ltl2tgba_fm.cc 42.4 KB
Newer Older
1
2
3
// Copyright (C) 2008, 2009, 2010 Laboratoire de Recherche et
// Dveloppement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire
4
5
// d'Informatique de Paris 6 (LIP6), dpartement Systmes Rpartis
// Coopratifs (SRC), Universit Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

24
#include "misc/hash.hh"
25
#include "misc/bddalloc.hh"
26
#include "misc/bddlt.hh"
27
#include "misc/minato.hh"
28
29
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
30
31
32
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/tostring.hh"
33
#include "ltlvisit/postfix.hh"
34
#include "ltlvisit/apcollect.hh"
35
36
#include "ltlvisit/mark.hh"
#include "ltlvisit/tostring.hh"
37
#include <cassert>
38
#include <memory>
39
#include "ltl2tgba_fm.hh"
40
#include "ltlvisit/contain.hh"
41
42
#include "ltlvisit/consterm.hh"
#include "tgba/bddprint.hh"
43
44
45
46
47
48
49
50

namespace spot
{
  using namespace ltl;

  namespace
  {

51
52
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
53
54
55
56
57
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
58
    class translate_dict
59
60
61
    {
    public:

62
63
      translate_dict(bdd_dict* dict)
	: dict(dict),
64
65
66
67
68
69
70
71
72
73
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
74
	  i->first->destroy();
75
	dict->unregister_all_my_variables(this);
76
77
      }

78
79
      bdd_dict* dict;

80
81
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
82
83
84
85
86
87
88
89
90

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
91
      register_proposition(const formula* f)
92
      {
93
	int num = dict->register_proposition(f, this);
94
95
96
97
98
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
99
      register_a_variable(const formula* f)
100
      {
101
	int num = dict->register_acceptance_variable(f, this);
102
103
104
105
106
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
107
      register_next_variable(const formula* f)
108
109
110
111
112
113
114
115
116
117
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
118
	    f = f->clone();
119
	    num = dict->register_anonymous_variables(1, this);
120
121
122
123
124
125
126
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
	return os;
      }

142
      formula*
143
144
145
146
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
147
	  return isi->second->clone();
148
149
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
150
	  return isi->second->clone();
151
152
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
153
	  return isi->second->clone();
154
	assert(0);
155
156
157
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
158
159
      }

160
      formula*
161
      conj_bdd_to_formula(bdd b) const
162
163
      {
	if (b == bddfalse)
164
165
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
166
167
168
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
169
	    formula* res = var_to_formula(var);
170
171
172
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
173
		res = unop::instance(unop::Not, res);
174
175
176
177
		b = bdd_low(b);
	      }
	    else
	      {
178
		assert(bdd_low(b) == bddfalse);
179
180
181
182
183
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
184
	return multop::instance(multop::And, v);
185
186
      }

187
      formula*
188
      bdd_to_formula(bdd f)
189
      {
190
	if (f == bddfalse)
191
	  return constant::false_instance();
192

193
194
195
196
197
198
199
200
201
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
202
203

      void
204
      conj_bdd_to_acc(tgba_explicit_formula* a, bdd b,
Pierre PARUTTO's avatar
Pierre PARUTTO committed
205
		      state_explicit_formula::transition* t)
206
207
208
209
210
211
212
213
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
214
		// Simply ignore negated acceptance variables.
215
216
217
218
		b = bdd_low(b);
	      }
	    else
	      {
219
		formula* ac = var_to_formula(var);
220

221
		if (!a->has_acceptance_condition(ac))
222
		  a->declare_acceptance_condition(ac->clone());
223
		a->add_acceptance_condition(t, ac);
224
225
226
227
228
229
230
231
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


232
233
234
235
236
237
238
239
240
241
242
    // Debugging function.
    std::ostream&
    trace_ltl_bdd(const translate_dict& d, bdd f)
    {
      minato_isop isop(f);
      bdd cube;
      while ((cube = isop.next()) != bddfalse)
	{
	  bdd label = bdd_exist(cube, d.next_set);
	  bdd dest_bdd = bdd_existcomp(cube, d.next_set);
	  const formula* dest = d.conj_bdd_to_formula(dest_bdd);
243
244
245
246
	  bdd_print_set(std::cerr, d.dict, label) << " => ";
	  bdd_print_set(std::cerr, d.dict, dest_bdd) << " = "
						     << to_string(dest)
						     << std::endl;
247
248
249
250
251
252
	  dest->destroy();
	}
      return std::cerr;
    }


