__init__.py 30 KB
Newer Older
1
# -*- coding: utf-8 -*-
2
# Copyright (C) 2014, 2015, 2016  Laboratoire de
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Recherche et Développement de l'Epita (LRDE).
#
# This file is part of Spot, a model checking library.
#
# Spot is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Spot is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

20
21
22
23
24
25
26
27

import sys


if sys.hexversion < 0x03030000:
    sys.exit("This module requires Python 3.3 or newer")


28
from spot.impl import *
29
30
31
32
from spot.aux import \
     extend as _extend, \
     str_to_svg as _str_to_svg, \
     ostream_to_svg as _ostream_to_svg
33
import subprocess
34
35
import os
import signal
36

37

38
# The parrameters used by default when show() is called on an automaton.
39
_show_default = None
40

41

42
43
44
def setup(**kwargs):
    """Configure Spot for fancy display.

45
    This is manly useful in Jupyter/IPython.
46

47
48
    Note that this function needs to be called before any automaton is
    displayed.  Afterwards it will have no effect (you should restart
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    Python, or the Jupyter/IPython Kernel).

    Parameters
    ----------
    bullets : bool
        whether to display acceptance conditions as UTF8 bullets
        (default: True)
    fillcolor : str
        the color to use for states (default: '#ffffaa')
    size : str
        the width and height of the GraphViz output in inches
        (default: '10.2,5')
    font : str
        the font to use in the GraphViz output (default: 'Lato')
63
64
    show_default : str
        default options for show()
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
65
66
    max_states : int
        maximum number of states in GraphViz output (default: 50)
67
    """
Etienne Renault's avatar
Etienne Renault committed
68
    import os
69

70
71
    s = ('size="{}" edge[arrowhead=vee, arrowsize=.7]')
    os.environ['SPOT_DOTEXTRA'] = s.format(kwargs.get('size', '10.2,5'))
72
73

    bullets = 'B' if kwargs.get('bullets', True) else ''
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
74
    max_states = '<' + str(kwargs.get('max_states', 50))
75
76
77
    d = 'rf({})C({}){}'.format(kwargs.get('font', 'Lato'),
                               kwargs.get('fillcolor', '#ffffaa'),
                               bullets + max_states)
78
79
    global _show_default
    _show_default = kwargs.get('show_default', None)
80
81
    os.environ['SPOT_DOTDEFAULT'] = d

82

83
84
85
86
# In version 3.0.2, Swig puts strongly typed enum in the main
# namespace without prefixing them.  Latter versions fix this.  So we
# can remove for following hack once 3.0.2 is no longer used in our
# build farm.
87
if 'op_ff' not in globals():
88
89
90
91
92
93
    for i in ('ff', 'tt', 'eword', 'ap', 'Not', 'X', 'F', 'G',
              'Closure', 'NegClosure', 'NegClosureMarked',
              'Xor', 'Implies', 'Equiv', 'U', 'R', 'W', 'M',
              'EConcat', 'EConcatMarked', 'UConcat', 'Or',
              'OrRat', 'And', 'AndRat', 'AndNLM', 'Concat',
              'Fusion', 'Star', 'FStar'):
94
        globals()['op_' + i] = globals()[i]
95
96
97
        del globals()[i]


98
99
# Global BDD dict so that we do not have to create one in user code.
_bdd_dict = make_bdd_dict()
Etienne Renault's avatar
Etienne Renault committed
100

101

102
103
104
105
106
@_extend(twa, ta)
class twa:
    def _repr_svg_(self, opt=None):
        """Output the automaton as SVG"""
        ostr = ostringstream()
107
108
109
        if opt is None:
            global _show_default
            opt = _show_default
110
111
112
113
114
        print_dot(ostr, self, opt)
        return _ostream_to_svg(ostr)

    def show(self, opt=None):
        """Display the automaton as SVG, in the IPython/Jupyter notebook"""
115
116
117
        if opt is None:
            global _show_default
            opt = _show_default
118
119
120
121
122
123
        # Load the SVG function only if we need it. This way the
        # bindings can still be used outside of IPython if IPython is
        # not installed.
        from IPython.display import SVG
        return SVG(self._repr_svg_(opt))

124
125
126
127
128
129
130
131
132
    def highlight_states(self, states, color):
        for state in states:
            self.highlight_state(state, color)
        return self

    def highlight_edges(self, edges, color):
        for edge in edges:
            self.highlight_edge(edge, color)
        return self
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

