>& sets,
                                     hash_set* final)
  {
    // For each set, create a state in the resulting automaton.
    // For a state s, state_num[s] is the number of the state in the minimal
    // automaton.
    hash_map state_num;
    std::list<hash_set*>::iterator sit;
    unsigned num = 0;
    for (sit = sets.begin(); sit != sets.end(); ++sit)
    {
      hash_set::iterator hit;
      hash_set* h = *sit;
      for (hit = h->begin(); hit != h->end(); ++hit)
        state_num[*hit] = num;
      ++num;
    }
    typedef tgba_explicit_number::transition trs;
    tgba_explicit_number* res = new tgba_explicit_number(a->get_dict());
    // For each transition in the initial automaton, add the corresponding
    // transition in res.
138
139
    if (!final->empty())
      res->declare_acceptance_condition(ltl::constant::true_instance());
140
141
142
143
144
145
146
147
148
    for (sit = sets.begin(); sit != sets.end(); ++sit)
    {
      hash_set::iterator hit;
      hash_set* h = *sit;
      for (hit = h->begin(); hit != h->end(); ++hit)
      {
        const state* src = *hit;
        unsigned src_num = state_num[src];
        tgba_succ_iterator* succit = a->succ_iter(src);
Felix Abecassis's avatar
Felix Abecassis committed
149
        bool accepting = (final->find(src) != final->end());
150
151
        for (succit->first(); !succit->done(); succit->next())
        {
Felix Abecassis's avatar
Felix Abecassis committed
152
          const state* dst = succit->current_state();
153
          unsigned dst_num = state_num[dst];
154
          dst->destroy();
155
156
157
158
159
          trs* t = res->create_transition(src_num, dst_num);
          res->add_conditions(t, succit->current_condition());
          if (accepting)
            res->add_acceptance_condition(t, ltl::constant::true_instance());
        }
Felix Abecassis's avatar
Felix Abecassis committed
160
        delete succit;
161
162
163
164
165
      }
    }
    res->merge_transitions();
    const state* init_state = a->get_init_state();
    unsigned init_num = state_num[init_state];
166
    init_state->destroy();
167
168
169
170
    res->set_init_state(init_num);
    return res;
  }

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

  namespace
  {

    struct wdba_search_acc_loop : public bfs_steps
    {
      wdba_search_acc_loop(const tgba* det_a,
			   unsigned scc_n, scc_map& sm,
			   power_map& pm, const state* dest)
	: bfs_steps(det_a), scc_n(scc_n), sm(sm), pm(pm), dest(dest)
      {
	seen.insert(dest);
      }

      virtual
      ~wdba_search_acc_loop()
      {
	hash_set::const_iterator i = seen.begin();
	while (i != seen.end())
	  {
	    hash_set::const_iterator old = i;
	    ++i;
193
	    (*old)->destroy();
194
195
196
197
198
199
200
201
202
203
204
205
206
207
	  }
      }

      virtual const state*
      filter(const state* s)
      {
	// Use the state from seen.
	hash_set::const_iterator i = seen.find(s);
	if (i == seen.end())
	  {
	    seen.insert(s);
	  }
	else
	  {
208
	    s->destroy();
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
	    s = *i;
	  }
	// Ignore states outside SCC #n.
	if (sm.scc_of_state(s) != scc_n)
	  return 0;
	return s;
      }

      virtual bool
      match(tgba_run::step&, const state* to)
      {
	return to == dest;
      }

      unsigned scc_n;
      scc_map& sm;
      power_map& pm;
      const state* dest;
      hash_set seen;
    };


    bool
    wdba_scc_is_accepting(const tgba_explicit_number* det_a, unsigned scc_n,
			  const tgba* orig_a, scc_map& sm, power_map& pm)
    {
      // Get some state from the SCC #n.
      const state* start = sm.one_state_of(scc_n)->clone();

      // Find a loop around START in SCC #n.
      wdba_search_acc_loop wsal(det_a, scc_n, sm, pm, start);
      tgba_run::steps loop;
      const state* reached = wsal.search(start, loop);
      assert(reached == start);
      (void)reached;