253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };

296
297
298
299
300
    // Rewrite rule for rational operators.
    class ratexp_trad_visitor: public const_visitor
    {
    public:
      ratexp_trad_visitor(translate_dict& dict,
301
			  bool empty_word_is_true,
302
			  formula* to_concat = 0)
303
304
305
	: dict_(dict),
	  empty_word_is_true_(empty_word_is_true),
	  to_concat_(to_concat)
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
      {
      }

      virtual
      ~ratexp_trad_visitor()
      {
	if (to_concat_)
	  to_concat_->destroy();
      }

      bdd
      result() const
      {
	return res_;
      }

      bdd next_to_concat()
      {
	if (!to_concat_)
	  to_concat_ = constant::empty_word_instance();
	int x = dict_.register_next_variable(to_concat_);
	return bdd_ithvar(x);
      }

      bdd now_to_concat()
      {
332
333
334
335
	if (to_concat_ && to_concat_ != constant::empty_word_instance())
	  return recurse(to_concat_);

	return empty_word_is_true_ ? bddtrue : bddfalse;
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = (bdd_ithvar(dict_.register_proposition(node))
		& next_to_concat());
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = next_to_concat();
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  case constant::EmptyWord:
	    res_ = now_to_concat();
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	  case unop::G:
	  case unop::Not:
	  case unop::X:
	  case unop::Finish:
374
375
376
	  case unop::Closure:
	  case unop::NegClosure:
	    break;
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
	    assert(!"not a rational operator");
	    return;
	  case unop::Star:
	    {
	      formula* f;
	      if (to_concat_)
		f = multop::instance(multop::Concat, node->clone(),
				     to_concat_->clone());
	      else
		f = node->clone();

	      res_ = recurse(node->child(), f) | now_to_concat();
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const automatop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const multop* node)
      {
	switch (node->op())
	  {
	  case multop::And:
	    {
	      res_ = bddtrue;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
	      {
		bdd res = recurse(node->nth(n));
		// trace_ltl_bdd(dict_, res);
		res_ &= res;
	      }

	      //std::cerr << "Pre-Concat:" << std::endl;
	      //trace_ltl_bdd(dict_, res_);

	      if (to_concat_)
		{
		  // If we have translated (a* & b*) in (a* & b*);c, we
		  // have to append ";c" to all destinations.

		  minato_isop isop(res_);
		  bdd cube;
		  res_ = bddfalse;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
		      formula* dest2;
		      int x;
		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & next_to_concat();
			}
		      else
			{
			  dest2 = multop::instance(multop::Concat, dest,
						   to_concat_->clone());
			  if (dest2 != constant::false_instance())
			    {
			      x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(node))
			    res_ |= label & next_to_concat();
			}
		    }
		}

	      break;
	    }
	  case multop::Or:
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
	      if (to_concat_)
		for (unsigned n = 0; n < s; ++n)
		  res_ |= recurse(node->nth(n), to_concat_->clone());
	      else
		for (unsigned n = 0; n < s; ++n)
		  res_ |= recurse(node->nth(n));
	      break;
	    }
	  case multop::Concat:
	    {
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      if (to_concat_)
		v->push_back(to_concat_->clone());
	      res_ = recurse(node->nth(0),
			     multop::instance(multop::Concat, v));
	      break;
	    }
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
	  case multop::Fusion:
	    {
	      assert(node->size() >= 2);

	      // the head
	      bdd res = recurse(node->nth(0));

	      // the tail
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s - 1);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      formula* tail = multop::instance(multop::Fusion, v);
	      bdd tail_bdd;
	      bool tail_computed = false;