@_extend(twa)
class twa:
    def to_str(a, format='hoa', opt=None):
        format = format.lower()
        if format == 'hoa':
            ostr = ostringstream()
            print_hoa(ostr, a, opt)
            return ostr.str()
        if format == 'dot':
            ostr = ostringstream()
            print_dot(ostr, a, opt)
            return ostr.str()
        if format == 'spin':
            ostr = ostringstream()
            print_never_claim(ostr, a, opt)
            return ostr.str()
        if format == 'lbtt':
            ostr = ostringstream()
            print_lbtt(ostr, a, opt)
            return ostr.str()
154
        raise ValueError("unknown string format: " + format)
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    def save(a, filename, format='hoa', opt=None, append=False):
        with open(filename, 'a' if append else 'w') as f:
            s = a.to_str(format, opt)
            f.write(s)
            if s[-1] != '\n':
                f.write('\n')
        return a


@_extend(formula)
class formula:
    def __init__(self, str):
        """Parse the given string to create a formula."""
        self.this = parse_formula(str)

    def show_ast(self):
        """Display the syntax tree of the formula."""
        # Load the SVG function only if we need it. This way the bindings
        # can still be used outside of IPython if IPython is not
        # installed.
        from IPython.display import SVG
177
        return SVG(_str_to_svg(self.to_str('d')))
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

    def to_str(self, format='spot', parenth=False):
        if format == 'spot' or format == 'f':
            return str_psl(self, parenth)
        elif format == 'spin' or format == 's':
            return str_spin_ltl(self, parenth)
        elif format == 'utf8' or format == '8':
            return str_utf8_psl(self, parenth)
        elif format == 'lbt' or format == 'l':
            return str_lbt_ltl(self)
        elif format == 'wring' or format == 'w':
            return str_wring_ltl(self)
        elif format == 'latex' or format == 'x':
            return str_latex_psl(self, parenth)
        elif format == 'sclatex' or format == 'X':
            return str_sclatex_psl(self, parenth)
194
195
196
197
        elif format == 'dot' or format == 'd':
            ostr = ostringstream()
            print_dot_psl(ostr, self)
            return ostr.str().encode('utf-8')
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        else:
            raise ValueError("unknown string format: " + format)

    def __format__(self, spec):
        """Format the formula according to `spec`.

        Parameters
        ----------
        spec : str, optional
            a list of letters that specify how the formula
            should be formatted.

        Supported specifiers
        --------------------

        - 'f': use Spot's syntax (default)
        - '8': use Spot's syntax in UTF-8 mode
        - 's': use Spin's syntax
        - 'l': use LBT's syntax
        - 'w': use Wring's syntax
        - 'x': use LaTeX output
        - 'X': use self-contained LaTeX output

        Add some of those letters for additional options:

        - 'p': use full parentheses
        - 'c': escape the formula for CSV output (this will
               enclose the formula in double quotes, and escape
               any included double quotes)
        - 'h': escape the formula for HTML output
        - 'd': escape double quotes and backslash,
               for use in C-strings (the outermost double
               quotes are *not* added)
        - 'q': quote and escape for shell output, using single
               quotes or double quotes depending on the contents.

        - ':spec': pass the remaining specification to the
                   formating function for strings.

        """

        syntax = 'f'
        parent = False
        escape = None

        while spec:
            c, spec = spec[0], spec[1:]
            if c in ('f', 's', '8', 'l', 'w', 'x', 'X'):
                syntax = c
            elif c == 'p':
                parent = True
            elif c in ('c', 'd', 'h', 'q'):
                escape = c
            elif c == ':':
                break
            else:
                raise ValueError("unknown format specification: " + c + spec)

        s = self.to_str(syntax, parent)

        if escape == 'c':
            o = ostringstream()
            escape_rfc4180(o, s)
            s = '"' + o.str() + '"'
        elif escape == 'd':
            s = escape_str(s)
        elif escape == 'h':
            o = ostringstream()
            escape_html(o, s)
            s = o.str()
        elif escape == 'q':
            o = ostringstream()
            quote_shell_string(o, s)
            s = o.str()

        return s.__format__(spec)

    def traverse(self, func):
        if func(self):
            return
        for f in self:
            f.traverse(func)

