ltl2tgba_fm.cc 24.8 KB
Newer Older
1
// Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Laboratoire
2
3
// d'Informatique de Paris 6 (LIP6), dpartement Systmes Rpartis
// Coopratifs (SRC), Universit Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

22
#include "misc/hash.hh"
23
#include "misc/bddalloc.hh"
24
#include "misc/bddlt.hh"
25
#include "misc/minato.hh"
26
27
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
28
29
30
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/tostring.hh"
31
#include "ltlvisit/postfix.hh"
32
#include "ltlvisit/apcollect.hh"
33
#include <cassert>
34
#include <memory>
35
#include "ltl2tgba_fm.hh"
36
#include "ltlvisit/contain.hh"
37
38
39
40
41
42
43
44

namespace spot
{
  using namespace ltl;

  namespace
  {

45
46
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
47
48
49
50
51
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
52
    class translate_dict
53
54
55
    {
    public:

56
57
      translate_dict(bdd_dict* dict)
	: dict(dict),
58
59
60
61
62
63
64
65
66
67
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
68
	  i->first->destroy();
69
	dict->unregister_all_my_variables(this);
70
71
      }

72
73
      bdd_dict* dict;

74
75
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
76
77
78
79
80
81
82
83
84

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
85
      register_proposition(const formula* f)
86
      {
87
	int num = dict->register_proposition(f, this);
88
89
90
91
92
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
93
      register_a_variable(const formula* f)
94
      {
95
	int num = dict->register_acceptance_variable(f, this);
96
97
98
99
100
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
101
      register_next_variable(const formula* f)
102
103
104
105
106
107
108
109
110
111
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
112
	    f = f->clone();
113
	    num = dict->register_anonymous_variables(1, this);
114
115
116
117
118
119
120
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
	return os;
      }

136
      formula*
137
138
139
140
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
141
	  return isi->second->clone();
142
143
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
144
	  return isi->second->clone();
145
146
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
147
	  return isi->second->clone();
148
	assert(0);
149
150
151
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
152
153
      }

154
      formula*
155
156
157
      conj_bdd_to_formula(bdd b)
      {
	if (b == bddfalse)
158
159
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
160
161
162
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
163
	    formula* res = var_to_formula(var);
164
165
166
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
167
		res = unop::instance(unop::Not, res);
168
169
170
171
		b = bdd_low(b);
	      }
	    else
	      {
172
		assert(bdd_low(b) == bddfalse);
173
174
175
176
177
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
178
	return multop::instance(multop::And, v);
179
180
      }

181
182
      const formula*
      bdd_to_formula(bdd f)
183
      {
184
	if (f == bddfalse)
185
	  return constant::false_instance();
186

187
188
189
190
191
192
193
194
195
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
196
197

      void
198
      conj_bdd_to_acc(tgba_explicit_formula* a, bdd b,
199
		      tgba_explicit::transition* t)
200
201
202
203
204
205
206
207
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
208
		// Simply ignore negated acceptance variables.
209
210
211
212
		b = bdd_low(b);
	      }
	    else
	      {
213
		formula* ac = var_to_formula(var);
214

215
		if (!a->has_acceptance_condition(ac))
216
		  a->declare_acceptance_condition(ac->clone());
217
		a->add_acceptance_condition(t, ac);
218
219
220
221
222
223
224
225
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    // The rewrite rules used here are adapted from Jean-Michel
    // Couvreur's FM paper.
    class ltl_trad_visitor: public const_visitor
    {
    public:
      ltl_trad_visitor(translate_dict& dict)
	: dict_(dict)
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

