ltsmin.cc 27.7 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
// Copyright (C) 2011, 2012, 2014, 2015, 2016 Laboratoire de Recherche et
3
// Développement de l'Epita (LRDE)
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19

20
21
22
23
#include <ltdl.h>
#include <cstring>
#include <cstdlib>
#include <vector>
24
#include <sstream>
25
26
#include <sys/stat.h>
#include <unistd.h>
27

28
29
30
31
32
// MinGW does not define this.
#ifndef WEXITSTATUS
# define WEXITSTATUS(x) ((x) & 0xff)
#endif

33
#include <spot/ltsmin/ltsmin.hh>
34
35
36
37
38
#include <spot/misc/hashfunc.hh>
#include <spot/misc/fixpool.hh>
#include <spot/misc/mspool.hh>
#include <spot/misc/intvcomp.hh>
#include <spot/misc/intvcmp2.hh>
39
40
41

namespace spot
{
42
43
  namespace
  {
44
45

    ////////////////////////////////////////////////////////////////////////
46
    // spins interface
47
48
49
50
51
52
53
54
55

    typedef struct transition_info {
      int* labels; // edge labels, NULL, or pointer to the edge label(s)
      int  group;  // holds transition group or -1 if unknown
    } transition_info_t;

    typedef void (*TransitionCB)(void *ctx,
				 transition_info_t *transition_info,
				 int *dst);
56
  }
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  struct spins_interface
  {
    lt_dlhandle handle;	// handle to the dynamic library
    void (*get_initial_state)(void *to);
    int (*have_property)();
    int (*get_successors)(void* m, int *in, TransitionCB, void *arg);
    int (*get_state_size)();
    const char* (*get_state_variable_name)(int var);
    int (*get_state_variable_type)(int var);
    int (*get_type_count)();
    const char* (*get_type_name)(int type);
    int (*get_type_value_count)(int type);
    const char* (*get_type_value_name)(int type, int value);

    ~spins_interface()
73
    {
74
75
76
77
78
79
80
81
82
      if (handle)
	lt_dlclose(handle);
      lt_dlexit();
    }
  };

  namespace
  {
    typedef std::shared_ptr<const spins_interface> spins_interface_ptr;
83
84
85
86

    ////////////////////////////////////////////////////////////////////////
    // STATE

87
    struct spins_state: public state
88
    {
89
      spins_state(int s, fixed_size_pool* p)
90
	: pool(p), size(s), count(1)
91
92
93
94
95
96
97
98
99
100
      {
      }

      void compute_hash()
      {
	hash_value = 0;
	for (int i = 0; i < size; ++i)
	  hash_value = wang32_hash(hash_value ^ vars[i]);
      }

101
      spins_state* clone() const
102
103
      {
	++count;
104
	return const_cast<spins_state*>(this);
105
106
107
108
109
110
      }

      void destroy() const
      {
	if (--count)
	  return;
111
	pool->deallocate(this);
112
113
114
115
116
117
118
119
120
121
122
      }

      size_t hash() const
      {
	return hash_value;
      }

      int compare(const state* other) const
      {
	if (this == other)
	  return 0;
123
	const spins_state* o = down_cast<const spins_state*>(other);
124
125
126
127
128
129
130
131
132
133
	assert(o);
	if (hash_value < o->hash_value)
	  return -1;
	if (hash_value > o->hash_value)
	  return 1;
	return memcmp(vars, o->vars, size * sizeof(*vars));
      }

    private:

134
      ~spins_state()
135
136
137
      {
      }

138
139
    public:
      fixed_size_pool* pool;
140
141
142
      size_t hash_value: 32;
      int size: 16;
      mutable unsigned count: 16;
143
      int vars[0];
144
145
    };

146
    struct spins_compressed_state: public state
147
    {
148
      spins_compressed_state(int s, multiple_size_pool* p)
149
	: pool(p), size(s), count(1)
150
151
152
153
154
155
      {
      }

      void compute_hash()
      {
	hash_value = 0;
156
157
	for (int i = 0; i < size; ++i)
	  hash_value = wang32_hash(hash_value ^ vars[i]);
158
159
      }

