genltl.cc 20.4 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
// Copyright (C) 2012, 2013, 2015 Laboratoire de Recherche et Développement
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
3
// de l'Epita (LRDE).
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

// Families defined here come from the following papers:
//
// @InProceedings{cichon.09.depcos,
//   author = {Jacek Cicho{\'n} and Adam Czubak and Andrzej Jasi{\'n}ski},
//   title = {Minimal {B\"uchi} Automata for Certain Classes of {LTL} Formulas},
//   booktitle = {Proceedings of the Fourth International Conference on
//                Dependability of Computer Systems},
//   pages = {17--24},
//   year = 2009,
//   publisher = {IEEE Computer Society},
// }
//
// @InProceedings{geldenhuys.06.spin,
//   author = {Jaco Geldenhuys and Henri Hansen},
//   title = {Larger Automata and Less Work for LTL Model Checking},
//   booktitle = {Proceedings of the 13th International SPIN Workshop},
//   year = {2006},
//   pages = {53--70},
//   series = {Lecture Notes in Computer Science},
//   volume = {3925},
//   publisher = {Springer}
// }
//
// @InProceedings{gastin.01.cav,
//   author = {Paul Gastin and Denis Oddoux},
//   title = {Fast {LTL} to {B\"u}chi Automata Translation},
//   booktitle	= {Proceedings of the 13th International Conference on
// 		  Computer Aided Verification (CAV'01)},
//   pages = {53--65},
//   year = 2001,
//   editor = {G. Berry and H. Comon and A. Finkel},
//   volume = {2102},
//   series = {Lecture Notes in Computer Science},
//   address = {Paris, France},
//   publisher = {Springer-Verlag}
// }
//
// @InProceedings{rozier.07.spin,
//   author = {Kristin Y. Rozier and Moshe Y. Vardi},
//   title = {LTL Satisfiability Checking},
//   booktitle = {Proceedings of the 12th International SPIN Workshop on
// 		  Model Checking of Software (SPIN'07)},
//   pages = {149--167},
//   year = {2007},
//   volume = {4595},
//   series = {Lecture Notes in Computer Science},
//   publisher = {Springer-Verlag}
// }

69
#include "common_sys.hh"
70
71
72
73
74
75
76
77

#include <iostream>
#include <fstream>
#include <argp.h>
#include <cstdlib>
#include "error.h"
#include <vector>

78
#include "common_setup.hh"
79
#include "common_output.hh"
80
#include "common_range.hh"
81
82
83
84
85
86
87
88

#include <cassert>
#include <iostream>
#include <sstream>
#include <set>
#include <string>
#include <cstdlib>
#include <cstring>
89
90
#include "tl/formula.hh"
#include "tl/relabel.hh"
91
92
93
94

using namespace spot;

const char argp_program_doc[] ="\
95
Generate temporal logic formulas from predefined scalable patterns.";
96

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
enum {
  OPT_AND_F = 1,
  OPT_AND_FG,
  OPT_AND_GF,
  OPT_CCJ_ALPHA,
  OPT_CCJ_BETA,
  OPT_CCJ_BETA_PRIME,
  OPT_GH_Q,
  OPT_GH_R,
  OPT_GO_THETA,
  OPT_OR_FG,
  OPT_OR_G,
  OPT_OR_GF,
  OPT_R_LEFT,
  OPT_R_RIGHT,
  OPT_RV_COUNTER,
  OPT_RV_COUNTER_CARRY,
  OPT_RV_COUNTER_CARRY_LINEAR,
  OPT_RV_COUNTER_LINEAR,
  OPT_U_LEFT,
  OPT_U_RIGHT,
  LAST_CLASS,
};
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

const char* const class_name[LAST_CLASS] =
  {
    "and-f",
    "and-fg",
    "and-gf",
    "ccj-alpha",
    "ccj-beta",
    "ccj-beta-prime",
    "gh-q",
    "gh-r",
    "go-theta",
    "or-fg",
    "or-g",
    "or-gf",
    "or-r-left",
    "or-r-right",
    "rv-counter",
    "rv-counter-carry",
    "rv-counter-carry-linear",
    "rv-counter-linear",
    "u-left",
    "u-right",
  };