285
286
      bdd
      result() const
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
      {
	return res_;
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
321
322
323
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
324
325
326
327
328
329
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
	      return;
	    }
	  case unop::G:
	    {
330
331
332
333
334
335
336
337
338
339
340
341
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
342
	      const formula* child = node->child();
343
	      int x = dict_.register_next_variable(node);
344
345
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
346
347
348
349
	      return;
	    }
	  case unop::Not:
	    {
350
	      // r(!y) = !r(y)
351
352
353
354
355
	      res_ = bdd_not(recurse(node->child()));
	      return;
	    }
	  case unop::X:
	    {
356
	      // r(Xy) = Next[y]
357
358
359
360
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
	      return;
	    }
361
362
	  case unop::Finish:
	    assert(!"unsupported operator");
363
364
365
366
367
368
369
370
371
372
373
374
375
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop* node)
      {
	bdd f1 = recurse(node->first());
	bdd f2 = recurse(node->second());

	switch (node->op())
	  {
376
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
	  case binop::Xor:
	    res_ = bdd_apply(f1, f2, bddop_xor);
	    return;
	  case binop::Implies:
	    res_ = bdd_apply(f1, f2, bddop_imp);
	    return;
	  case binop::Equiv:
	    res_ = bdd_apply(f1, f2, bddop_biimp);
	    return;
	  case binop::U:
	    {
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
	      return;
	    }
	  case binop::R:
	    {
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

406
407
408
409
410
411
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
      void
      visit(const multop* node)
      {
	int op = -1;
	switch (node->op())
	  {
	  case multop::And:
	    op = bddop_and;
	    res_ = bddtrue;
	    break;
	  case multop::Or:
	    op = bddop_or;
	    res_ = bddfalse;
	    break;
	  }
	assert(op != -1);
	unsigned s = node->size();
	for (unsigned n = 0; n < s; ++n)
	  {
	    res_ = bdd_apply(res_, recurse(node->nth(n)), op);
	  }
      }

      bdd
      recurse(const formula* f)
      {
	ltl_trad_visitor v(dict_);
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
    };

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

    // Check whether a formula has a R or G operator at its top-level
    // (preceding logical operators do not count).
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
	    return;
	  case binop::R:
	    res_ = true;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

511
512
513
514
515
516
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
539
540
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
541
542
543
544
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
545
	pfl_[f] = rel;
546
547
548
549
	return rel;
      }

    private:
550
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
551
      pfl_map pfl_;
552
553
    };

554
555
556
    class formula_canonizer
    {
    public:
557
      formula_canonizer(translate_dict& d,
558
559
			bool fair_loop_approx, bdd all_promises,
			language_containment_checker* lcc)
560
561
	: v_(d),
	  fair_loop_approx_(fair_loop_approx),
562
563
	  all_promises_(all_promises),
	  lcc_(lcc)
564
565
566
567
568
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
569

570
571
      ~formula_canonizer()
      {
572
	while (!f2b_.empty())
573
	  {
574
575
576
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
577
	    f->destroy();
578
	  }
579
580
581
      }

      bdd
582
      translate(const formula* f, bool* new_flag = 0)
583
584
585
586
587
588
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

589
590
591
	if (new_flag)
	  *new_flag = true;

592
593
594
	// Perform the actual translation.
	f->accept(v_);
	bdd res = v_.result();
595
596
597
598
599
600
601
602
603
604
605
606

	// Apply the fair-loop approximation if requested.
	if (fair_loop_approx_)
	  {
	    // If the source cannot possibly be part of a fair
	    // loop, make all possible promises.
	    if (fair_loop_approx_
		&& f != constant::true_instance()
		&& !pflc_.check(f))
	      res &= all_promises_;
	  }

607
	f2b_[f->clone()] = res;
608
609
610
611
612
613
614
615
616
617

	// Register the reverse mapping if it is not already done.
	if (b2f_.find(res) == b2f_.end())
	  b2f_[res] = f;
	return res;
      }

      const formula*
      canonize(const formula* f)
      {
618
619
	bool new_variable = false;
	bdd b = translate(f, &new_variable);
620
621

	bdd_to_formula_map::iterator i = b2f_.find(b);
622
623
	// Since we have just translated the formula, it is
	// necessarily in b2f_.
624
625
626
	assert(i != b2f_.end());

	if (i->second != f)
627
	  {
628
	    // The translated bdd maps to an already seen formula.
629
	    f->destroy();
630
	    f = i->second->clone();
631
	  }
632
633
634
635
636
637
638
639
640
641
642
	else if (new_variable && lcc_)
	  {
	    // It's a new bdd for a new formula.  Let's see if we can
	    // find an equivalent formula with language containment
	    // checks.
	    for (formula_to_bdd_map::const_iterator j = f2b_.begin();
		 j != f2b_.end(); ++j)
	      if (f != j->first && lcc_->equal(f, j->first))
		{
		  f2b_[f] = j->second;
		  i->second = j->first;
643
		  f->destroy();
644
		  f = i->second->clone();
645
646
647
		  break;
		}
	  }
648
	return f;
649
650
      }