	      //trace_ltl_bdd(dict_, res);

	      minato_isop isop(res);
	      bdd cube;
	      res_ = bddfalse;
	      while ((cube = isop.next()) != bddfalse)
		{
		  bdd label = bdd_exist(cube, dict_.next_set);
		  bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		  formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		  if (constant_term_as_bool(dest))
		    {
		      // The destination is a final state.  Make sure we
		      // can also exit if tail is satisfied.
		      if (!tail_computed)
			{
			  tail_bdd = recurse(tail,
					     to_concat_ ?
					     to_concat_->clone() : 0);
			  tail_computed = true;
			}
		      res_ |= label & tail_bdd;
		    }

		  if (dynamic_cast<constant*>(dest) == 0)
		    {
		      // If the destination is not a constant, it
		      // means it can have successors.  Fusion the
		      // tail and append anything to concatenate.
		      formula* dest2 = multop::instance(multop::Fusion, dest,
							tail->clone());
		      if (to_concat_)
			 dest2 = multop::instance(multop::Concat, dest2,
						 to_concat_->clone());
		      if (dest2 != constant::false_instance())
			{
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}

	      tail->destroy();
	      break;
	    }
553
554
555
556
557
558
	  }
      }

      bdd
      recurse(const formula* f, formula* to_concat = 0)
      {
559
	ratexp_trad_visitor v(dict_, empty_word_is_true_, to_concat);
560
561
562
563
564
565
566
567
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
568
      bool empty_word_is_true_;
569
570
571
      formula* to_concat_;
    };

572

573
    // The rewrite rules used here are adapted from Jean-Michel
574
    // Couvreur's FM paper, augmented to support rational operators.
575
576
577
    class ltl_trad_visitor: public const_visitor
    {
    public:
578
579
580
581
      ltl_trad_visitor(translate_dict& dict, bool mark_all = false,
		       bool exprop = false)
	: dict_(dict), rat_seen_(false), has_marked_(false),
	  mark_all_(mark_all), exprop_(exprop)
582
583
584
585
586
587
588
589
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

590
591
592
593
594
595
596
597
      void
      reset(bool mark_all)
      {
	rat_seen_ = false;
	has_marked_ = false;
	mark_all_ = mark_all;
      }

598
599
      bdd
      result() const
600
601
602
603
      {
	return res_;
      }

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
      const translate_dict&
      get_dict() const
      {
	return dict_;
      }

      bool
      has_rational() const
      {
	return rat_seen_;
      }

      bool
      has_marked() const
      {
	return has_marked_;
      }

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
639
	  case constant::EmptyWord:
640
641
	    assert(!"Not an LTL operator");
	    return;
642
643
644
645
646
647
648
649
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
650
651
652
	unop::type op = node->op();

	switch (op)
653
654
655
656
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
657
658
659
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
660
661
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
662
	      break;
663
664
665
	    }
	  case unop::G:
	    {
666
667
668
669
670
671
672
673
674
675
676
677
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
678
	      const formula* child = node->child();
679
	      int x = dict_.register_next_variable(node);
680
681
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
682
	      break;
683
684
685
	    }
	  case unop::Not:
	    {
686
	      // r(!y) = !r(y)
687
	      res_ = bdd_not(recurse(node->child()));
688
	      break;
689
690
691
	    }
	  case unop::X:
	    {
692
	      // r(Xy) = Next[y]
693
694
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
695
	      break;
696
	    }
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
	  case unop::Closure:
	    {
	      rat_seen_ = true;
	      ratexp_trad_visitor v(dict_, true);
	      node->child()->accept(v);
	      bdd f1 = v.result();
	      res_ = bddfalse;

	      if (exprop_)
		{
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
		    {
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		      all_props -= label;

		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));

		      const formula* dest2;
		      if (constant_term_as_bool(dest))
			{
			  dest->destroy();
			  res_ |= label;
			}
		      else
			{
			  dest2 = unop::instance(op, dest);
			  if (dest2 == constant::false_instance())
			    continue;
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		      const formula* dest2;
		      if (constant_term_as_bool(dest))
			{
			  dest->destroy();
			  res_ |= label;
			}
		      else
			{
			  dest2 = unop::instance(op, dest);
			  if (dest2 == constant::false_instance())
			    continue;
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}
	    }
	    break;

	  case unop::NegClosure:
	    {
	      rat_seen_ = true;
	      has_marked_ = true;
	      ratexp_trad_visitor v(dict_, true);
	      node->child()->accept(v);
	      bdd f1 = v.result();