160
      spins_compressed_state* clone() const
161
162
      {
	++count;
163
	return const_cast<spins_compressed_state*>(this);
164
165
166
167
168
169
      }

      void destroy() const
      {
	if (--count)
	  return;
170
	pool->deallocate(this, sizeof(*this) + size * sizeof(*vars));
171
172
173
174
175
176
177
178
179
180
181
      }

      size_t hash() const
      {
	return hash_value;
      }

      int compare(const state* other) const
      {
	if (this == other)
	  return 0;
182
183
	const spins_compressed_state* o =
	  down_cast<const spins_compressed_state*>(other);
184
185
186
187
188
189
	assert(o);
	if (hash_value < o->hash_value)
	  return -1;
	if (hash_value > o->hash_value)
	  return 1;

190
	if (size < o->size)
191
	  return -1;
192
	if (size > o->size)
193
194
	  return 1;

195
	return memcmp(vars, o->vars, size * sizeof(*vars));
196
197
198
199
      }

    private:

200
      ~spins_compressed_state()
201
202
203
204
      {
      }

    public:
205
      multiple_size_pool* pool;
206
207
208
      size_t hash_value: 32;
      int size: 16;
      mutable unsigned count: 16;
209
      int vars[0];
210
211
    };

212
213
214
215
216
    ////////////////////////////////////////////////////////////////////////
    // CALLBACK FUNCTION for transitions.

    struct callback_context
    {
217
      typedef std::list<state*> transitions_t;
218
219
      transitions_t transitions;
      int state_size;
220
221
      void* pool;
      int* compressed;
222
      void (*compress)(const int*, size_t, int*, size_t&);
223
224
225

      ~callback_context()
      {
226
227
	for (auto t: transitions)
	  t->destroy();
228
      }
229
230
231
232
233
    };

    void transition_callback(void* arg, transition_info_t*, int *dst)
    {
      callback_context* ctx = static_cast<callback_context*>(arg);
234
      fixed_size_pool* p = static_cast<fixed_size_pool*>(ctx->pool);
235
236
      spins_state* out =
	new(p->allocate()) spins_state(ctx->state_size, p);
237
238
239
240
241
      memcpy(out->vars, dst, ctx->state_size * sizeof(int));
      out->compute_hash();
      ctx->transitions.push_back(out);
    }

242
243
244
    void transition_callback_compress(void* arg, transition_info_t*, int *dst)
    {
      callback_context* ctx = static_cast<callback_context*>(arg);
245
246
247
      multiple_size_pool* p = static_cast<multiple_size_pool*>(ctx->pool);

      size_t csize = ctx->state_size * 2;
248
      ctx->compress(dst, ctx->state_size, ctx->compressed, csize);
249

250
      void* mem = p->allocate(sizeof(spins_compressed_state)
251
			      + sizeof(int) * csize);
252
      spins_compressed_state* out = new(mem) spins_compressed_state(csize, p);
253
      memcpy(out->vars, ctx->compressed, csize * sizeof(int));
254
255
256
257
      out->compute_hash();
      ctx->transitions.push_back(out);
    }

258
259
260
    ////////////////////////////////////////////////////////////////////////
    // SUCC_ITERATOR

261
    class spins_succ_iterator final: public kripke_succ_iterator
262
263
264
    {
    public:

265
      spins_succ_iterator(const callback_context* cc,
266
267
268
269
270
			 bdd cond)
	: kripke_succ_iterator(cond), cc_(cc)
      {
      }

271
272
273
274
275
276
277
      void recycle(const callback_context* cc, bdd cond)
      {
	delete cc_;
	cc_ = cc;
	kripke_succ_iterator::recycle(cond);
      }

278
      ~spins_succ_iterator()
279
280
281
282
      {
	delete cc_;
      }

283
      virtual bool first() override
284
285
      {
	it_ = cc_->transitions.begin();
286
	return it_ != cc_->transitions.end();
287
288
      }

289
      virtual bool next() override
290
291
      {
	++it_;
292
	return it_ != cc_->transitions.end();
293
294
      }

295
      virtual bool done() const override
296
297
298
299
      {
	return it_ == cc_->transitions.end();
      }

300
      virtual state* dst() const override
301
302
303
304
305
306
307
308
309
      {
	return (*it_)->clone();
      }

    private:
      const callback_context* cc_;
      callback_context::transitions_t::const_iterator it_;
    };

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    ////////////////////////////////////////////////////////////////////////
    // PREDICATE EVALUATION

    typedef enum { OP_EQ, OP_NE, OP_LT, OP_GT, OP_LE, OP_GE } relop;

    struct one_prop
    {
      int var_num;
      relop op;
      int val;
      int bddvar;  // if "var_num op val" is true, output bddvar,
		   // else its negation
    };
    typedef std::vector<one_prop> prop_set;