651
652
653
654
655
656
657
658
659
660
661
662
663
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;
      bdd_to_formula_map b2f_;
      // Map a representation of successors to a canonical formula.
      // We do this because many formulae (such as `aR(bRc)' and
      // `aR(bRc).(bRc)') are equivalent, and are trivially identified
      // by looking at the set of successors.
      typedef std::map<const formula*, bdd> formula_to_bdd_map;
      formula_to_bdd_map f2b_;
664
665
666
667

      possible_fair_loop_checker pflc_;
      bool fair_loop_approx_;
      bdd all_promises_;
668
      language_containment_checker* lcc_;
669
670
671
672
673
    };

  }

  typedef std::map<bdd, bdd, bdd_less_than> prom_map;
674
  typedef Sgi::hash_map<const formula*, prom_map, formula_ptr_hash> dest_map;
675
676
677
678

  static void
  fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
  {
679
    bdd conds = bdd_existcomp(label, d.var_set);
680
681
    bdd promises = bdd_existcomp(label, d.a_set);

682
683
684
685
686
687
688
689
    dest_map::iterator i = dests.find(dest);
    if (i == dests.end())
      {
	dests[dest][promises] = conds;
      }
    else
      {
	i->second[promises] |= conds;
690
	dest->destroy();
691
692
693
694
      }
  }


695
  tgba_explicit*
696
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
697
		 bool exprop, bool symb_merge, bool branching_postponement,
698
		 bool fair_loop_approx, const atomic_prop_set* unobs,
699
		 int reduce_ltl, bool containment_checks)
700
  {
701
702
    symb_merge |= containment_checks;

703
704
705
706
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
707
708
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
709
    f1->destroy();
710

711
712
713
714
    // Simplify the formula, if requested.
    if (reduce_ltl)
      {
	formula* tmp = reduce(f2, reduce_ltl);
715
	f2->destroy();
716
717
718
	f2 = tmp;
      }

719
720
    typedef std::set<const formula*, formula_ptr_less_than> set_type;
    set_type formulae_to_translate;
721

722
    translate_dict d(dict);
723

724
725
    // Compute the set of all promises that can possibly occurre
    // inside the formula.
726
    bdd all_promises = bddtrue;
727
    if (fair_loop_approx || unobs)
728
729
730
731
732
733
      {
	ltl_promise_visitor pv(d);
	f2->accept(pv);
	all_promises = pv.result();
      }

734
735
736
737
738
739
    language_containment_checker lcc(dict, exprop, symb_merge,
				     branching_postponement,
				     fair_loop_approx);

    formula_canonizer fc(d, fair_loop_approx, all_promises,
			 containment_checks ? &lcc : 0);
740

741
742
743
744
745
746
747
748
749
750
    // These are used when atomic propositions are interpreted as
    // events.  There are two kinds of events: observable events are
    // those used in the formula, and unobservable events or other
    // events that can occur at anytime.  All events exclude each
    // other.
    bdd observable_events = bddfalse;
    bdd unobservable_events = bddfalse;
    if (unobs)
      {
	bdd neg_events = bddtrue;
751
752
	std::auto_ptr<atomic_prop_set> aps(atomic_prop_collect(f));
	for (atomic_prop_set::const_iterator i = aps->begin();
753
754
755
756
757
758
759
760
	     i != aps->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    observable_events = (observable_events & neg) | (neg_events & pos);
	    neg_events &= neg;
	  }
761
	for (atomic_prop_set::const_iterator i = unobs->begin();
762
763
764
765
766
767
768
769
770
771
772
773
774
	     i != unobs->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    unobservable_events = ((unobservable_events & neg)
				   | (neg_events & pos));
	    observable_events &= neg;
	    neg_events &= neg;
	  }
      }
    bdd all_events = observable_events | unobservable_events;