	      // trace_ltl_bdd(dict_, f1);

	      bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
	      bdd all_props = bdd_existcomp(f1, dict_.var_set);

	      res_ = !all_props &
		// stick X(1) to preserve determinism.
		bdd_ithvar(dict_.register_next_variable
			   (constant::true_instance()));

	      while (all_props != bddfalse)
		{
		  bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		  all_props -= label;

		  formula* dest =
		    dict_.bdd_to_formula(bdd_exist(f1 & label,
						   dict_.var_set));

		  // !{ Exp } is false if Exp accepts the empty word.
		  if (constant_term_as_bool(dest))
		    {
		      dest->destroy();
		      continue;
		    }

		  const formula* dest2 = unop::instance(op, dest);

		  if (dest == constant::false_instance())
		    continue;

		  int x = dict_.register_next_variable(dest2);
		  dest2->destroy();
		  res_ |= label & bdd_ithvar(x);
		}
	    }
	    break;

811
812
	  case unop::Finish:
	    assert(!"unsupported operator");
813
814
815
816
	    break;
	  case unop::Star:
	    assert(!"Not an LTL operator");
	    break;
817
818
819
820
821
822
	  }
      }

      void
      visit(const binop* node)
      {
823
	binop::type op = node->op();
824

825
	switch (op)
826
	  {
827
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
828
	  case binop::Xor:
829
830
831
832
833
834
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_xor);
	      return;
	    }
835
	  case binop::Implies:
836
837
838
839
840
841
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_imp);
	      return;
	    }
842
	  case binop::Equiv:
843
844
845
846
847
848
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_biimp);
	      return;
	    }
849
850
	  case binop::U:
	    {
851
852
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
853
854
855
856
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
857
	      break;
858
	    }
859
860
	  case binop::W:
	    {
861
862
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
863
864
865
	      // r(f1 W f2) = r(f2) + r(f1)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (f1 & bdd_ithvar(x));
866
	      break;
867
	    }
868
869
	  case binop::R:
	    {
870
871
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
872
873
874
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
875
	      break;
876
	    }
877
878
	  case binop::M:
	    {
879
880
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
881
882
883
884
	      // r(f1 M f2) = r(f1)r(f2) + a(f1)r(f2)r(X(f1 M f2))
	      int a = dict_.register_a_variable(node->first());
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (bdd_ithvar(a) & f2 & bdd_ithvar(x));
885
	      break;
886
	    }
887
888
889
	  case binop::EConcatMarked:
	    has_marked_ = true;
	    /* fall through */
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
890
	  case binop::EConcat:
891
892
	    rat_seen_ = true;
	    {
893
894
	      // Recognize f2 on transitions going to destinations
	      // that accept the empty word.
895
	      bdd f2 = recurse(node->second());
896
	      ratexp_trad_visitor v(dict_, false);
897
898
	      node->first()->accept(v);
	      bdd f1 = v.result();
899
	      res_ = bddfalse;
900
901
902
903
904
905
906

	      if (mark_all_)
		{
		  op = binop::EConcatMarked;
		  has_marked_ = true;
		}

907
	      if (exprop_)
908
		{
909
910
911
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
912
		    {
913
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
914
915
916
917
918
919
920
921
922
		      all_props -= label;

		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));

		      const formula* dest2 =
			binop::instance(op, dest, node->second()->clone());

923
924
		      if (dest2 != constant::false_instance())
			{
925
			  int x = dict_.register_next_variable(dest2);
926
927
928
929
930
931
932
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		      if (constant_term_as_bool(dest))
			res_ |= label & f2;
		    }
		}
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & f2;
			}
		      else
			{
			  formula* dest2 = binop::instance(op, dest,
						  node->second()->clone());
			  if (dest2 != constant::false_instance())
			    {
			      int x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(dest))
			    res_ |= label & f2;
			}
		    }
		}
962
963
964
965
966
	    }
	    break;

	  case binop::UConcat:
	    {
967
968
969
	      // Transitions going to destinations accepting the empty
	      // word should recognize f2, and the automaton for f1
	      // should be understood as universal.
970
	      bdd f2 = recurse(node->second());
971
	      ratexp_trad_visitor v(dict_, false);
972
973
974
	      node->first()->accept(v);
	      bdd f1 = v.result();
	      res_ = bddtrue;
975
976

	      if (exprop_)
977
		{
978
979
980
981
982
983
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
		    {
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		      all_props -= label;
984