325
326
327
328
329
330
331
332

    struct var_info
    {
      int num;
      int type;
    };


333
    void
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
334
    convert_aps(const atomic_prop_set* aps,
335
		spins_interface_ptr d,
336
		bdd_dict_ptr dict,
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
337
		formula dead,
338
339
340
		prop_set& out)
    {
      int errors = 0;
341
      std::ostringstream err;
342

343
      int state_size = d->get_state_size();
344
345
346
      typedef std::map<std::string, var_info> val_map_t;
      val_map_t val_map;

347
      for (int i = 0; i < state_size; ++i)
348
349
350
351
352
353
354
	{
	  const char* name = d->get_state_variable_name(i);
	  int type = d->get_state_variable_type(i);
	  var_info v = { i , type };
	  val_map[name] = v;
	}

355
      int type_count = d->get_type_count();
356
357
358
359
      typedef std::map<std::string, int> enum_map_t;
      std::vector<enum_map_t> enum_map(type_count);
      for (int i = 0; i < type_count; ++i)
	{
360
	  int enum_count = d->get_type_value_count(i);
361
	  for (int j = 0; j < enum_count; ++j)
362
	    enum_map[i].emplace(d->get_type_value_name(i, j), j);
363
	}
364

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
365
      for (atomic_prop_set::const_iterator ap = aps->begin();
366
367
	   ap != aps->end(); ++ap)
	{
368
369
370
	  if (*ap == dead)
	    continue;

371
	  const std::string& str = ap->ap_name();
372
373
374
375
376
377
378
	  const char* s = str.c_str();

	  // Skip any leading blank.
	  while (*s && (*s == ' ' || *s == '\t'))
	    ++s;
	  if (!*s)
	    {
379
	      err << "Proposition `" << str << "' cannot be parsed.\n";
380
381
382
383
384
385
386
	      ++errors;
	      continue;
	    }


	  char* name = (char*) malloc(str.size() + 1);
	  char* name_p = name;
387
	  char* lastdot = nullptr;
388
389
	  while (*s && (*s != '=') && *s != '<' && *s != '!'  && *s != '>')
	    {
390

391
392
393
	      if (*s == ' ' || *s == '\t')
		++s;
	      else
394
395
396
397
398
		{
		  if (*s == '.')
		    lastdot = name_p;
		  *name_p++ = *s++;
		}
399
400
401
402
403
	    }
	  *name_p = 0;

	  if (name == name_p)
	    {
404
	      err << "Proposition `" << str << "' cannot be parsed.\n";
405
406
407
408
409
410
	      free(name);
	      ++errors;
	      continue;
	    }

	  // Lookup the name
411
412
	  val_map_t::const_iterator ni = val_map.find(name);
	  if (ni == val_map.end())
413
	    {
414
415
416
417
418
419
420
421
422
423
424
	      // We may have a name such as X.Y.Z
	      // If it is not a known variable, it might mean
	      // an enumerated variable X.Y with value Z.
	      if (lastdot)
		{
		  *lastdot++ = 0;
		  ni = val_map.find(name);
		}

	      if (ni == val_map.end())
		{
425
426
427
		  err << "No variable `" << name
		      << "' found in model (for proposition `"
		      << str << "').\n";
428
429
430
431
432
433
434
435
436
437
438
		  free(name);
		  ++errors;
		  continue;
		}

	      // We have found the enumerated variable, and lastdot is
	      // pointing to its expected value.
	      int type_num = ni->second.type;
	      enum_map_t::const_iterator ei = enum_map[type_num].find(lastdot);
	      if (ei == enum_map[type_num].end())
		{
439
440
441
442
443
444
		  err << "No state `" << lastdot << "' known for variable `"
		      << name << "'.\n";
		  err << "Possible states are:";
		  for (auto& ej: enum_map[type_num])
		    err << ' ' << ej.first;
		  err << '\n';
445
446
447
448
449
450
451
452
453

		  free(name);
		  ++errors;
		  continue;
		}

	      // At this point, *s should be 0.
	      if (*s)
		{
454
455
456
		  err << "Trailing garbage `" << s
		      << "' at end of proposition `"
		      << str << "'.\n";
457
458
459
460
461
462
		  free(name);
		  ++errors;
		  continue;
		}