      // Build an automaton representing this loop.
      tgba_explicit_number loop_a(det_a->get_dict());
      tgba_run::steps::const_iterator i;
      int loop_size = loop.size();
      int n;
      for (n = 1, i = loop.begin(); n < loop_size; ++n, ++i)
	{
	  loop_a.create_transition(n - 1, n)->condition = i->label;
253
	  i->s->destroy();
254
255
256
	}
      assert(i != loop.end());
      loop_a.create_transition(n - 1, 0)->condition = i->label;
257
      i->s->destroy();
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
      assert(++i == loop.end());

      const state* loop_a_init = loop_a.get_init_state();
      assert(loop_a.get_label(loop_a_init) == 0);

      // Check if the loop is accepting in the original automaton.
      bool accepting = false;

      // Iterate on each original state corresponding to start.
      const power_map::power_state& ps = pm.states_of(det_a->get_label(start));
      for (power_map::power_state::const_iterator it = ps.begin();
	   it != ps.end() && !accepting; ++it)
	{
	  // Contrustruct a product between
	  // LOOP_A, and ORIG_A starting in *IT.

	  tgba* p = new tgba_product_init(&loop_a, orig_a,
					  loop_a_init, *it);

	  emptiness_check* ec = couvreur99(p);
	  emptiness_check_result* res = ec->check();

	  if (res)
	    accepting = true;
	  delete res;
	  delete ec;
	  delete p;
	}

287
      loop_a_init->destroy();
288
289
290
291
292
      return accepting;
    }

  }

293
  tgba_explicit_number* minimize_dfa(const tgba_explicit_number* det_a,
294
				     hash_set* final, hash_set* non_final)
295
  {
296
297
298
    typedef std::list<hash_set*> partition_t;
    partition_t cur_run;
    partition_t next_run;
299

300
301
    // The list of equivalent states.
    partition_t done;
302

303
    hash_map state_set_map;
304

305
306
    // Size of det_a
    unsigned size = final->size() + non_final->size();
307
308
    // Use bdd variables to number sets.  set_num is the first variable
    // available.
309
310
    unsigned set_num =
      det_a->get_dict()->register_anonymous_variables(size, det_a);
311
312
313
314
315
316

    std::set<int> free_var;
    for (unsigned i = set_num; i < set_num + size; ++i)
      free_var.insert(i);
    std::map<int, int> used_var;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
317
318
    hash_set* final_copy;

319
320
321
322
323
324
    if (!final->empty())
      {
	unsigned s = final->size();
	used_var[set_num] = s;
	free_var.erase(set_num);
	if (s > 1)
325
	  cur_run.push_back(final);
326
327
328
329
330
	else
	  done.push_back(final);
	for (hash_set::const_iterator i = final->begin();
	     i != final->end(); ++i)
	  state_set_map[*i] = set_num;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
331
332

	final_copy = new hash_set(*final);
333
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
334
335
336
337
338
    else
      {
	final_copy = final;
      }

339
340
341
342
343
344
345
    if (!non_final->empty())
      {
	unsigned s = non_final->size();
	unsigned num = set_num + 1;
	used_var[num] = s;
	free_var.erase(num);
	if (s > 1)
346
	  cur_run.push_back(non_final);
347
348
349
350
351
352
	else
	  done.push_back(non_final);
	for (hash_set::const_iterator i = non_final->begin();
	     i != non_final->end(); ++i)
	  state_set_map[*i] = num;
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
353
354
355
356
    else
      {
	delete non_final;
      }
357

358
359
    // A bdd_states_map is a list of formulae (in a BDD form) associated with a
    // destination set of states.
360
361
362
363
364
    typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;

    bool did_split = true;

    while (did_split)
365
      {
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
	did_split = false;
	while (!cur_run.empty())
	  {
	    // Get a set to process.
	    hash_set* cur = cur_run.front();
	    cur_run.pop_front();

	    trace << "processing " << format_hash_set(cur, det_a) << std::endl;

	    hash_set::iterator hi;
	    bdd_states_map bdd_map;
	    for (hi = cur->begin(); hi != cur->end(); ++hi)
	      {
		const state* src = *hi;
		bdd f = bddfalse;
		tgba_succ_iterator* si = det_a->succ_iter(src);
		for (si->first(); !si->done(); si->next())
		  {
		    const state* dst = si->current_state();
		    unsigned dst_set = state_set_map[dst];
386
		    dst->destroy();
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
		    f |= (bdd_ithvar(dst_set) & si->current_condition());
		  }
		delete si;