    def map(self, func):
        k = self.kind()
        if k in (op_ff, op_tt, op_eword, op_ap):
            return self
        if k in (op_Not, op_X, op_F, op_G, op_Closure,
                 op_NegClosure, op_NegClosureMarked):
            return formula.unop(k, func(self[0]))
        if k in (op_Xor, op_Implies, op_Equiv, op_U, op_R, op_W,
                 op_M, op_EConcat, op_EConcatMarked, op_UConcat):
            return formula.binop(k, func(self[0]), func(self[1]))
        if k in (op_Or, op_OrRat, op_And, op_AndRat, op_AndNLM,
                 op_Concat, op_Fusion):
            return formula.multop(k, [func(x) for x in self])
        if k in (op_Star, op_FStar):
            return formula.bunop(k, func(self[0]), self.min(), self.max())
        raise ValueError("unknown type of formula")
297

298

299
300
def automata(*sources, timeout=None, ignore_abort=True,
             trust_hoa=True, debug=False):
301
302
    """Read automata from a list of sources.

303
304
305
306
307
308
    Parameters
    ----------
    *sources : list of str
        These sources can be either commands (end with `|`),
        textual represantations of automata (contain `\n`),
        or filenames (else).
309
    timeout : int, optional
310
311
        Number of seconds to wait for the result of a command.
        If None (the default), not limit is used.
312
313
314
315
    ignore_abort : bool, optional
        If True (the default), skip HOA atomata that ends with
        `--ABORT--`, and return the next automaton in the stream.
        If False, aborted automata are reported as syntax errors.
316
317
318
    trust_hoa : bool, optional
        If True (the default), supported HOA properies that
        cannot be easily verified are trusted.
319
320
    debug : bool, optional
        Whether to run the parser in debug mode.
321
322
323

    Notes
    -----
324
325
326

    The automata can be written in the `HOA format`_, as `never
    claims`_, in `LBTT's format`_, or in `ltl2dstar's format`_.
327

328
329
330
331
332
333
    .. _HOA format: http://adl.github.io/hoaf/
    .. _never claims: http://spinroot.com/spin/Man/never.html
    .. _LBTT's format:
       http://www.tcs.hut.fi/Software/lbtt/doc/html/Format-for-automata.html
    .. _ltl2dstar's format:
       http://www.ltl2dstar.de/docs/ltl2dstar.html#output-format-dstar
334

335
    If an argument ends with a `|`, then this argument is interpreted as
336
    a shell command, and the output of that command (without the `|`)
337
338
339
340
341
342
    is parsed.

    If an argument contains a newline, then it is interpreted as
    actual contents to be parsed.

    Otherwise, the argument is assumed to be a filename.
343
344
345
346

    The result of this function is a generator on all the automata
    objects read from these sources.  The typical usage is::

347
        for aut in spot.automata(filename, command, ...):
348
349
            # do something with aut

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    When the source is a command, and no `timeout` is specified,
    parsing is done straight out of the pipe connecting the
    command.  So

        for aut in spot.automata('randaut -H -n 10 2 |'):
            process(aut)

    will call `process(aut)` on each automaton as soon as it is output by
    `randaut`, and without waiting for `randaut` to terminate.

    However if `timeout` is passed, then `automata()` will wait for
    the entire command to terminate before parsing its entire output.
    If one command takes more than `timeout` seconds,
    `subprocess.TimeoutExpired` is raised.

    If any command terminates with a non-zero error,
    `subprocess.CalledProcessError` is raised.
367
    """
368

