ltsmin.cc 27.4 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
// Copyright (C) 2011, 2012, 2014 Laboratoire de Recherche et Développement
3
// de l'Epita (LRDE)
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19

20
21
22
23
#include <ltdl.h>
#include <cstring>
#include <cstdlib>
#include <vector>
24
#include <sstream>
25
26
#include <sys/stat.h>
#include <unistd.h>
27

28
29
30
31
32
// MinGW does not define this.
#ifndef WEXITSTATUS
# define WEXITSTATUS(x) ((x) & 0xff)
#endif

33
#include "ltsmin.hh"
34
#include "misc/hashfunc.hh"
35
#include "misc/fixpool.hh"
36
#include "misc/mspool.hh"
37
#include "misc/intvcomp.hh"
38
#include "misc/intvcmp2.hh"
39
40
41

namespace spot
{
42
43
  namespace
  {
44
45

    ////////////////////////////////////////////////////////////////////////
46
    // spins interface
47
48
49
50
51
52
53
54
55
56

    typedef struct transition_info {
      int* labels; // edge labels, NULL, or pointer to the edge label(s)
      int  group;  // holds transition group or -1 if unknown
    } transition_info_t;

    typedef void (*TransitionCB)(void *ctx,
				 transition_info_t *transition_info,
				 int *dst);

57
    struct spins_interface
58
    {
59
      lt_dlhandle handle;	// handle to the dynamic library
60
61
      void (*get_initial_state)(void *to);
      int (*have_property)();
62
      int (*get_successors)(void* m, int *in, TransitionCB, void *arg);
63
      int (*get_state_size)();
64
65
      const char* (*get_state_variable_name)(int var);
      int (*get_state_variable_type)(int var);
66
67
68
69
      int (*get_type_count)();
      const char* (*get_type_name)(int type);
      int (*get_type_value_count)(int type);
      const char* (*get_type_value_name)(int type, int value);
70
71
72
73
74
    };

    ////////////////////////////////////////////////////////////////////////
    // STATE

75
    struct spins_state: public state
76
    {
77
      spins_state(int s, fixed_size_pool* p)
78
	: pool(p), size(s), count(1)
79
80
81
82
83
84
85
86
87
88
      {
      }

      void compute_hash()
      {
	hash_value = 0;
	for (int i = 0; i < size; ++i)
	  hash_value = wang32_hash(hash_value ^ vars[i]);
      }

89
      spins_state* clone() const
90
91
      {
	++count;
92
	return const_cast<spins_state*>(this);
93
94
95
96
97
98
      }

      void destroy() const
      {
	if (--count)
	  return;
99
	pool->deallocate(this);
100
101
102
103
104
105
106
107
108
109
110
      }

      size_t hash() const
      {
	return hash_value;
      }

      int compare(const state* other) const
      {
	if (this == other)
	  return 0;
111
	const spins_state* o = down_cast<const spins_state*>(other);
112
113
114
115
116
117
118
119
120
121
	assert(o);
	if (hash_value < o->hash_value)
	  return -1;
	if (hash_value > o->hash_value)
	  return 1;
	return memcmp(vars, o->vars, size * sizeof(*vars));
      }

    private:

122
      ~spins_state()
123
124
125
      {
      }

126
127
    public:
      fixed_size_pool* pool;
128
129
130
      size_t hash_value: 32;
      int size: 16;
      mutable unsigned count: 16;
131
      int vars[0];
132
133
    };

134
    struct spins_compressed_state: public state
135
    {
136
      spins_compressed_state(int s, multiple_size_pool* p)
137
	: pool(p), size(s), count(1)
138
139
140
141
142
143
      {
      }

      void compute_hash()
      {
	hash_value = 0;
144
145
	for (int i = 0; i < size; ++i)
	  hash_value = wang32_hash(hash_value ^ vars[i]);
146
147
      }

148
      spins_compressed_state* clone() const
149
150
      {
	++count;
151
	return const_cast<spins_compressed_state*>(this);
152
153
154
155
156
157
      }

      void destroy() const
      {
	if (--count)
	  return;
158
	pool->deallocate(this, sizeof(*this) + size * sizeof(*vars));
159
160
161
162
163
164
165
166
167
168
169
      }

      size_t hash() const
      {
	return hash_value;
      }

      int compare(const state* other) const
      {
	if (this == other)
	  return 0;
170
171
	const spins_compressed_state* o =
	  down_cast<const spins_compressed_state*>(other);
172
173
174
175
176
177
	assert(o);
	if (hash_value < o->hash_value)
	  return -1;
	if (hash_value > o->hash_value)
	  return 1;