775

776
    tgba_explicit_formula* a = new tgba_explicit_formula(dict);
777

778
779
    formulae_to_translate.insert(f2);
    a->set_init_state(f2);
780
781
782
783

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
784
	const formula* now = *formulae_to_translate.begin();
785
786
787
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
788
	bdd res = fc.translate(now);
789

790
791
792
793
	// Handle exclusive events.
	if (unobs)
	  {
	    res &= observable_events;
794
	    int n = d.register_next_variable(now);
795
796
797
	    res |= unobservable_events & bdd_ithvar(n) & all_promises;
	  }

798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
	// We used to factor only Next and A variables while computing
	// prime implicants, with
	//    minato_isop isop(res, d.next_set & d.a_set);
	// in order to obtain transitions with formulae of atomic
	// proposition directly, but unfortunately this led to strange
	// factorizations.  For instance f U g was translated as
	//     r(f U g) = g + a(g).r(X(f U g)).(f + g)
	// instead of just
	//     r(f U g) = g + a(g).r(X(f U g)).f
	// Of course both formulae are logically equivalent, but the
	// latter is "more deterministic" than the former, so it should
	// be preferred.
	//
	// Therefore we now factor all variables.  This may lead to more
	// transitions than necessary (e.g.,  r(f + g) = f + g  will be
813
814
815
	// coded as two transitions), but we later merge all transitions
	// with same source/destination and acceptance conditions.  This
	// is the goal of the `dests' hash.
816
	//
817
	// Note that this is still not optimal.  For instance it is
818
	// better to encode `f U g' as
819
	//     r(f U g) = g + a(g).r(X(f U g)).f.!g
820
821
822
823
	// because that leads to a deterministic automaton.  In order
	// to handle this, we take the conditions of any transition
	// going to true (it's `g' here), and remove it from the other
	// transitions.
824
825
826
	//
	// In `exprop' mode, considering all possible combinations of
	// outgoing propositions generalizes the above trick.
827
	dest_map dests;
828

829
	// Compute all outgoing arcs.
830
831
832
833
834

	// If EXPROP is set, we will refine the symbolic
	// representation of the successors for all combinations of
	// the atomic properties involved in the formula.
	// VAR_SET is the set of these properties.
835
	bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
836
837
838
839
840
	// ALL_PROPS is the combinations we have yet to consider.
	// We used to start with `all_props = bddtrue', but it is
	// more efficient to start with the set of all satisfiable
	// variables combinations.
	bdd all_props = bdd_existcomp(res, d.var_set);
841
	while (all_props != bddfalse)
842
	  {
843
844
845
	    bdd one_prop_set = bddtrue;
	    if (exprop)
	      one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
846
	    all_props -= one_prop_set;
847

848
	    typedef std::map<bdd, const formula*, bdd_less_than> succ_map;
849
850
	    succ_map succs;

851
852
853
	    minato_isop isop(res & one_prop_set);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
854
	      {
855
		bdd label = bdd_exist(cube, d.next_set);
856
		bdd dest_bdd = bdd_existcomp(cube, d.next_set);
857
858
		const formula* dest = d.conj_bdd_to_formula(dest_bdd);

859
860
861
862
		// Simplify the formula, if requested.
		if (reduce_ltl)
		  {
		    formula* tmp = reduce(dest, reduce_ltl);
863
		    dest->destroy();
864
865
866
867
868
869
		    dest = tmp;
		    // Ignore the arc if the destination reduces to false.
		    if (dest == constant::false_instance())
		      continue;
		  }

870
871
872
873
		// If we already know a state with the same
		// successors, use it in lieu of the current one.
		if (symb_merge)
		  dest = fc.canonize(dest);
874