369
370
371
    o = automaton_parser_options()
    o.debug = debug
    o.ignore_abort = ignore_abort
372
    o.trust_hoa = trust_hoa
373
    o.raise_errors = True
374
    for filename in sources:
375
        try:
376
            p = None
377
            proc = None
378
            if filename[-1] == '|':
379
380
381
382
383
384
385
                # universal_newlines for str output instead of bytes
                # when the pipe is read from Python (which happens
                # when timeout is set).
                proc = subprocess.Popen(filename[:-1], shell=True,
                                        preexec_fn=os.setsid,
                                        universal_newlines=True,
                                        stdout=subprocess.PIPE)
386
387
                if timeout is None:
                    p = automaton_stream_parser(proc.stdout.fileno(),
388
                                                filename, o)
389
                else:
390
391
392
393
394
395
396
                    try:
                        out, err = proc.communicate(timeout=timeout)
                    except subprocess.TimeoutExpired:
                        # Using subprocess.check_output() with timeout
                        # would just kill the shell, not its children.
                        os.killpg(proc.pid, signal.SIGKILL)
                        raise
397
398
399
400
401
                    else:
                        ret = proc.wait()
                        if ret:
                            raise subprocess.CalledProcessError(ret,
                                                                filename[:-1])
402
403
                    finally:
                        proc = None
404
                    p = automaton_stream_parser(out, filename, o)
405
            elif '\n' in filename:
406
                p = automaton_stream_parser(filename, "<string>", o)
407
            else:
408
                p = automaton_stream_parser(filename, o)
409
410
            a = True
            while a:
411
                # This returns None when we reach the end of the file.
412
                a = p.parse(_bdd_dict).aut
413
414
415
                if a:
                    yield a
        finally:
416
417
            # Make sure we destroy the parser (p) and the subprocess
            # (prop) in the correct order...
418
            del p
419
            if proc is not None:
420
421
                if not a:
                    # We reached the end of the stream.  Wait for the
422
                    # process to finish, so that we get its exit code.
423
424
425
                    ret = proc.wait()
                else:
                    # if a != None, we probably got there through an
426
                    # exception, and the subprocess might still be
427
428
429
                    # running.  Check if an exit status is available
                    # just in case.
                    ret = proc.poll()
430
431
                del proc
                if ret:
432
                    raise subprocess.CalledProcessError(ret, filename[:-1])
433
434
435
436
437
438
    # deleting o explicitely now prevents Python 3.5 from
    # reporting the following error: "<built-in function
    # delete_automaton_parser_options> returned a result with
    # an error set".  It's not clear to me if the bug is in Python
    # or Swig.  At least it's related to the use of generators.
    del o
439
440
    return

441

442
def automaton(filename, **kwargs):
443
444
    """Read a single automaton from a file.

445
    See `spot.automata` for a list of supported formats."""
446
    try:
447
        return next(automata(filename, **kwargs))
448
449
    except StopIteration:
        raise RuntimeError("Failed to read automaton from {}".format(filename))
450

451

452
def _postproc_translate_options(obj, default_type, *args):
453
454
455
456
457
458
459
460
461
    type_ = None
    pref_ = None
    optm_ = None
    comp_ = 0
    unam_ = 0
    sbac_ = 0

    def type_set(val):
        nonlocal type_
462
        if type_ is not None and type_ != val:
463
464
            raise ValueError("type cannot be both {} and {}"
                             .format(type_, val))
465
466
        elif val == 'generic':
            type_ = postprocessor.Generic
467
468
469
470
        elif val == 'tgba':
            type_ = postprocessor.TGBA
        elif val == 'ba':
            type_ = postprocessor.BA
471
        else:
472
473
474
475
476
            assert(val == 'monitor')
            type_ = postprocessor.Monitor

    def pref_set(val):
        nonlocal pref_
477
        if pref_ is not None and pref_ != val:
478
479
480
481
482
483
484
485
486
487
488
489
            raise ValueError("preference cannot be both {} and {}"
                             .format(pref_, val))
        elif val == 'small':
            pref_ = postprocessor.Small
        elif val == 'deterministic':
            pref_ = postprocessor.Deterministic
        else:
            assert(val == 'any')
            pref_ = postprocessor.Any

    def optm_set(val):
        nonlocal optm_
490
        if optm_ is not None and optm_ != val:
491
492
            raise ValueError("optimization level cannot be both {} and {}"
                             .format(optm_, val))
493
        if val == 'high':
494
            optm_ = postprocessor.High
495
        elif val.startswith('med'):
496
497
            optm_ = postprocessor.Medium
        else:
498
            assert(val == 'low')
499
500
501
502
503
504
505
506
            optm_ = postprocessor.Low

    def misc_set(val):
        nonlocal comp_, unam_, sbac_
        if val == 'complete':
            comp_ = postprocessor.Complete
        elif val == 'sbacc' or val == 'state-based-acceptance':
            sbac_ = postprocessor.SBAcc
507
        else:
508
509
510
511
512
513
514
            assert(val == 'unambiguous')
            unam_ = postprocessor.Unambiguous