178
	if (size < o->size)
179
	  return -1;
180
	if (size > o->size)
181
182
	  return 1;

183
	return memcmp(vars, o->vars, size * sizeof(*vars));
184
185
186
187
      }

    private:

188
      ~spins_compressed_state()
189
190
191
192
      {
      }

    public:
193
      multiple_size_pool* pool;
194
195
196
      size_t hash_value: 32;
      int size: 16;
      mutable unsigned count: 16;
197
      int vars[0];
198
199
    };

200
201
202
203
204
    ////////////////////////////////////////////////////////////////////////
    // CALLBACK FUNCTION for transitions.

    struct callback_context
    {
205
      typedef std::list<state*> transitions_t;
206
207
      transitions_t transitions;
      int state_size;
208
209
      void* pool;
      int* compressed;
210
      void (*compress)(const int*, size_t, int*, size_t&);
211
212
213

      ~callback_context()
      {
214
215
	for (auto t: transitions)
	  t->destroy();
216
      }
217
218
219
220
221
    };

    void transition_callback(void* arg, transition_info_t*, int *dst)
    {
      callback_context* ctx = static_cast<callback_context*>(arg);
222
      fixed_size_pool* p = static_cast<fixed_size_pool*>(ctx->pool);
223
224
      spins_state* out =
	new(p->allocate()) spins_state(ctx->state_size, p);
225
226
227
228
229
      memcpy(out->vars, dst, ctx->state_size * sizeof(int));
      out->compute_hash();
      ctx->transitions.push_back(out);
    }

230
231
232
    void transition_callback_compress(void* arg, transition_info_t*, int *dst)
    {
      callback_context* ctx = static_cast<callback_context*>(arg);
233
234
235
      multiple_size_pool* p = static_cast<multiple_size_pool*>(ctx->pool);

      size_t csize = ctx->state_size * 2;
236
      ctx->compress(dst, ctx->state_size, ctx->compressed, csize);
237

238
      void* mem = p->allocate(sizeof(spins_compressed_state)
239
			      + sizeof(int) * csize);
240
      spins_compressed_state* out = new(mem) spins_compressed_state(csize, p);
241
      memcpy(out->vars, ctx->compressed, csize * sizeof(int));
242
243
244
245
      out->compute_hash();
      ctx->transitions.push_back(out);
    }

246
247
248
    ////////////////////////////////////////////////////////////////////////
    // SUCC_ITERATOR

249
    class spins_succ_iterator: public kripke_succ_iterator
250
251
252
    {
    public:

253
      spins_succ_iterator(const callback_context* cc,
254
255
256
257
258
			 bdd cond)
	: kripke_succ_iterator(cond), cc_(cc)
      {
      }

259
260
261
262
263
264
265
      void recycle(const callback_context* cc, bdd cond)
      {
	delete cc_;
	cc_ = cc;
	kripke_succ_iterator::recycle(cond);
      }

266
      ~spins_succ_iterator()
267
268
269
270
271
      {
	delete cc_;
      }

      virtual
272
      bool first()
273
274
      {
	it_ = cc_->transitions.begin();
275
	return it_ != cc_->transitions.end();
276
277
278
      }

      virtual
279
      bool next()
280
281
      {
	++it_;
282
	return it_ != cc_->transitions.end();
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
      }

      virtual
      bool done() const
      {
	return it_ == cc_->transitions.end();
      }

      virtual
      state* current_state() const
      {
	return (*it_)->clone();
      }

    private:
      const callback_context* cc_;
      callback_context::transitions_t::const_iterator it_;
    };

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    ////////////////////////////////////////////////////////////////////////
    // PREDICATE EVALUATION

    typedef enum { OP_EQ, OP_NE, OP_LT, OP_GT, OP_LE, OP_GE } relop;

    struct one_prop
    {
      int var_num;
      relop op;
      int val;
      int bddvar;  // if "var_num op val" is true, output bddvar,
		   // else its negation
    };
    typedef std::vector<one_prop> prop_set;

317
318
319
320
321
322
323
324

    struct var_info
    {
      int num;
      int type;
    };