145

146
#define OPT_ALIAS(o) { #o, 0, nullptr, OPTION_ALIAS, nullptr, 0 }
147
148
149
150
151

static const argp_option options[] =
  {
    /**************************************************/
    // Keep this alphabetically sorted (expect for aliases).
152
    { nullptr, 0, nullptr, 0, "Pattern selection:", 1},
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    // J. Geldenhuys and H. Hansen (Spin'06): Larger automata and less
    // work for LTL model checking.
    { "and-f", OPT_AND_F, "RANGE", 0, "F(p1)&F(p2)&...&F(pn)", 0 },
    OPT_ALIAS(gh-e),
    { "and-fg", OPT_AND_FG, "RANGE", 0, "FG(p1)&FG(p2)&...&FG(pn)", 0 },
    { "and-gf", OPT_AND_GF, "RANGE", 0, "GF(p1)&GF(p2)&...&GF(pn)", 0 },
    OPT_ALIAS(ccj-phi),
    OPT_ALIAS(gh-c2),
    { "ccj-alpha", OPT_CCJ_ALPHA, "RANGE", 0,
      "F(p1&F(p2&F(p3&...F(pn)))) & F(q1&F(q2&F(q3&...F(qn))))", 0 },
    { "ccj-beta", OPT_CCJ_BETA, "RANGE", 0,
      "F(p&X(p&X(p&...X(p)))) & F(q&X(q&X(q&...X(q))))", 0 },
    { "ccj-beta-prime", OPT_CCJ_BETA_PRIME, "RANGE", 0,
      "F(p&(Xp)&(XXp)&...(X...X(p))) & F(q&(Xq)&(XXq)&...(X...X(q)))", 0 },
    { "gh-q", OPT_GH_Q, "RANGE", 0,
      "(F(p1)|G(p2))&(F(p2)|G(p3))&... &(F(pn)|G(p{n+1}))", 0 },
    { "gh-r", OPT_GH_R, "RANGE", 0,
      "(GF(p1)|FG(p2))&(GF(p2)|FG(p3))&... &(GF(pn)|FG(p{n+1}))", 0},
    { "go-theta", OPT_GO_THETA, "RANGE", 0,
      "!((GF(p1)&GF(p2)&...&GF(pn)) -> G(q->F(r)))", 0 },
    { "or-fg", OPT_OR_FG, "RANGE", 0, "FG(p1)|FG(p2)|...|FG(pn)", 0 },
    OPT_ALIAS(ccj-xi),
    { "or-g", OPT_OR_G, "RANGE", 0, "G(p1)|G(p2)|...|G(pn)", 0 },
    OPT_ALIAS(gh-s),
    { "or-gf", OPT_OR_GF, "RANGE", 0, "GF(p1)|GF(p2)|...|GF(pn)", 0 },
    OPT_ALIAS(gh-c1),
    { "r-left", OPT_R_LEFT, "RANGE", 0, "(((p1 R p2) R p3) ... R pn)", 0 },
    { "r-right", OPT_R_RIGHT, "RANGE", 0, "(p1 R (p2 R (... R pn)))", 0 },
    { "rv-counter", OPT_RV_COUNTER, "RANGE", 0,
      "n-bit counter", 0 },
    { "rv-counter-carry", OPT_RV_COUNTER_CARRY, "RANGE", 0,
      "n-bit counter w/ carry", 0 },
    { "rv-counter-carry-linear", OPT_RV_COUNTER_CARRY_LINEAR, "RANGE", 0,
      "n-bit counter w/ carry (linear size)", 0 },
    { "rv-counter-linear", OPT_RV_COUNTER_LINEAR, "RANGE", 0,
      "n-bit counter (linear size)", 0 },
    { "u-left", OPT_U_LEFT, "RANGE", 0, "(((p1 U p2) U p3) ... U pn)", 0 },
    OPT_ALIAS(gh-u),
    { "u-right", OPT_U_RIGHT, "RANGE", 0, "(p1 U (p2 U (... U pn)))", 0 },
    OPT_ALIAS(gh-u2),
    OPT_ALIAS(go-phi),
194
    RANGE_DOC,
195
  /**************************************************/
196
197
    { nullptr, 0, nullptr, 0, "Output options:", -20 },
    { nullptr, 0, nullptr, 0, "The FORMAT string passed to --format may use "
198
      "the following interpreted sequences:", -19 },
199
    { "%f", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
200
      "the formula (in the selected syntax)", 0 },
201
    { "%F", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
202
      "the name of the pattern", 0 },
203
    { "%L", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
204
      "the argument of the pattern", 0 },
205
    { "%%", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
206
      "a single %", 0 },
207
208
    { nullptr, 0, nullptr, 0, "Miscellaneous options:", -1 },
    { nullptr, 0, nullptr, 0, nullptr, 0 }
209
210
211
212
213
  };

struct job
{
  int pattern;
214
  struct range range;
215
216
217
218
219
};

typedef std::vector<job> jobs_t;
static jobs_t jobs;