    options = {
        'tgba': type_set,
        'ba': type_set,
        'monitor': type_set,
515
        'generic': type_set,
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        'small': pref_set,
        'deterministic': pref_set,
        'any': pref_set,
        'high': optm_set,
        'medium': optm_set,
        'low': optm_set,
        'complete': misc_set,
        'unambiguous': misc_set,
        'statebasedacceptance': misc_set,
        'sbacc': misc_set,
    }

    for arg in args:
        arg = arg.lower()
        fn = options.get(arg)
        if fn:
            fn(arg)
533
        else:
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
            # arg is not an know option, but maybe it is a prefix of
            # one of them
            compat = []
            f = None
            for key, fn in options.items():
                if key.startswith(arg):
                    compat.append(key)
                    f = fn
            lc = len(compat)
            if lc == 1:
                f(compat[0])
            elif lc < 1:
                raise ValueError("unknown option '{}'".format(arg))
            else:
                raise ValueError("ambiguous option '{}' is prefix of {}"
                                 .format(arg, str(compat)))

551
    if type_ is None:
552
        type_ = default_type
553
    if pref_ is None:
554
        pref_ = postprocessor.Small
555
    if optm_ is None:
556
557
        optm_ = postprocessor.High

558
559
560
    obj.set_type(type_)
    obj.set_pref(pref_ | comp_ | unam_ | sbac_)
    obj.set_level(optm_)
561

562

563
def translate(formula, *args, dict=_bdd_dict):
564
565
566
567
568
569
    """Translate a formula into an automaton.

    Keep in mind that 'Deterministic' expresses just a preference that
    may not be satisfied.

    The optional arguments should be strings among the following:
570
    - at most one in 'TGBA', 'BA', or 'Monitor', 'generic'
571
572
573
574
575
576
577
578
579
580
      (type of automaton to build)
    - at most one in 'Small', 'Deterministic', 'Any'
      (preferred characteristics of the produced automaton)
    - at most one in 'Low', 'Medium', 'High'
      (optimization level)
    - any combination of 'Complete', 'Unambiguous', and
      'StateBasedAcceptance' (or 'SBAcc' for short)

    The default corresponds to 'tgba', 'small' and 'high'.
    """
581
    a = translator(dict)
582
583
584
    _postproc_translate_options(a, postprocessor.TGBA, *args)
    if type(formula) == str:
        formula = parse_formula(formula)
585
    return a.run(formula)
586

587

588
formula.translate = translate
589

590

591
def postprocess(automaton, *args, formula=None):
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    """Post process an automaton.

    This applies a number of simlification algorithms, depending on
    the options supplied. Keep in mind that 'Deterministic' expresses
    just a preference that may not be satisfied if the input is
    not already 'Deterministic'.

    The optional arguments should be strings among the following:
    - at most one in 'Generic', 'TGBA', 'BA', or 'Monitor'
      (type of automaton to build)
    - at most one in 'Small', 'Deterministic', 'Any'
      (preferred characteristics of the produced automaton)
    - at most one in 'Low', 'Medium', 'High'
      (optimization level)
    - any combination of 'Complete' and 'StateBasedAcceptance'
      (or 'SBAcc' for short)

    The default corresponds to 'generic', 'small' and 'high'.
610
611
612
613

    If a formula denoted by this automaton is known, pass it to as the
    optional `formula` argument; it can help some algorithms by
    providing an easy way to complement the automaton.
614
615
616
617
618
    """
    p = postprocessor()
    if type(automaton) == str:
        automaton = globals()['automaton'](automaton)
    _postproc_translate_options(p, postprocessor.Generic, *args)
619
    return p.run(automaton, formula)
620
621
622
623


twa.postprocess = postprocess

624
625
626
627
# Wrap C++-functions into lambdas so that they get converted into
# instance methods (i.e., self passed as first argument
# automatically), because only used-defined functions are converted as
# instance methods.
628
def _add_twa_graph(meth):
629
630
    setattr(twa_graph, meth, (lambda self, *args, **kwargs:
                              globals()[meth](self, *args, **kwargs)))
631

632
633
634
635
for meth in ('scc_filter', 'scc_filter_states',
             'is_deterministic', 'is_unambiguous'):
    _add_twa_graph(meth)

636
637
638
639
640
641
642
643
644
645
646
647
648
# Wrapper around a formula iterator to which we add some methods of formula
# (using _addfilter and _addmap), so that we can write things like
# formulas.simplify().is_X_free().
class formulaiterator:
    def __init__(self, formulas):
        self._formulas = formulas

    def __iter__(self):
        return self

    def __next__(self):
        return next(self._formulas)