325
326
    int
    convert_aps(const ltl::atomic_prop_set* aps,
327
		const spins_interface* d,
328
		bdd_dict_ptr dict,
329
		const ltl::formula* dead,
330
331
332
333
		prop_set& out)
    {
      int errors = 0;

334
      int state_size = d->get_state_size();
335
336
337
      typedef std::map<std::string, var_info> val_map_t;
      val_map_t val_map;

338
      for (int i = 0; i < state_size; ++i)
339
340
341
342
343
344
345
	{
	  const char* name = d->get_state_variable_name(i);
	  int type = d->get_state_variable_type(i);
	  var_info v = { i , type };
	  val_map[name] = v;
	}

346
      int type_count = d->get_type_count();
347
348
349
350
      typedef std::map<std::string, int> enum_map_t;
      std::vector<enum_map_t> enum_map(type_count);
      for (int i = 0; i < type_count; ++i)
	{
351
	  int enum_count = d->get_type_value_count(i);
352
	  for (int j = 0; j < enum_count; ++j)
353
	    enum_map[i].emplace(d->get_type_value_name(i, j), j);
354
	}
355
356
357
358

      for (ltl::atomic_prop_set::const_iterator ap = aps->begin();
	   ap != aps->end(); ++ap)
	{
359
360
361
	  if (*ap == dead)
	    continue;

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
	  std::string str = (*ap)->name();
	  const char* s = str.c_str();

	  // Skip any leading blank.
	  while (*s && (*s == ' ' || *s == '\t'))
	    ++s;
	  if (!*s)
	    {
	      std::cerr << "Proposition `" << str
			<< "' cannot be parsed." << std::endl;
	      ++errors;
	      continue;
	    }


	  char* name = (char*) malloc(str.size() + 1);
	  char* name_p = name;
379
	  char* lastdot = 0;
380
381
	  while (*s && (*s != '=') && *s != '<' && *s != '!'  && *s != '>')
	    {
382

383
384
385
	      if (*s == ' ' || *s == '\t')
		++s;
	      else
386
387
388
389
390
		{
		  if (*s == '.')
		    lastdot = name_p;
		  *name_p++ = *s++;
		}
391
392
393
394
395
396
397
398
399
400
401
402
403
	    }
	  *name_p = 0;

	  if (name == name_p)
	    {
	      std::cerr << "Proposition `" << str
			<< "' cannot be parsed." << std::endl;
	      free(name);
	      ++errors;
	      continue;
	    }

	  // Lookup the name
404
405
	  val_map_t::const_iterator ni = val_map.find(name);
	  if (ni == val_map.end())
406
	    {
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
	      // We may have a name such as X.Y.Z
	      // If it is not a known variable, it might mean
	      // an enumerated variable X.Y with value Z.
	      if (lastdot)
		{
		  *lastdot++ = 0;
		  ni = val_map.find(name);
		}

	      if (ni == val_map.end())
		{
		  std::cerr << "No variable `" << name
			    << "' found in model (for proposition `"
			    << str << "')." << std::endl;
		  free(name);
		  ++errors;
		  continue;
		}

	      // We have found the enumerated variable, and lastdot is
	      // pointing to its expected value.
	      int type_num = ni->second.type;
	      enum_map_t::const_iterator ei = enum_map[type_num].find(lastdot);
	      if (ei == enum_map[type_num].end())
		{
		  std::cerr << "No state `" << lastdot
			    << "' known for variable `"
			    << name << "'." << std::endl;
		  std::cerr << "Possible states are:";
		  for (ei = enum_map[type_num].begin();
		       ei != enum_map[type_num].end(); ++ei)
438
439
		    std::cerr << ' ' << ei->first;
		  std::cerr << '\n';
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

		  free(name);
		  ++errors;
		  continue;
		}

	      // At this point, *s should be 0.
	      if (*s)
		{
		  std::cerr << "Trailing garbage `" << s
			    << "' at end of proposition `"
			    << str << "'." << std::endl;
		  free(name);
		  ++errors;
		  continue;
		}

	      // Record that X.Y must be equal to Z.
	      int v = dict->register_proposition(*ap, d);
	      one_prop p = { ni->second.num, OP_EQ, ei->second, v };
	      out.push_back(p);
461
462
463
464
	      free(name);
	      continue;
	    }