		// Have we already seen this formula ?
		bdd_states_map::iterator bsi = bdd_map.find(f);
		if (bsi == bdd_map.end())
		  {
		    // No, create a new set.
		    hash_set* new_set = new hash_set;
		    new_set->insert(src);
		    bdd_map[f] = new_set;
		  }
		else
		  {
		    // Yes, add the current state to the set.
		    bsi->second->insert(src);
		  }
	      }

	    bdd_states_map::iterator bsi = bdd_map.begin();
	    if (bdd_map.size() == 1)
	      {
		// The set was not split.
		trace << "set " << format_hash_set(bsi->second, det_a)
		      << " was not split" << std::endl;
		next_run.push_back(bsi->second);
	      }
	    else
	      {
		for (; bsi != bdd_map.end(); ++bsi)
		  {
		    hash_set* set = bsi->second;
		    // Free the number associated to these states.
		    unsigned num = state_set_map[*set->begin()];
		    assert(used_var.find(num) != used_var.end());
		    unsigned left = (used_var[num] -= set->size());
		    // Make sure LEFT does not become negative (hence bigger
		    // than SIZE when read as unsigned)
		    assert(left < size);
		    if (left == 0)
		      {
			used_var.erase(num);
			free_var.insert(num);
		      }
		    // Pick a free number
		    assert(!free_var.empty());
		    num = *free_var.begin();
		    free_var.erase(free_var.begin());
		    used_var[num] = set->size();
		    for (hash_set::iterator hit = set->begin();
			 hit != set->end(); ++hit)
		      state_set_map[*hit] = num;
		    // Trivial sets can't be splitted any further.
		    if (set->size() == 1)
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " is minimal" << std::endl;
			done.push_back(set);
		      }
		    else
		      {
			did_split = true;
			trace << "set " << format_hash_set(set, det_a)
			      << " should be processed further" << std::endl;
			next_run.push_back(set);
		      }
		  }
	      }
	    delete cur;
	  }
	if (did_split)
	  trace << "splitting did occur during this pass." << std::endl;
	else
	  trace << "splitting did not occur during this pass." << std::endl;
	std::swap(cur_run, next_run);
463
      }
464
465
466
467
468
469
470
471
472

    done.splice(done.end(), cur_run);

#ifdef TRACE
    trace << "Final partition: ";
    for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
      trace << format_hash_set(*i, det_a) << " ";
    trace << std::endl;
#endif
Felix Abecassis's avatar
Felix Abecassis committed
473
474
475
476
477
478
479

    // Build the result.
    tgba_explicit_number* res = build_result(det_a, done, final_copy);

    // Free all the allocated memory.
    delete final_copy;
    hash_map::iterator hit;
480
481
482
    for (hit = state_set_map.begin(); hit != state_set_map.end();)
      {
	hash_map::iterator old = hit++;
483
	old->first->destroy();
484
      }
Felix Abecassis's avatar
Felix Abecassis committed
485
486
487
488
489
    std::list<hash_set*>::iterator it;
    for (it = done.begin(); it != done.end(); ++it)
      delete *it;
    delete det_a;

490
491
    return res;
  }
492

493

494
495
496
  tgba_explicit_number* minimize_monitor(const tgba* a)
  {
    hash_set* final = new hash_set;
497
    hash_set* non_final = new hash_set;
498
499
500
501
502
503
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);
    }
504
505

    // non_final contain all states.
506
    // final is empty: there is no acceptance condition
507
508
509
    state_set(a, non_final);

    return minimize_dfa(det_a, final, non_final);
510
511
512
  }

  tgba_explicit_number* minimize_wdba(const tgba* a)
513
514
  {
    hash_set* final = new hash_set;
515
516
    hash_set* non_final = new hash_set;

517
518
519
520
521
522
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);

523
524
525
526
527
      // For each SCC of the deterministic automaton, determine if
      // it is accepting or not.
      scc_map sm(det_a);
      sm.build_map();
      unsigned scc_count = sm.scc_count();
528
      // SCC that have been marked as accepting.
529
      std::vector<bool> accepting(scc_count);
530
531
      // SCC that have been marked as useless.
      std::vector<bool> useless(scc_count);
532
533
      // SCC are numbered in topological order
      for (unsigned n = 0; n < scc_count; ++n)
534
	{
535
	  bool acc = true;
536
	  bool is_useless = true;
537

538
539
	  if (sm.trivial(n))
	    {
540
541
542
543
544
545
546
547
548
	      const scc_map::succ_type& succ = sm.succ(n);
	      if (succ.empty())
		{
		  // A trivial SCC without successor is useless.
		  useless[n] = true;
		  accepting[n] = false;
		  // Do not add even add it to final or non_final.
		  continue;
		}
549
550
551
552
553
554
555
556
557
558
	      // Trivial SCCs are accepting if all their
	      // successors are accepting.