	      // Record that X.Y must be equal to Z.
463
	      int v = dict->register_proposition(*ap, d.get());
464
465
	      one_prop p = { ni->second.num, OP_EQ, ei->second, v };
	      out.push_back(p);
466
467
468
469
	      free(name);
	      continue;
	    }

470
471
	  int var_num = ni->second.num;

472
473
474
	  if (!*s)		// No operator?  Assume "!= 0".
	    {
	      int v = dict->register_proposition(*ap, d);
475
	      one_prop p = { var_num, OP_NE, 0, v };
476
	      out.push_back(p);
477
	      free(name);
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
	      continue;
	    }

	  relop op;

	  switch (*s)
	    {
	    case '!':
	      if (s[1] != '=')
		goto report_error;
	      op = OP_NE;
	      s += 2;
	      break;
	    case '=':
	      if (s[1] != '=')
		goto report_error;
	      op = OP_EQ;
	      s += 2;
	      break;
	    case '<':
	      if (s[1] == '=')
		{
		  op = OP_LE;
		  s += 2;
		}
	      else
		{
		  op = OP_LT;
		  ++s;
		}
	      break;
	    case '>':
	      if (s[1] == '=')
		{
512
		  op = OP_GE;
513
514
515
516
		  s += 2;
		}
	      else
		{
517
		  op = OP_GT;
518
519
520
521
522
		  ++s;
		}
	      break;
	    default:
	    report_error:
523
524
525
	      err << "Unexpected `" << s
		  << "' while parsing atomic proposition `" << str
		  << "'.\n";
526
	      ++errors;
527
	      free(name);
528
529
530
531
532
533
	      continue;
	    }

	  while (*s && (*s == ' ' || *s == '\t'))
	    ++s;

534
	  int val = 0; // Initialize to kill a warning from old compilers.
535
536
	  int type_num = ni->second.type;
	  if (type_num == 0 || (*s >= '0' && *s <= '9') || *s == '-')
537
	    {
538
539
540
541
	      char* s_end;
	      val = strtol(s, &s_end, 10);
	      if (s == s_end)
		{
542
		  err << "Failed to parse `" << s << "' as an integer.\n";
543
544
545
546
547
		  ++errors;
		  free(name);
		  continue;
		}
	      s = s_end;
548
	    }
549
550
551
552
553
554
555
556
557
558
559
560
561
	  else
	    {
	      // We are in a case such as P_0 == S, trying to convert
	      // the string S into an integer.
	      const char* end = s;
	      while (*end && *end != ' ' && *end != '\t')
		++end;
	      std::string st(s, end);

	      // Lookup the string.
	      enum_map_t::const_iterator ei = enum_map[type_num].find(st);
	      if (ei == enum_map[type_num].end())
		{
562
563
564
		  err << "No state `" << st << "' known for variable `"
		      << name << "'.\n";
		  err << "Possible states are:";
565
566
		  for (ei = enum_map[type_num].begin();
		       ei != enum_map[type_num].end(); ++ei)
567
568
		    err << ' ' << ei->first;
		  err << '\n';
569
570
571
572
573
574
575
576
577
578
579

		  free(name);
		  ++errors;
		  continue;
		}
	      s = end;
	      val = ei->second;
	    }

	  free(name);

580
581
582
583
	  while (*s && (*s == ' ' || *s == '\t'))
	    ++s;
	  if (*s)
	    {
584
585
586
587
588
	      err << "Unexpected `" << s
		  << "' while parsing atomic proposition `" << str
		  << "'.\n";
	      ++errors;
	      continue;
589
590
	    }

591

592
	  int v = dict->register_proposition(*ap, d);
593
	  one_prop p = { var_num, op, val, v };
594
595
596
	  out.push_back(p);
	}

597
598
      if (errors)
	throw std::runtime_error(err.str());
599
600
    }

601
602
603
    ////////////////////////////////////////////////////////////////////////
    // KRIPKE

604
    class spins_kripke final: public kripke
605
606
607
    {
    public:

608
      spins_kripke(spins_interface_ptr d, const bdd_dict_ptr& dict,
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
609
		   const spot::prop_set* ps, formula dead,
610
		   int compress)
611
612
	: kripke(dict),
	  d_(d),
613
	  state_size_(d_->get_state_size()),
614
	  ps_(ps),
615
	  compress_(compress == 0 ? nullptr
616
617
		    : compress == 1 ? int_array_array_compress
		    : int_array_array_compress2),
618
	  decompress_(compress == 0 ? nullptr
619
620
		      : compress == 1 ? int_array_array_decompress
		      : int_array_array_decompress2),
621
622
	  uncompressed_(compress ? new int[state_size_ + 30] : nullptr),
	  compressed_(compress ? new int[state_size_ * 2] : nullptr),
623
624
	  statepool_(compress ? sizeof(spins_compressed_state) :
		     (sizeof(spins_state) + state_size_ * sizeof(int))),
625
626
	  state_condition_last_state_(nullptr),
	  state_condition_last_cc_(nullptr)
627
      {
628
	vname_ = new const char*[state_size_];
629
	format_filter_ = new bool[state_size_];
630
	for (int i = 0; i < state_size_; ++i)
631
632
633
634
635
636
637
	  {
	    vname_[i] = d_->get_state_variable_name(i);
	    // We don't want to print variables that can take a single
	    // value (e.g. process with a single state) to shorten the
	    // output.
	    int type = d->get_state_variable_type(i);
	    format_filter_[i] =
638
	      (d->get_type_value_count(type) != 1);
639
	  }
640
641
642
643
644
645
646
647
648
649
650
651
652
653

	// Register the "dead" proposition.  There are three cases to
	// consider:
	//  * If DEAD is "false", it means we are not interested in finite
	//    sequences of the system.
	//  * If DEAD is "true", we want to check finite sequences as well
	//    as infinite sequences, but do not need to distinguish them.
	//  * If DEAD is any other string, this is the name a property
	//    that should be true when looping on a dead state, and false
	//    otherwise.
	// We handle these three cases by setting ALIVE_PROP and DEAD_PROP
	// appropriately.  ALIVE_PROP is the bdd that should be ANDed
	// to all transitions leaving a live state, while DEAD_PROP should
	// be ANDed to all transitions leaving a dead state.
654
	if (dead.is_ff())
655
656
657
658
	  {
	    alive_prop = bddtrue;
	    dead_prop = bddfalse;
	  }
659
	else if (dead.is_tt())
660
661
662
663
664
665
666
667
668
669
	  {
	    alive_prop = bddtrue;
	    dead_prop = bddtrue;
	  }
	else
	  {
	    int var = dict->register_proposition(dead, d_);
	    dead_prop = bdd_ithvar(var);
	    alive_prop = bdd_nithvar(var);
	  }
670
671
      }

672
      ~spins_kripke()
673
      {
674
675
676
677
678
	if (iter_cache_)
	  {
	    delete iter_cache_;
	    iter_cache_ = nullptr;
	  }
679
	delete[] format_filter_;
680
	delete[] vname_;
681
	if (compress_)
682
683
684
685
	  {
	    delete[] uncompressed_;
	    delete[] compressed_;
	  }
686
	dict_->unregister_all_my_variables(d_.get());
687
688

	delete ps_;
689
690
691
692

	if (state_condition_last_state_)
	  state_condition_last_state_->destroy();
	delete state_condition_last_cc_; // Might be 0 already.
693
694
      }

695
      virtual state* get_init_state() const override
696
      {
697
698
699
	if (compress_)
	  {
	    d_->get_initial_state(uncompressed_);
700
	    size_t csize = state_size_ * 2;
701
	    compress_(uncompressed_, state_size_, compressed_, csize);
702
703
704

	    multiple_size_pool* p =
	      const_cast<multiple_size_pool*>(&compstatepool_);
705
	    void* mem = p->allocate(sizeof(spins_compressed_state)
706
				    + sizeof(int) * csize);
707
708
	    spins_compressed_state* res = new(mem)
	      spins_compressed_state(csize, p);
709
	    memcpy(res->vars, compressed_, csize * sizeof(int));
710
711
712
713
714
	    res->compute_hash();
	    return res;
	  }
	else
	  {
715
	    fixed_size_pool* p = const_cast<fixed_size_pool*>(&statepool_);
716
	    spins_state* res = new(p->allocate()) spins_state(state_size_, p);
717
718
719
720
	    d_->get_initial_state(res->vars);
	    res->compute_hash();
	    return res;
	  }
721
722
      }