465
466
	  int var_num = ni->second.num;

467
468
469
	  if (!*s)		// No operator?  Assume "!= 0".
	    {
	      int v = dict->register_proposition(*ap, d);
470
	      one_prop p = { var_num, OP_NE, 0, v };
471
	      out.push_back(p);
472
	      free(name);
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
	      continue;
	    }

	  relop op;

	  switch (*s)
	    {
	    case '!':
	      if (s[1] != '=')
		goto report_error;
	      op = OP_NE;
	      s += 2;
	      break;
	    case '=':
	      if (s[1] != '=')
		goto report_error;
	      op = OP_EQ;
	      s += 2;
	      break;
	    case '<':
	      if (s[1] == '=')
		{
		  op = OP_LE;
		  s += 2;
		}
	      else
		{
		  op = OP_LT;
		  ++s;
		}
	      break;
	    case '>':
	      if (s[1] == '=')
		{
507
		  op = OP_GE;
508
509
510
511
		  s += 2;
		}
	      else
		{
512
		  op = OP_GT;
513
514
515
516
517
518
519
520
521
		  ++s;
		}
	      break;
	    default:
	    report_error:
	      std::cerr << "Unexpected `" << s
			<< "' while parsing atomic proposition `" << str
			<< "'." << std::endl;
	      ++errors;
522
	      free(name);
523
524
525
526
527
528
	      continue;
	    }

	  while (*s && (*s == ' ' || *s == '\t'))
	    ++s;

529
	  int val = 0; // Initialize to kill a warning from old compilers.
530
531
	  int type_num = ni->second.type;
	  if (type_num == 0 || (*s >= '0' && *s <= '9') || *s == '-')
532
	    {
533
534
535
536
537
538
539
540
541
542
543
	      char* s_end;
	      val = strtol(s, &s_end, 10);
	      if (s == s_end)
		{
		  std::cerr << "Failed to parse `" << s
			    << "' as an integer." << std::endl;
		  ++errors;
		  free(name);
		  continue;
		}
	      s = s_end;
544
	    }
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
	  else
	    {
	      // We are in a case such as P_0 == S, trying to convert
	      // the string S into an integer.
	      const char* end = s;
	      while (*end && *end != ' ' && *end != '\t')
		++end;
	      std::string st(s, end);

	      // Lookup the string.
	      enum_map_t::const_iterator ei = enum_map[type_num].find(st);
	      if (ei == enum_map[type_num].end())
		{
		  std::cerr << "No state `" << st
			    << "' known for variable `"
			    << name << "'." << std::endl;
		  std::cerr << "Possible states are:";
		  for (ei = enum_map[type_num].begin();
		       ei != enum_map[type_num].end(); ++ei)
564
565
		    std::cerr << ' ' << ei->first;
		  std::cerr << '\n';
566
567
568
569
570
571
572
573
574
575
576

		  free(name);
		  ++errors;
		  continue;
		}
	      s = end;
	      val = ei->second;
	    }

	  free(name);

577
578
579
580
	  while (*s && (*s == ' ' || *s == '\t'))
	    ++s;
	  if (*s)
	    {
581
	      std::cerr << "Unexpected `" << s
582
583
			<< "' while parsing atomic proposition `" << str
			<< "'." << std::endl;
584
585
		  ++errors;
		  continue;
586
587
	    }

588

589
	  int v = dict->register_proposition(*ap, d);
590
	  one_prop p = { var_num, op, val, v };
591
592
593
594
595
596
	  out.push_back(p);
	}

      return errors;
    }

597
598
599
    ////////////////////////////////////////////////////////////////////////
    // KRIPKE

600
    class spins_kripke: public kripke
601
602
603
    {
    public:

604
      spins_kripke(const spins_interface* d, const bdd_dict_ptr& dict,
605
606
		   const spot::prop_set* ps, const ltl::formula* dead,
		   int compress)
607
608
	: kripke(dict),
	  d_(d),
609
	  state_size_(d_->get_state_size()),
610
	  dict_(dict), ps_(ps),
611
612
613
614
615
616
617
	  compress_(compress == 0 ? 0
		    : compress == 1 ? int_array_array_compress
		    : int_array_array_compress2),
	  decompress_(compress == 0 ? 0
		      : compress == 1 ? int_array_array_decompress
		      : int_array_array_decompress2),
	  uncompressed_(compress ? new int[state_size_ + 30] : 0),
618
	  compressed_(compress ? new int[state_size_ * 2] : 0),
619
620
	  statepool_(compress ? sizeof(spins_compressed_state) :
		     (sizeof(spins_state) + state_size_ * sizeof(int))),
621
	  state_condition_last_state_(0), state_condition_last_cc_(0)
622
      {
623
	vname_ = new const char*[state_size_];
624
	format_filter_ = new bool[state_size_];
625
	for (int i = 0; i < state_size_; ++i)
626
627
628
629
630
631
632
	  {
	    vname_[i] = d_->get_state_variable_name(i);
	    // We don't want to print variables that can take a single
	    // value (e.g. process with a single state) to shorten the
	    // output.
	    int type = d->get_state_variable_type(i);
	    format_filter_[i] =
633
	      (d->get_type_value_count(type) != 1);
634
	  }
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

	// Register the "dead" proposition.  There are three cases to
	// consider:
	//  * If DEAD is "false", it means we are not interested in finite
	//    sequences of the system.
	//  * If DEAD is "true", we want to check finite sequences as well
	//    as infinite sequences, but do not need to distinguish them.
	//  * If DEAD is any other string, this is the name a property
	//    that should be true when looping on a dead state, and false
	//    otherwise.
	// We handle these three cases by setting ALIVE_PROP and DEAD_PROP
	// appropriately.  ALIVE_PROP is the bdd that should be ANDed
	// to all transitions leaving a live state, while DEAD_PROP should
	// be ANDed to all transitions leaving a dead state.
	if (dead == ltl::constant::false_instance())
	  {
	    alive_prop = bddtrue;
	    dead_prop = bddfalse;
	  }
654
	else if (dead == ltl::constant::true_instance())
655
656
657
658
659
660
661
662
663
664
	  {
	    alive_prop = bddtrue;
	    dead_prop = bddtrue;
	  }
	else
	  {
	    int var = dict->register_proposition(dead, d_);
	    dead_prop = bdd_ithvar(var);
	    alive_prop = bdd_nithvar(var);
	  }
665
666
      }

667
      ~spins_kripke()
668
      {
669
670
671
672
673
	if (iter_cache_)
	  {
	    delete iter_cache_;
	    iter_cache_ = nullptr;
	  }
674
	delete[] format_filter_;
675
	delete[] vname_;
676
	if (compress_)
677
678
679
680
	  {
	    delete[] uncompressed_;
	    delete[] compressed_;
	  }
681
682
683
684
	lt_dlclose(d_->handle);

	dict_->unregister_all_my_variables(d_);

685
	delete d_;
686
687
	delete ps_;
	lt_dlexit();
688
689
690
691

	if (state_condition_last_state_)
	  state_condition_last_state_->destroy();
	delete state_condition_last_cc_; // Might be 0 already.
692
693
694
695
696
      }

      virtual
      state* get_init_state() const
      {
697
698
699
	if (compress_)
	  {
	    d_->get_initial_state(uncompressed_);
700
	    size_t csize = state_size_ * 2;
701
	    compress_(uncompressed_, state_size_, compressed_, csize);
702
703
704

	    multiple_size_pool* p =
	      const_cast<multiple_size_pool*>(&compstatepool_);
705
	    void* mem = p->allocate(sizeof(spins_compressed_state)
706
				    + sizeof(int) * csize);
707
708
	    spins_compressed_state* res = new(mem)
	      spins_compressed_state(csize, p);
709
	    memcpy(res->vars, compressed_, csize * sizeof(int));
710
711
712
713
714
	    res->compute_hash();
	    return res;
	  }
	else
	  {
715
	    fixed_size_pool* p = const_cast<fixed_size_pool*>(&statepool_);
716
	    spins_state* res = new(p->allocate()) spins_state(state_size_, p);
717
718
719
720
	    d_->get_initial_state(res->vars);
	    res->compute_hash();
	    return res;
	  }
721
722
      }