985
986
987
		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));
988

989
990
991
992
		      formula* dest2 = binop::instance(op, dest,
						       node->second()->clone());
		      bdd udest =
			bdd_ithvar(dict_.register_next_variable(dest2));
993

994
995
		      if (constant_term_as_bool(dest))
			udest &= f2;
996

997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
		      dest2->destroy();
		      label = bdd_apply(label, udest, bddop_imp);

		      res_ &= label;
		    }
		}
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
		      formula* dest2;
		      bdd udest;

		      dest2 = binop::instance(op, dest,
					      node->second()->clone());
		      udest = bdd_ithvar(dict_.register_next_variable(dest2));

		      if (constant_term_as_bool(dest))
			udest &= f2;

		      dest2->destroy();
		      label = bdd_apply(label, udest, bddop_imp);

		      res_ &= label;
		    }
1027
1028
		}
	    }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1029
	    break;
1030
1031
1032
	  }
      }

1033
1034
1035
1036
1037
1038
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

1039
1040
1041
1042
1043
1044
      void
      visit(const multop* node)
      {
	switch (node->op())
	  {
	  case multop::And:
1045
1046
1047
1048
1049
1050
	    {
	      res_ = bddtrue;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		{
		  bdd res = recurse(node->nth(n));
1051
1052
1053
		  //std::cerr << "== in And (" << to_string(node->nth(n))
		  // << ")" << std::endl;
		  // trace_ltl_bdd(dict_, res);
1054
1055
		  res_ &= res;
		}
1056
1057
	      //std::cerr << "=== And final" << std::endl;
	      // trace_ltl_bdd(dict_, res_);
1058
1059
	      break;
	    }
1060
	  case multop::Or:
1061
1062
1063
1064
1065
1066
1067
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		res_ |= recurse(node->nth(n));
	      break;
	    }
1068
	  case multop::Concat:
1069
	  case multop::Fusion:
1070
1071
	    assert(!"Not an LTL operator");
	    break;
1072
	  }
1073

1074
1075
1076
1077
1078
      }

      bdd
      recurse(const formula* f)
      {
1079
	ltl_trad_visitor v(dict_, mark_all_, exprop_);
1080
	f->accept(v);
1081
1082
	rat_seen_ |= v.has_rational();
	has_marked_ |= v.has_marked();
1083
1084
1085
1086
1087
1088
1089
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
1090
1091
1092
      bool rat_seen_;
      bool has_marked_;
      bool mark_all_;
1093
      bool exprop_;
1094
1095
    };

1096

1097
1098
    // Check whether a formula has a R, W, or G operator at its
    // top-level (preceding logical operators do not count).
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
1149
	  case binop::M:
1150
1151
	    return;
	  case binop::R:
1152
	  case binop::W:
1153
1154
	    res_ = true;
	    return;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1155
1156
	  case binop::UConcat:
	  case binop::EConcat:
1157
	  case binop::EConcatMarked:
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1158
	    node->second()->accept(*this);
1159
	    // FIXME: we might need to add Acc[1]
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1160
	    return;
1161
1162
1163
1164
1165
	  }
	/* Unreachable code.  */
	assert(0);
      }

1166
1167
1168
1169
1170
1171
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
1194
1195
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
1196
1197
1198
1199
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
1200
	pfl_[f] = rel;
1201
1202
1203
1204
	return rel;
      }

    private:
1205
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
1206
      pfl_map pfl_;
1207
1208
    };

1209
1210
1211
    class formula_canonizer
    {
    public:
1212
      formula_canonizer(translate_dict& d,
1213
1214
			bool fair_loop_approx, bdd all_promises, bool exprop)
	: v_(d, false, exprop),
1215
	  fair_loop_approx_(fair_loop_approx),
1216
1217
	  all_promises_(all_promises),
	  d_(d)
1218
1219
1220
1221
1222
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
1223