723
      bdd
724
      compute_state_condition_aux(const int* vars) const
725
726
      {
	bdd res = bddtrue;
727
	for (auto& i: *ps_)
728
	  {
729
730
	    int l = vars[i.var_num];
	    int r = i.val;
731
732

	    bool cond = false;
733
	    switch (i.op)
734
	      {
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
	      case OP_EQ:
		cond = (l == r);
		break;
	      case OP_NE:
		cond = (l != r);
		break;
	      case OP_LT:
		cond = (l < r);
		break;
	      case OP_GT:
		cond = (l > r);
		break;
	      case OP_LE:
		cond = (l <= r);
		break;
	      case OP_GE:
		cond = (l >= r);
		break;
753
754
755
	      }

	    if (cond)
756
	      res &= bdd_ithvar(i.bddvar);
757
	    else
758
	      res &= bdd_nithvar(i.bddvar);
759
	  }
760
761
762
	return res;
      }

763
764
765
766
767
768
769
770
      callback_context* build_cc(const int* vars, int& t) const
      {
	callback_context* cc = new callback_context;
	cc->state_size = state_size_;
	cc->pool =
	  const_cast<void*>(compress_
			    ? static_cast<const void*>(&compstatepool_)
			    : static_cast<const void*>(&statepool_));
771
	cc->compress = compress_;
772
	cc->compressed = compressed_;
773
	t = d_->get_successors(nullptr, const_cast<int*>(vars),
774
775
776
777
778
779
780
781
			       compress_
			       ? transition_callback_compress
			       : transition_callback,
			       cc);
	assert((unsigned)t == cc->transitions.size());
	return cc;
      }

782
783
784
785
786
787
788
789
790
791
792
      bdd
      compute_state_condition(const state* st) const
      {
	// If we just computed it, don't do it twice.
	if (st == state_condition_last_state_)
	  return state_condition_last_cond_;

	if (state_condition_last_state_)
	  {
	    state_condition_last_state_->destroy();
	    delete state_condition_last_cc_; // Might be 0 already.
793
	    state_condition_last_cc_ = nullptr;
794
795
796
797
798
	  }

	const int* vars = get_vars(st);

	bdd res = compute_state_condition_aux(vars);
799
800
	int t;
	callback_context* cc = build_cc(vars, t);
801
802
803
804
805
806
807
808
809
810
811

	if (t)
	  {
	    res &= alive_prop;
	  }
	else
	  {
	    res &= dead_prop;

	    // Add a self-loop to dead-states if we care about these.
	    if (res != bddfalse)
812
	      cc->transitions.push_back(st->clone());
813
814
	  }

815
	state_condition_last_cc_ = cc;
816
	state_condition_last_cond_ = res;
817
	state_condition_last_state_ = st->clone();
818

819
820
821
	return res;
      }

822
823
824
825
826
827
      const int*
      get_vars(const state* st) const
      {
	const int* vars;
	if (compress_)
	  {
828
829
	    const spins_compressed_state* s =
	      down_cast<const spins_compressed_state*>(st);
830
831
	    assert(s);

832
	    decompress_(s->vars, s->size, uncompressed_, state_size_);
833
834
835
836
	    vars = uncompressed_;
	  }
	else
	  {
837
	    const spins_state* s = down_cast<const spins_state*>(st);
838
839
840
841
842
843
844
	    assert(s);
	    vars = s->vars;
	  }
	return vars;
      }


845
      virtual
846
      spins_succ_iterator* succ_iter(const state* st) const override
847
      {
848
	// This may also compute successors in state_condition_last_cc
849
	bdd scond = compute_state_condition(st);
850
851
852
853
854

	callback_context* cc;
	if (state_condition_last_cc_)
	  {
	    cc = state_condition_last_cc_;
855
	    state_condition_last_cc_ = nullptr; // Now owned by the iterator.
856
857
858
	  }
	else
	  {
859
	    int t;
860
	    cc = build_cc(get_vars(st), t);
861
862
863

	    // Add a self-loop to dead-states if we care about these.
	    if (t == 0 && scond != bddfalse)
864
	      cc->transitions.push_back(st->clone());
865
	  }
866