723
      bdd
724
      compute_state_condition_aux(const int* vars) const
725
726
      {
	bdd res = bddtrue;
727
	for (auto& i: *ps_)
728
	  {
729
730
	    int l = vars[i.var_num];
	    int r = i.val;
731
732

	    bool cond = false;
733
	    switch (i.op)
734
	      {
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
	      case OP_EQ:
		cond = (l == r);
		break;
	      case OP_NE:
		cond = (l != r);
		break;
	      case OP_LT:
		cond = (l < r);
		break;
	      case OP_GT:
		cond = (l > r);
		break;
	      case OP_LE:
		cond = (l <= r);
		break;
	      case OP_GE:
		cond = (l >= r);
		break;
753
754
755
	      }

	    if (cond)
756
	      res &= bdd_ithvar(i.bddvar);
757
	    else
758
	      res &= bdd_nithvar(i.bddvar);
759
	  }
760
761
762
	return res;
      }

763
764
765
766
767
768
769
770
      callback_context* build_cc(const int* vars, int& t) const
      {
	callback_context* cc = new callback_context;
	cc->state_size = state_size_;
	cc->pool =
	  const_cast<void*>(compress_
			    ? static_cast<const void*>(&compstatepool_)
			    : static_cast<const void*>(&statepool_));
771
	cc->compress = compress_;
772
773
774
775
776
777
778
779
780
781
	cc->compressed = compressed_;
	t = d_->get_successors(0, const_cast<int*>(vars),
			       compress_
			       ? transition_callback_compress
			       : transition_callback,
			       cc);
	assert((unsigned)t == cc->transitions.size());
	return cc;
      }

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
      bdd
      compute_state_condition(const state* st) const
      {
	// If we just computed it, don't do it twice.
	if (st == state_condition_last_state_)
	  return state_condition_last_cond_;

	if (state_condition_last_state_)
	  {
	    state_condition_last_state_->destroy();
	    delete state_condition_last_cc_; // Might be 0 already.
	    state_condition_last_cc_ = 0;
	  }

	const int* vars = get_vars(st);

	bdd res = compute_state_condition_aux(vars);
799
800
	int t;
	callback_context* cc = build_cc(vars, t);
801
802
803
804
805
806
807
808
809
810
811

	if (t)
	  {
	    res &= alive_prop;
	  }
	else
	  {
	    res &= dead_prop;

	    // Add a self-loop to dead-states if we care about these.
	    if (res != bddfalse)
812
	      cc->transitions.push_back(st->clone());
813
814
	  }

815
	state_condition_last_cc_ = cc;
816
	state_condition_last_cond_ = res;
817
	state_condition_last_state_ = st->clone();
818

819
820
821
	return res;
      }

822
823
824
825
826
827
      const int*
      get_vars(const state* st) const
      {
	const int* vars;
	if (compress_)
	  {
828
829
	    const spins_compressed_state* s =
	      down_cast<const spins_compressed_state*>(st);
830
831
	    assert(s);

832
	    decompress_(s->vars, s->size, uncompressed_, state_size_);
833
834
835
836
	    vars = uncompressed_;
	  }
	else
	  {
837
	    const spins_state* s = down_cast<const spins_state*>(st);
838
839
840
841
842
843
844
	    assert(s);
	    vars = s->vars;
	  }
	return vars;
      }


845
      virtual
846
      spins_succ_iterator*
847
      succ_iter(const state* st) const
848
      {
849
	// This may also compute successors in state_condition_last_cc
850
	bdd scond = compute_state_condition(st);
851
852
853
854
855
856
857
858
859

	callback_context* cc;
	if (state_condition_last_cc_)
	  {
	    cc = state_condition_last_cc_;
	    state_condition_last_cc_ = 0; // Now owned by the iterator.
	  }
	else
	  {
860
	    int t;
861
	    cc = build_cc(get_vars(st), t);
862
863
864

	    // Add a self-loop to dead-states if we care about these.
	    if (t == 0 && scond != bddfalse)
865
	      cc->transitions.push_back(st->clone());
866
	  }
867

868
869
	if (iter_cache_)
	  {
870
871
	    spins_succ_iterator* it =
	      down_cast<spins_succ_iterator*>(iter_cache_);
872
873
874
875
	    it->recycle(cc, scond);
	    iter_cache_ = nullptr;
	    return it;
	  }
876
	return new spins_succ_iterator(cc, scond);
877
878
879
880
      }

      virtual
      bdd
881
      state_condition(const state* st) const
882
      {
883
	return compute_state_condition(st);
884
885
886
      }

      virtual
887
      std::string format_state(const state *st) const
888
      {
889
	const int* vars = get_vars(st);
890
891
892
893
894
895
896
897
898