1224
1225
      ~formula_canonizer()
      {
1226
	while (!f2b_.empty())
1227
	  {
1228
1229
1230
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
1231
	    f->destroy();
1232
	  }
1233
1234
      }

1235
1236
1237
1238
1239
1240
1241
1242
      struct translated
      {
	bdd symbolic;
	bool has_rational:1;
	bool has_marked:1;
      };

      const translated&
1243
      translate(const formula* f, bool* new_flag = 0)
1244
1245
1246
1247
1248
1249
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

1250
1251
1252
	if (new_flag)
	  *new_flag = true;

1253
	// Perform the actual translation.
1254
	v_.reset(!has_mark(f));
1255
	f->accept(v_);
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
	translated t;
	t.symbolic = v_.result();
	t.has_rational = v_.has_rational();
	t.has_marked = v_.has_marked();

//	std::cerr << "-----" << std::endl;
//	std::cerr << "Formula: " << to_string(f) << std::endl;
//	std::cerr << "Rational: " << t.has_rational << std::endl;
//	std::cerr << "Marked: " << t.has_marked << std::endl;
//	std::cerr << "Mark all: " << !has_mark(f) << std::endl;
//	std::cerr << "Transitions:" << std::endl;
//	trace_ltl_bdd(v_.get_dict(), t.symbolic);

	if (t.has_rational)
	  {
	    bdd res = bddfalse;

	    minato_isop isop(t.symbolic);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
	      {
		bdd label = bdd_exist(cube, d_.next_set);
		bdd dest_bdd = bdd_existcomp(cube, d_.next_set);
		formula* dest =
		  d_.conj_bdd_to_formula(dest_bdd);

		// Handle a Miyano-Hayashi style unrolling for
		// rational operators.  Marked nodes correspond to
		// subformulae in the Miyano-Hayashi set.
		if (simplify_mark(dest))
		  {
		    // Make the promise that we will exit marked sets.
		    int a =
		      d_.register_a_variable(constant::true_instance());
		    label &= bdd_ithvar(a);
		  }
		else
		  {
		    // We have left marked operators, but still
		    // have other rational operator to check.
		    // Start a new marked cycle.
		    formula* dest2 = mark_concat_ops(dest);
		    dest->destroy();
		    dest = dest2;
		  }
		// Note that simplify_mark may have changed dest.
		dest_bdd = bdd_ithvar(d_.register_next_variable(dest));
		dest->destroy();
		res |= label & dest_bdd;
	      }
	    t.symbolic = res;
//	    std::cerr << "Marking rewriting:" << std::endl;
//	    trace_ltl_bdd(v_.get_dict(), t.symbolic);
	  }
1310
1311
1312
1313
1314
1315
1316
1317
1318

	// Apply the fair-loop approximation if requested.
	if (fair_loop_approx_)
	  {
	    // If the source cannot possibly be part of a fair
	    // loop, make all possible promises.
	    if (fair_loop_approx_
		&& f != constant::true_instance()
		&& !pflc_.check(f))
1319
	      t.symbolic &= all_promises_;
1320
1321
	  }

1322
	// Register the reverse mapping if it is not already done.
1323
1324
1325
1326
	if (b2f_.find(t.symbolic) == b2f_.end())
	  b2f_[t.symbolic] = f;

	return f2b_[f->clone()] = t;
1327
1328
1329
1330
1331
      }

      const formula*
      canonize(const formula* f)
      {
1332
	bool new_variable = false;
1333
	bdd b = translate(f, &new_variable).symbolic;
1334
1335

	bdd_to_formula_map::iterator i = b2f_.find(b);
1336
1337
	// Since we have just translated the formula, it is
	// necessarily in b2f_.
1338
1339
1340
	assert(i != b2f_.end());

	if (i->second != f)
1341
	  {
1342
	    // The translated bdd maps to an already seen formula.
1343
	    f->destroy();
1344
	    f = i->second->clone();
1345
	  }
1346
	return f;
1347
1348
      }