875
876
877
878
879
880
		// If we are not postponing the branching, we can
		// declare the outgoing transitions immediately.
		// Otherwise, we merge transitions with identical
		// label, and declare the outgoing transitions in a
		// second loop.
		if (!branching_postponement)
881
		  {
882
		    fill_dests(d, dests, label, dest);
883
884
885
		  }
		else
		  {
886
887
888
889
		    succ_map::iterator si = succs.find(label);
		    if (si == succs.end())
		      succs[label] = dest;
		    else
890
891
892
893
		      si->second =
			multop::instance(multop::Or,
					 const_cast<formula*>(si->second),
					 const_cast<formula*>(dest));
894
895
		  }
	      }
896
897
898
	    if (branching_postponement)
	      for (succ_map::const_iterator si = succs.begin();
		   si != succs.end(); ++si)
899
		fill_dests(d, dests, si->first, si->second);
900
	  }
901

902
	// Check for an arc going to 1 (True).  Register it first, that
903
	// way it will be explored before others during model checking.
904
	dest_map::const_iterator i = dests.find(constant::true_instance());
905
	// COND_FOR_TRUE is the conditions of the True arc, so we
906
907
908
	// can remove them from all other arcs.  It might sounds that
	// this is not needed when exprop is used, but in fact it is
	// complementary.
909
910
	//
	// Consider
911
	//   f = r(X(1) R p) = p.(1 + r(X(1) R p))
912
	// with exprop the two outgoing arcs would be
913
914
        //         p               p
	//     f ----> 1       f ----> f
915
916
	//
	// where in fact we could output
917
918
        //         p
	//     f ----> 1
919
	//
920
	// because there is no point in looping on f if we can go to 1.
921
	bdd cond_for_true = bddfalse;
922
923
	if (i != dests.end())
	  {
924
	    // When translating LTL for an event-based logic with
925
926
	    // unobservable events, the 1 state should accept all events,
	    // even unobservable events.
927
	    if (unobs && now == constant::true_instance())
928
	      cond_for_true = all_events;
929
930
931
932
933
	    else
	      {
		// There should be only one transition going to 1 (true) ...
		assert(i->second.size() == 1);
		prom_map::const_iterator j = i->second.begin();
934
935
936
		// ... and it is not expected to make any promises (unless
		// fair loop approximations are used).
		assert(fair_loop_approx || j->first == bddtrue);
937
938
		cond_for_true = j->second;
	      }
939
940
	    if (!a->has_state(constant::true_instance()))
	      formulae_to_translate.insert(constant::true_instance());
941
	    tgba_explicit::transition* t =
942
	      a->create_transition(now, constant::true_instance());
943
	    a->add_condition(t, d.bdd_to_formula(cond_for_true));
944
945
946
947
948
	  }
	// Register other transitions.
	for (i = dests.begin(); i != dests.end(); ++i)
	  {
	    const formula* dest = i->first;
949
950
951
952
	    // The cond_for_true optimization can cause some
	    // transitions to be removed.  So we have to remember
	    // whether a formula is actually reachable.
	    bool reachable = false;
953

954
955
956
	    // Will this be a new state?
	    bool seen = a->has_state(dest);

957
958
959
960
961
	    if (dest != constant::true_instance())
	      {
		for (prom_map::const_iterator j = i->second.begin();
		     j != i->second.end(); ++j)
		  {
962
963
964
		    bdd cond = j->second - cond_for_true;
		    if (cond == bddfalse) // Skip false transitions.
		      continue;
965
		    tgba_explicit::transition* t =
966
		      a->create_transition(now, dest);
967
		    a->add_condition(t, d.bdd_to_formula(cond));
968
		    d.conj_bdd_to_acc(a, j->first, t);
969
		    reachable = true;
970
971
		  }
	      }
972
973
974
975
976
	    else
	      {
		// "1" is reachable.
		reachable = true;
	      }
977
978
	    if (reachable && !seen)
	      formulae_to_translate.insert(dest);
979
	    else
980
	      dest->destroy();
981
982
983
	  }
      }

984
985
    // Turn all promises into real acceptance conditions.
    a->complement_all_acceptance_conditions();
986
987
988
989
    return a;
  }

}