	std::stringstream res;

	if (state_size_ == 0)
	  return "empty state";

	int i = 0;
	for (;;)
	  {
899
900
901
902
903
	    if (!format_filter_[i])
	      {
		++i;
		continue;
	      }
904
	    res << vname_[i] << '=' << vars[i];
905
906
907
908
909
910
	    ++i;
	    if (i == state_size_)
	      break;
	    res << ", ";
	  }
	return res.str();
911
912
913
      }

      virtual
914
      spot::bdd_dict_ptr get_dict() const
915
916
917
918
919
      {
	return dict_;
      }

    private:
920
      const spins_interface* d_;
921
      int state_size_;
922
      bdd_dict_ptr dict_;
923
      const char** vname_;
924
      bool* format_filter_;
925
      const spot::prop_set* ps_;
926
927
      bdd alive_prop;
      bdd dead_prop;
928
929
      void (*compress_)(const int*, size_t, int*, size_t&);
      void (*decompress_)(const int*, size_t, int*, size_t);
930
      int* uncompressed_;
931
      int* compressed_;
932
      fixed_size_pool statepool_;
933
      multiple_size_pool compstatepool_;
934

935
936
937
938
939
      // This cache is used to speedup repeated calls to state_condition()
      // and get_succ().
      // If state_condition_last_state_ != 0, then state_condition_last_cond_
      // contain its (recently computed) condition.  If additionally
      // state_condition_last_cc_ != 0, then it contains the successors.
940
      mutable const state* state_condition_last_state_;
941
942
      mutable bdd state_condition_last_cond_;
      mutable callback_context* state_condition_last_cc_;
943
944
945
946
947
948
949
950
    };

  }


  ////////////////////////////////////////////////////////////////////////////
  // LOADER

951

952
  // Call spins to compile "foo.prom" as "foo.prom.spins" if the latter
953
954
  // does not exist already or is older.
  bool
955
  compile_model(std::string& filename, std::string& ext, bool verbose)
956
  {
957
958
    std::string command;
    std::string compiled_ext;
959

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
    if (ext == ".prom" || ext == ".pm" || ext == ".pml")
      {
        command = "spins " + filename;
        compiled_ext = ".spins";
      }
    else if (ext == ".dve")
      {
        command = "divine compile --ltsmin " + filename;
        compiled_ext = "2C";
      }
    else
      {
	if (verbose)
	  std::cerr << "Unknown extension `" << ext
		    << "'.  Use `.prom', `.pm', `.pml', `.dve', `.dve2C' or"\
                    "`.prom.spins'." << std::endl;
	return false;
      }
978
979
980
981
982
983
984
985
986
987
988
989

    struct stat s;
    if (stat(filename.c_str(), &s) != 0)
      {
	if (verbose)
	  {
	    std::cerr << "Cannot open " << filename << std::endl;
	    return true;
	  }
      }

    std::string old = filename;
990
    filename += compiled_ext;
991
992
993
994
995
996
997
998
999
1000

    // Remove any directory, because the new file will
    // be compiled in the current directory.
    size_t pos = filename.find_last_of("/\\");
    if (pos != std::string::npos)
      filename = "./" + filename.substr(pos + 1);

    struct stat d;
    if (stat(filename.c_str(), &d) == 0)
      if (s.st_mtime < d.st_mtime)
1001
	// The .spins or .dve2C is up-to-date, no need to recompile it.
1002
1003
1004
1005
1006
1007
1008
1009
	return false;

    int res = system(command.c_str());
    if (res)
      {
	if (verbose)
	  std::cerr << "Execution of `" << command.c_str()
		    << "' returned exit code " << WEXITSTATUS(res)
1010
		    << ".\n";
1011
1012
1013
1014
1015
	return true;
      }
    return false;
  }

1016
  kripke_ptr
1017
1018
1019
  load_ltsmin(const std::string& file_arg, const bdd_dict_ptr& dict,
	      const ltl::atomic_prop_set* to_observe,
	      const ltl::formula* dead, int compress, bool verbose)
1020
  {
1021
1022
1023
1024
1025
1026
    std::string file;
    if (file_arg.find_first_of("/\\") != std::string::npos)
      file = file_arg;
    else
      file = "./" + file_arg;