1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;
      bdd_to_formula_map b2f_;
      // Map a representation of successors to a canonical formula.
      // We do this because many formulae (such as `aR(bRc)' and
      // `aR(bRc).(bRc)') are equivalent, and are trivially identified
      // by looking at the set of successors.
1360
      typedef std::map<const formula*, translated> formula_to_bdd_map;
1361
      formula_to_bdd_map f2b_;
1362
1363
1364
1365

      possible_fair_loop_checker pflc_;
      bool fair_loop_approx_;
      bdd all_promises_;
1366
      translate_dict& d_;
1367
1368
1369
1370
1371
    };

  }

  typedef std::map<bdd, bdd, bdd_less_than> prom_map;
1372
  typedef Sgi::hash_map<const formula*, prom_map, formula_ptr_hash> dest_map;
1373
1374
1375
1376

  static void
  fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
  {
1377
    bdd conds = bdd_existcomp(label, d.var_set);
1378
1379
    bdd promises = bdd_existcomp(label, d.a_set);

1380
1381
1382
1383
1384
1385
1386
1387
    dest_map::iterator i = dests.find(dest);
    if (i == dests.end())
      {
	dests[dest][promises] = conds;
      }
    else
      {
	i->second[promises] |= conds;
1388
	dest->destroy();
1389
1390
1391
1392
      }
  }


Pierre PARUTTO's avatar
Pierre PARUTTO committed
1393
  tgba_explicit_formula*
1394
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
1395
		 bool exprop, bool symb_merge, bool branching_postponement,
1396
		 bool fair_loop_approx, const atomic_prop_set* unobs,
1397
		 int reduce_ltl)
1398
1399
1400
1401
1402
  {
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
1403
1404
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
1405
    f1->destroy();
1406

1407
1408
1409
1410
    // Simplify the formula, if requested.
    if (reduce_ltl)
      {
	formula* tmp = reduce(f2, reduce_ltl);
1411
	f2->destroy();
1412
1413
1414
	f2 = tmp;
      }

1415
1416
    typedef std::set<const formula*, formula_ptr_less_than> set_type;
    set_type formulae_to_translate;
1417

1418
    translate_dict d(dict);
1419

1420
1421
    // Compute the set of all promises that can possibly occurre
    // inside the formula.
1422
    bdd all_promises = bddtrue;
1423
    if (fair_loop_approx || unobs)
1424
1425
1426
1427
1428
1429
      {
	ltl_promise_visitor pv(d);
	f2->accept(pv);
	all_promises = pv.result();
      }

1430
    formula_canonizer fc(d, fair_loop_approx, all_promises, exprop);
1431

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
    // These are used when atomic propositions are interpreted as
    // events.  There are two kinds of events: observable events are
    // those used in the formula, and unobservable events or other
    // events that can occur at anytime.  All events exclude each
    // other.
    bdd observable_events = bddfalse;
    bdd unobservable_events = bddfalse;
    if (unobs)
      {
	bdd neg_events = bddtrue;
1442
1443
	std::auto_ptr<atomic_prop_set> aps(atomic_prop_collect(f));
	for (atomic_prop_set::const_iterator i = aps->begin();
1444
1445
1446
1447
1448
1449
1450
1451
	     i != aps->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    observable_events = (observable_events & neg) | (neg_events & pos);
	    neg_events &= neg;
	  }
1452
	for (atomic_prop_set::const_iterator i = unobs->begin();
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
	     i != unobs->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    unobservable_events = ((unobservable_events & neg)
				   | (neg_events & pos));
	    observable_events &= neg;
	    neg_events &= neg;
	  }
      }
    bdd all_events = observable_events | unobservable_events;

1466

1467
    tgba_explicit_formula* a = new tgba_explicit_formula(dict);
1468

1469
1470
1471
1472
    // This is in case the initial state is equivalent to true...
    if (symb_merge)
      f2 = const_cast<formula*>(fc.canonize(f2));

1473
1474
    formulae_to_translate.insert(f2);
    a->set_init_state(f2);
1475
1476
1477
1478

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
1479
	const formula* now = *formulae_to_translate.begin();
1480
1481
1482
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
1483
1484
	const formula_canonizer::translated& t = fc.translate(now);
	bdd res = t.symbolic;
1485

1486
1487
1488
1489
	// Handle exclusive events.
	if (unobs)
	  {
	    res &= observable_events;