	      // This corresponds to the algorithm in Fig. 1 of
	      // "Efficient minimization of deterministic weak
	      // omega-automata" written by Christof Löding and
	      // published in Information Processing Letters 79
	      // (2001) pp 105--109.  Except we do not keep track
	      // of the actual color associated to each SCC.

559
560
	      // Also they are useless if all their successor are
	      // useless.
561
562
	      for (scc_map::succ_type::const_iterator i = succ.begin();
		   i != succ.end(); ++i)
563
		{
564
565
		  is_useless &= useless[i->first];
		  acc &= accepting[i->first];
566
		}
567
568
569
570
	    }
	  else
	    {
	      // Regular SCCs are accepting if any of their loop
571
572
	      // corresponds to an accepted word in the original
	      // automaton.
573
	      acc = wdba_scc_is_accepting(det_a, n, a, sm, pm);
574
575
576
577
578
579
580
581
582
583
584
585
586
587

	      if (acc)
		{
		  is_useless = false;
		}
	      else
		{
		  // Unaccepting SCCs are useless if their successors
		  // are all useless.
		  const scc_map::succ_type& succ = sm.succ(n);
		  for (scc_map::succ_type::const_iterator i = succ.begin();
		       i != succ.end(); ++i)
		    is_useless &= useless[i->first];
		}
588
	    }
589

590
	  useless[n] = is_useless;
591
	  accepting[n] = acc;
592

593
594
595
596
597
598
599
600
	  if (!is_useless)
	    {
	      hash_set* dest_set = acc ? final : non_final;
	      const std::list<const state*>& l = sm.states_of(n);
	      std::list<const state*>::const_iterator il;
	      for (il = l.begin(); il != l.end(); ++il)
		dest_set->insert((*il)->clone());
	    }
601
602
603
	}
    }

604
    return minimize_dfa(det_a, final, non_final);
605
606
  }

607
608
609
610
  const tgba*
  minimize_obligation(const tgba* aut_f,
		      const ltl::formula* f, const tgba* aut_neg_f)
  {
611
    tgba_explicit_number* min_aut_f = minimize_wdba(aut_f);
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

    // If aut_f is a safety automaton, the WDBA minimization must be
    // correct.
    if (is_safety_automaton(aut_f))
      {
	return min_aut_f;
      }

    if (!f && !aut_neg_f)
      {
	// We do not now if the minimization is safe.
	return 0;
      }

    const tgba* to_free = 0;

    // Build negation automaton if not supplied.
    if (!aut_neg_f)
      {
	assert(f);

	ltl::formula* neg_f = ltl::unop::instance(ltl::unop::Not, f->clone());
	aut_neg_f = ltl_to_tgba_fm(neg_f, aut_f->get_dict());
	neg_f->destroy();

	// Remove useless SCCs.
	const tgba* tmp = scc_filter(aut_neg_f, true);
	delete aut_neg_f;
	to_free = aut_neg_f = tmp;
      }

    // If the negation is a safety automaton, then the
    // minimization is correct.
    if (is_safety_automaton(aut_neg_f))
      {
	delete to_free;
	return min_aut_f;
      }

    bool ok = false;

    tgba* p = new tgba_product(min_aut_f, aut_neg_f);
    emptiness_check* ec = couvreur99(p);
    emptiness_check_result* res = ec->check();
    if (!res)
      {
	delete ec;
	delete p;
660

661
	// Complement the minimized WDBA.
662
663
664
	tgba* neg_min_aut_f = wdba_complement(min_aut_f);

	tgba* p = new tgba_product(aut_f, neg_min_aut_f);
665
666
667
668
	emptiness_check* ec = couvreur99(p);
	res = ec->check();

	if (!res)
669
670
671
672
673
	  {
	    // Finally, we are now sure that it was safe
	    // to minimize the automaton.
	    ok = true;
	  }
674
675
676
677

	delete res;
	delete ec;
	delete p;
678
	delete neg_min_aut_f;
679
680
681
682
683
684
685
686
687
688
689
690
691
692
      }
    else
      {
	delete res;
	delete ec;
	delete p;
      }
    delete to_free;

    if (ok)
      return min_aut_f;
    delete min_aut_f;
    return aut_f;
  }
693
}