1027
    std::string ext = file.substr(file.find_last_of("."));
1028
    if (ext != ".spins" && ext != ".dve2C")
1029
      {
1030
1031
1032
1033
1034
1035
1036
        if (compile_model(file, ext, verbose))
          {
            if (verbose)
              std::cerr << "Failed to compile `" << file_arg
              << "'." << std::endl;
            return 0;
          }
1037
1038
      }

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
    if (lt_dlinit())
      {
	if (verbose)
	  std::cerr << "Failed to initialize libltdl." << std::endl;
	return 0;
      }

    lt_dlhandle h = lt_dlopen(file.c_str());
    if (!h)
      {
	if (verbose)
	  std::cerr << "Failed to load `" << file << "'." << std::endl;
	lt_dlexit();
	return 0;
      }

1055
    spins_interface* d = new spins_interface;
1056
1057
    d->handle = h;

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
    // SpinS interface.
    if ((d->get_initial_state = (void (*)(void*))
        lt_dlsym(h, "spins_get_initial_state")))
      {
        d->have_property = nullptr;
        d->get_successors = (int (*)(void*, int*, TransitionCB, void*))
        lt_dlsym(h, "spins_get_successor_all");
        d->get_state_size = (int (*)())
        lt_dlsym(h, "spins_get_state_size");
        d->get_state_variable_name = (const char* (*)(int))
        lt_dlsym(h, "spins_get_state_variable_name");
        d->get_state_variable_type = (int (*)(int))
        lt_dlsym(h, "spins_get_state_variable_type");
        d->get_type_count = (int (*)())
        lt_dlsym(h, "spins_get_type_count");
        d->get_type_name = (const char* (*)(int))
        lt_dlsym(h, "spins_get_type_name");
        d->get_type_value_count = (int (*)(int))
        lt_dlsym(h, "spins_get_type_value_count");
        d->get_type_value_name = (const char* (*)(int, int))
        lt_dlsym(h, "spins_get_type_value_name");
      }
    // dve2 interface.
    else
      {
        d->get_initial_state = (void (*)(void*))
        lt_dlsym(h, "get_initial_state");
        d->have_property = (int (*)())
        lt_dlsym(h, "have_property");
        d->get_successors = (int (*)(void*, int*, TransitionCB, void*))
        lt_dlsym(h, "get_successors");
        d->get_state_size = (int (*)())
        lt_dlsym(h, "get_state_variable_count");
        d->get_state_variable_name = (const char* (*)(int))
        lt_dlsym(h, "get_state_variable_name");
        d->get_state_variable_type = (int (*)(int))
        lt_dlsym(h, "get_state_variable_type");
        d->get_type_count = (int (*)())
        lt_dlsym(h, "get_state_variable_type_count");
        d->get_type_name = (const char* (*)(int))
        lt_dlsym(h, "get_state_variable_type_name");
        d->get_type_value_count = (int (*)(int))
        lt_dlsym(h, "get_state_variable_type_value_count");
        d->get_type_value_name = (const char* (*)(int, int))
        lt_dlsym(h, "get_state_variable_type_value");
      }

1105
    if (!(d->get_initial_state
1106
	  && d->get_successors
1107
	  && d->get_state_size
1108
1109
	  && d->get_state_variable_name
	  && d->get_state_variable_type
1110
1111
1112
1113
	  && d->get_type_count
	  && d->get_type_name
	  && d->get_type_value_count
	  && d->get_type_value_name))
1114
1115
1116
      {
	if (verbose)
	  std::cerr << "Failed to resolve some symbol while loading `"
1117
		    << file << "'\n";
1118
1119
1120
1121
1122
	delete d;
	lt_dlexit();
	return 0;
      }

1123
    if (d->have_property && d->have_property())
1124
      {
1125
1126
1127
1128
1129
1130
        if (verbose)
          std::cerr << "Model with an embedded property are not supported."
        	    << std::endl;
        delete d;
        lt_dlexit();
        return 0;
1131
1132
      }

1133
    spot::prop_set* ps = new spot::prop_set;
1134
    int errors = convert_aps(to_observe, d, dict, dead, *ps);
1135
1136
1137
1138
1139
1140
1141
1142
1143
    if (errors)
      {
	delete ps;
	dict->unregister_all_my_variables(d);
	delete d;
	lt_dlexit();
	return 0;
      }

1144
    return std::make_shared<spins_kripke>(d, dict, ps, dead, compress);
1145
1146
  }
}