867
868
	if (iter_cache_)
	  {
869
870
	    spins_succ_iterator* it =
	      down_cast<spins_succ_iterator*>(iter_cache_);
871
872
873
874
	    it->recycle(cc, scond);
	    iter_cache_ = nullptr;
	    return it;
	  }
875
	return new spins_succ_iterator(cc, scond);
876
877
878
      }

      virtual
879
      bdd state_condition(const state* st) const override
880
      {
881
	return compute_state_condition(st);
882
883
884
      }

      virtual
885
      std::string format_state(const state *st) const override
886
      {
887
	const int* vars = get_vars(st);
888
889
890
891
892
893
894
895
896

	std::stringstream res;

	if (state_size_ == 0)
	  return "empty state";

	int i = 0;
	for (;;)
	  {
897
898
899
	    if (!format_filter_[i])
	      {
		++i;
900
901
		if (i == state_size_)
		  break;
902
903
		continue;
	      }
904
	    res << vname_[i] << '=' << vars[i];
905
906
907
908
909
910
	    ++i;
	    if (i == state_size_)
	      break;
	    res << ", ";
	  }
	return res.str();
911
912
913
      }

    private:
914
      spins_interface_ptr d_;
915
      int state_size_;
916
      const char** vname_;
917
      bool* format_filter_;
918
      const spot::prop_set* ps_;
919
920
      bdd alive_prop;
      bdd dead_prop;
921
922
      void (*compress_)(const int*, size_t, int*, size_t&);
      void (*decompress_)(const int*, size_t, int*, size_t);
923
      int* uncompressed_;
924
      int* compressed_;
925
      fixed_size_pool statepool_;
926
      multiple_size_pool compstatepool_;
927

928
929
930
931
932
      // This cache is used to speedup repeated calls to state_condition()
      // and get_succ().
      // If state_condition_last_state_ != 0, then state_condition_last_cond_
      // contain its (recently computed) condition.  If additionally
      // state_condition_last_cc_ != 0, then it contains the successors.
933
      mutable const state* state_condition_last_state_;
934
935
      mutable bdd state_condition_last_cond_;
      mutable callback_context* state_condition_last_cc_;
936
937
938
    };


939
940
    //////////////////////////////////////////////////////////////////////////
    // LOADER
941
942


943
944
    // Call spins to compile "foo.prom" as "foo.prom.spins" if the latter
    // does not exist already or is older.
945
946
    static void
    compile_model(std::string& filename, std::string& ext)
947
948
949
    {
      std::string command;
      std::string compiled_ext;
950

951
952
953
954
955
956
957
958
959
960
961
962
      if (ext == ".prom" || ext == ".pm" || ext == ".pml")
	{
	  command = "spins " + filename;
	  compiled_ext = ".spins";
	}
      else if (ext == ".dve")
	{
	  command = "divine compile --ltsmin " + filename;
	  compiled_ext = "2C";
	}
      else
	{
963
964
965
	  throw std::runtime_error(std::string("Unknown extension '")
				   + ext + "'.  Use '.prom', '.pm', '.pml', "
				   "'.dve', '.dve2C', or '.prom.spins'.");
966
	}
967

968
969
      struct stat s;
      if (stat(filename.c_str(), &s) != 0)
970
	throw std::runtime_error(std::string("Cannot open ") + filename);
971

972
973
      std::string old = filename;
      filename += compiled_ext;
974

975
976
977
978
979
      // Remove any directory, because the new file will
      // be compiled in the current directory.
      size_t pos = filename.find_last_of("/\\");
      if (pos != std::string::npos)
	filename = "./" + filename.substr(pos + 1);
980

981
982
983
984
      struct stat d;
      if (stat(filename.c_str(), &d) == 0)
	if (s.st_mtime < d.st_mtime)
	  // The .spins or .dve2C is up-to-date, no need to recompile it.
985
	  return;
986

987
988
      int res = system(command.c_str());
      if (res)
989
990
991
	throw std::runtime_error(std::string("Execution of '")
				 + command.c_str() + "' returned exit code "
				 + std::to_string(WEXITSTATUS(res)));
992
    }
993
994
995

  }

996
997
  ltsmin_model
  ltsmin_model::load(const std::string& file_arg)
998
  {
999
1000
1001
1002
1003
1004
    std::string file;
    if (file_arg.find_first_of("/\\") != std::string::npos)
      file = file_arg;
    else
      file = "./" + file_arg;

1005
    std::string ext = file.substr(file.find_last_of("."));
1006
    if (ext != ".spins" && ext != ".dve2C")
1007
      compile_model(file, ext);
1008

1009
    if (lt_dlinit())
1010
      throw std::runtime_error("Failed to initialize libltldl.");
1011
1012
1013
1014
1015

    lt_dlhandle h = lt_dlopen(file.c_str());
    if (!h)
      {
	lt_dlexit();
1016
1017
	throw std::runtime_error(std::string("Failed to load '")
				 + file + "'.");
1018
1019
      }