649

650
651
652
653
654
655
656
# fun shoud be a predicate and should be a method of formula.
# _addfilter adds this predicate as a filter whith the same name in
# formulaiterator.
def _addfilter(fun):
    def filtf(self, *args, **kwargs):
        it = filter(lambda f: getattr(f, fun)(*args, **kwargs), self)
        return formulaiterator(it)
657

658
659
660
    def nfiltf(self, *args, **kwargs):
        it = filter(lambda f: not getattr(f, fun)(*args, **kwargs), self)
        return formulaiterator(it)
661

662
    if fun[:3] == 'is_':
663
        notfun = 'is_not_' + fun[3:]
664
    elif fun[:4] == 'has_':
665
        notfun = 'has_no_' + fun[4:]
666
667
668
669
670
    else:
        notfun = 'not_' + fun
    setattr(formulaiterator, fun, filtf)
    setattr(formulaiterator, notfun, nfiltf)

671
672
673
674

# fun should be a function taking a formula as its first parameter and
# returning a formula.  _addmap adds this function as a method of
# formula and formulaiterator.
675
676
677
def _addmap(fun):
    def mapf(self, *args, **kwargs):
        return formulaiterator(map(lambda f: getattr(f, fun)(*args, **kwargs),
678
679
                                   self))
    setattr(formula, fun,
680
681
            lambda self, *args, **kwargs:
            globals()[fun](self, *args, **kwargs))
682
683
    setattr(formulaiterator, fun, mapf)

684
685

def randltl(ap, n=-1, **kwargs):
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    """Generate random formulas.

    Returns a random formula iterator.

    ap: the number of atomic propositions used to generate random formulas.

    n: number of formulas to generate, or unbounded if n < 0.

    **kwargs:
    seed: seed for the random number generator (0).
    output: can be 'ltl', 'psl', 'bool' or 'sere' ('ltl').
    allow_dups: allow duplicate formulas (False).
    tree_size: tree size of the formulas generated, before mandatory
    simplifications (15)
    boolean_priorities: set priorities for Boolean formulas.
    ltl_priorities: set priorities for LTL formulas.
    sere_priorities: set priorities for SERE formulas.
    dump_priorities: show current priorities, do not generate any formula.
    simplify:
      0           No rewriting
      1           basic rewritings and eventual/universal rules
      2           additional syntactic implication rules
      3 (default) better implications using containment
    """
    opts = option_map()
    output_map = {
712
713
714
715
        "ltl": OUTPUTLTL,
        "psl": OUTPUTPSL,
        "bool": OUTPUTBOOL,
        "sere": OUTPUTSERE
716
717
718
719
720
    }

    if isinstance(ap, list):
        aprops = atomic_prop_set()
        for elt in ap:
721
            aprops.insert(formula.ap(elt))
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
        ap = aprops
    ltl_priorities = kwargs.get("ltl_priorities", None)
    sere_priorities = kwargs.get("sere_priorities", None)
    boolean_priorities = kwargs.get("boolean_priorities", None)
    output = output_map[kwargs.get("output", "ltl")]
    opts.set("output", output)
    opts.set("seed", kwargs.get("seed", 0))
    tree_size = kwargs.get("tree_size", 15)
    if isinstance(tree_size, tuple):
        tree_size_min, tree_size_max = tree_size
    else:
        tree_size_min = tree_size_max = tree_size
    opts.set("tree_size_min", tree_size_min)
    opts.set("tree_size_max", tree_size_max)
    opts.set("unique", not kwargs.get("allow_dups", False))
    opts.set("wf", kwargs.get("weak_fairness", False))
    simpl_level = kwargs.get("simplify", 0)
    if simpl_level > 3 or simpl_level < 0:
        sys.stderr.write('invalid simplification level: ' + simpl_level)
        return
    opts.set("simplification_level", simpl_level)

    rg = randltlgenerator(ap, opts, ltl_priorities, sere_priorities,
745
                          boolean_priorities)
746
747
748
749
750