1020
    auto d = std::make_shared<spins_interface>();
1021
1022
    d->handle = h;

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
    // SpinS interface.
    if ((d->get_initial_state = (void (*)(void*))
        lt_dlsym(h, "spins_get_initial_state")))
      {
        d->have_property = nullptr;
        d->get_successors = (int (*)(void*, int*, TransitionCB, void*))
        lt_dlsym(h, "spins_get_successor_all");
        d->get_state_size = (int (*)())
        lt_dlsym(h, "spins_get_state_size");
        d->get_state_variable_name = (const char* (*)(int))
        lt_dlsym(h, "spins_get_state_variable_name");
        d->get_state_variable_type = (int (*)(int))
        lt_dlsym(h, "spins_get_state_variable_type");
        d->get_type_count = (int (*)())
        lt_dlsym(h, "spins_get_type_count");
        d->get_type_name = (const char* (*)(int))
        lt_dlsym(h, "spins_get_type_name");
        d->get_type_value_count = (int (*)(int))
        lt_dlsym(h, "spins_get_type_value_count");
        d->get_type_value_name = (const char* (*)(int, int))
        lt_dlsym(h, "spins_get_type_value_name");
      }
    // dve2 interface.
    else
      {
        d->get_initial_state = (void (*)(void*))
        lt_dlsym(h, "get_initial_state");
        d->have_property = (int (*)())
        lt_dlsym(h, "have_property");
        d->get_successors = (int (*)(void*, int*, TransitionCB, void*))
        lt_dlsym(h, "get_successors");
        d->get_state_size = (int (*)())
        lt_dlsym(h, "get_state_variable_count");
        d->get_state_variable_name = (const char* (*)(int))
        lt_dlsym(h, "get_state_variable_name");
        d->get_state_variable_type = (int (*)(int))
        lt_dlsym(h, "get_state_variable_type");
        d->get_type_count = (int (*)())
        lt_dlsym(h, "get_state_variable_type_count");
        d->get_type_name = (const char* (*)(int))
        lt_dlsym(h, "get_state_variable_type_name");
        d->get_type_value_count = (int (*)(int))
        lt_dlsym(h, "get_state_variable_type_value_count");
        d->get_type_value_name = (const char* (*)(int, int))
        lt_dlsym(h, "get_state_variable_type_value");
      }

1070
    if (!(d->get_initial_state
1071
	  && d->get_successors
1072
	  && d->get_state_size
1073
1074
	  && d->get_state_variable_name
	  && d->get_state_variable_type
1075
1076
1077
1078
	  && d->get_type_count
	  && d->get_type_name
	  && d->get_type_value_count
	  && d->get_type_value_name))
1079
1080
      throw std::runtime_error(std::string("Failed resolve some symbol"
					   "while loading '") + file + "'.");
1081

1082
    if (d->have_property && d->have_property())
1083
1084
      throw std::runtime_error("Models with embedded properties "
			       "are not supported.");
1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
    return { d };
  }


  kripke_ptr
  ltsmin_model::kripke(const atomic_prop_set* to_observe,
		       bdd_dict_ptr dict,
		       const formula dead, int compress) const
  {
1095
    spot::prop_set* ps = new spot::prop_set;
1096
1097
1098
1099
1100
    try
      {
	convert_aps(to_observe, iface, dict, dead, *ps);
      }
    catch (std::runtime_error)
1101
1102
      {
	delete ps;
1103
1104
	dict->unregister_all_my_variables(iface.get());
	throw;
1105
1106
      }

1107
1108
1109
1110
1111
    return std::make_shared<spins_kripke>(iface, dict, ps, dead, compress);
  }

  ltsmin_model::~ltsmin_model()
  {
1112
  }
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149


  int ltsmin_model::state_size() const
  {
    return iface->get_state_size();
  }

  const char* ltsmin_model::state_variable_name(int var) const
  {
    return iface->get_state_variable_name(var);
  }

  int ltsmin_model::state_variable_type(int var) const
  {
    return iface->get_state_variable_type(var);
  }

  int ltsmin_model::type_count() const
  {
    return iface->get_type_count();
  }

  const char* ltsmin_model::type_name(int type) const
  {
    return iface->get_type_name(type);
  }

  int ltsmin_model::type_value_count(int type)
  {
    return iface->get_type_value_count(type);
  }

  const char* ltsmin_model::type_value_name(int type, int val)
  {
    return iface->get_type_value_name(type, val);
  }

1150
}