    dump_priorities = kwargs.get("dump_priorities", False)
    if dump_priorities:
        dumpstream = ostringstream()
        if output == OUTPUTLTL:
751
752
            print('Use argument ltl_priorities=STRING to set the following '
                  'LTL priorities:\n')
753
754
755
            rg.dump_ltl_priorities(dumpstream)
            print(dumpstream.str())
        elif output == OUTPUTBOOL:
756
757
            print('Use argument boolean_priorities=STRING to set the '
                  'following Boolean formula priorities:\n')
758
759
760
761
            rg.dump_bool_priorities(dumpstream)
            print(dumpstream.str())
        elif output == OUTPUTPSL or output == OUTPUTSERE:
            if output != OUTPUTSERE:
762
763
                print('Use argument ltl_priorities=STRING to set the '
                      'following LTL priorities:\n')
764
765
                rg.dump_psl_priorities(dumpstream)
                print(dumpstream.str())
766
767
            print('Use argument sere_priorities=STRING to set the '
                  'following SERE priorities:\n')
768
769
            rg.dump_sere_priorities(dumpstream)
            print(dumpstream.str())
770
771
            print('Use argument boolean_priorities=STRING to set the '
                  'following Boolean formula priorities:\n')
772
773
774
775
776
777
            rg.dump_sere_bool_priorities(dumpstream)
            print(dumpstream.str())
        else:
            sys.stderr.write("internal error: unknown type of output")
        return

778
779
780
781
782
    class _randltliterator:
        def __init__(self, rg, n):
            self.rg = rg
            self.i = 0
            self.n = n
783

784
785
        def __iter__(self):
            return self
786

787
788
789
790
        def __next__(self):
            if self.i == self.n:
                raise StopIteration
            f = self.rg.next()
791
            if f is None:
792
793
794
795
796
797
798
799
                sys.stderr.write("Warning: could not generate a new "
                                 "unique formula after {} trials.\n"
                                 .format(MAX_TRIALS))
                raise StopIteration
            self.i += 1
            return f

    return formulaiterator(_randltliterator(rg, n))
800

801

802
803
804
def simplify(f, **kwargs):
    level = kwargs.get('level', None)
    if level is not None:
805
        return tl_simplifier(tl_simplifier_options(level)).simplify(f)
806
807
808
809

    basics = kwargs.get('basics', True)
    synt_impl = kwargs.get('synt_impl', True)
    event_univ = kwargs.get('event_univ', True)
810
811
    cont_checks = kwargs.get('containment_checks', False)
    cont_checks_stronger = kwargs.get('containment_checks_stronger', False)
812
813
814
815
816
    nenoform_stop_on_boolean = kwargs.get('nenoform_stop_on_boolean', False)
    reduce_size_strictly = kwargs.get('reduce_size_strictly', False)
    boolean_to_isop = kwargs.get('boolean_to_isop', False)
    favor_event_univ = kwargs.get('favor_event_univ', False)

817
    simp_opts = tl_simplifier_options(basics,
818
819
                                       synt_impl,
                                       event_univ,
820
821
                                       cont_checks,
                                       cont_checks_stronger,
822
823
824
825
                                       nenoform_stop_on_boolean,
                                       reduce_size_strictly,
                                       boolean_to_isop,
                                       favor_event_univ)
826
    return tl_simplifier(simp_opts).simplify(f)
827

828

829
for fun in dir(formula):
830
831
    if (callable(getattr(formula, fun)) and (fun[:3] == 'is_' or
                                             fun[:4] == 'has_')):
832
833
        _addfilter(fun)

834
835
for fun in ['remove_x', 'relabel', 'relabel_bse',
            'simplify', 'unabbreviate']:
836
    _addmap(fun)
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860



# Better interface to the corresponding C++ function.
def sat_minimize(aut, acc=None, colored=False,
                 state_based=False, states=0,
                 max_states=0, dichotomy=False):
    args=''
    if acc is not None:
        if type(acc) is not str:
            raise ValueError("argument 'acc' should be a string")
        args += ',acc="' + acc + '"'
    if colored:
        args += ',colored'
    if states:
        if type(states) is not int or states < 0:
            raise ValueError("argument 'states' should be a positive integer")
        args += ',states=' + str(states)
    if max_states:
        if type(max_states) is not int or max_states < 0:
            raise ValueError("argument 'states' should be a positive integer")
        args += ',max-states=' + str(max_states)
    if dichotomy:
        args += ',dichotomy';
861
    from spot.impl import sat_minimize as sm
862
    return sm(aut, args, state_based)
863
864
865
866

def parse_word(word, dic=_bdd_dict):
    from spot.impl import parse_word as pw
    return pw(word, dic)