220
221
222

const struct argp_child children[] =
  {
223
224
225
    { &output_argp, 0, nullptr, -20 },
    { &misc_argp, 0, nullptr, -1 },
    { nullptr, 0, nullptr, 0 }
226
  };
227
228

static void
229
enqueue_job(int pattern, const char* range_str)
230
231
232
{
  job j;
  j.pattern = pattern;
233
  j.range = parse_range(range_str);
234
235
236
237
  jobs.push_back(j);
}

static int
238
parse_opt(int key, char* arg, struct argp_state*)
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
{
  // This switch is alphabetically-ordered.
  switch (key)
    {
    case OPT_AND_F:
    case OPT_AND_FG:
    case OPT_AND_GF:
    case OPT_CCJ_ALPHA:
    case OPT_CCJ_BETA:
    case OPT_CCJ_BETA_PRIME:
    case OPT_GH_Q:
    case OPT_GH_R:
    case OPT_GO_THETA:
    case OPT_OR_FG:
    case OPT_OR_G:
    case OPT_OR_GF:
    case OPT_R_LEFT:
    case OPT_R_RIGHT:
    case OPT_RV_COUNTER:
    case OPT_RV_COUNTER_CARRY:
    case OPT_RV_COUNTER_CARRY_LINEAR:
    case OPT_RV_COUNTER_LINEAR:
261
262
    case OPT_U_LEFT:
    case OPT_U_RIGHT:
263
264
265
266
267
268
269
270
      enqueue_job(key, arg);
      break;
    default:
      return ARGP_ERR_UNKNOWN;
    }
  return 0;
}

271
272
273
274
275
276
277
278
279
280
#define G_(x) formula::G(x)
#define F_(x) formula::F(x)
#define X_(x) formula::X(x)
#define Not_(x) formula::Not(x)

#define Implies_(x, y) formula::Implies((x), (y))
#define Equiv_(x, y) formula::Equiv((x), (y))
#define And_(x, y) formula::And({(x), (y)})
#define Or_(x, y) formula::Or({(x), (y)})
#define U_(x, y) formula::U((x), (y))
281
282

// F(p_1 & F(p_2 & F(p_3 & ... F(p_n))))
283
static formula
284
285
286
E_n(std::string name, int n)
{
  if (n <= 0)
287
    return formula::tt();
288

289
  formula result = nullptr;
290
291
292
293
294

  for (; n > 0; --n)
    {
      std::ostringstream p;
      p << name << n;
295
      formula f = formula::ap(p.str());
296
297
298
299
300
301
302
303
304
305
      if (result)
	result = And_(f, result);
      else
	result = f;
      result = F_(result);
    }
  return result;
}

// p & X(p & X(p & ... X(p)))
306
static formula
307
308
309
phi_n(std::string name, int n)
{
  if (n <= 0)
310
    return formula::tt();
311

312
313
  formula result = nullptr;
  formula p = formula::ap(name);
314
315
316
  for (; n > 0; --n)
    {
      if (result)
317
	result = And_(p, X_(result));
318
319
320
321
322
323
      else
	result = p;
    }
  return result;
}

324
325
static formula
N_n(std::string name, int n)
326
{
327
  return formula::F(phi_n(name, n));
328
329
330
}

// p & X(p) & XX(p) & XXX(p) & ... X^n(p)
331
static formula
332
333
334
phi_prime_n(std::string name, int n)
{
  if (n <= 0)
335
    return formula::tt();
336

337
338
  formula result = nullptr;
  formula p = formula::ap(name);
339
340
341
342
  for (; n > 0; --n)
    {
      if (result)
	{
343
	  p = X_(p);
344
345
346
347
348
349
350
351
352
353
	  result = And_(result, p);
	}
      else
	{
	  result = p;
	}
    }
  return result;
}

354
static formula
355
356
357
358
359
360
361
362
N_prime_n(std::string name, int n)
{
  return F_(phi_prime_n(name, n));
}


// GF(p_1) & GF(p_2) & ... & GF(p_n)   if conj == true
// GF(p_1) | GF(p_2) | ... | GF(p_n)   if conj == false
363
static formula
364
365
366
GF_n(std::string name, int n, bool conj = true)
{
  if (n <= 0)
367
    return conj ? formula::tt() : formula::ff();
368

369
  formula result = nullptr;
370

371
  op o = conj ? op::And : op::Or;
372
373
374
375
376

  for (int i = 1; i <= n; ++i)
    {
      std::ostringstream p;
      p << name << i;
377
      formula f = G_(F_(formula::ap(p.str())));
378
379

      if (result)
380
	result = formula::multop(o, {f, result});
381
382
383
384
385
386
387
388
      else
	result = f;
    }
  return result;
}

// FG(p_1) | FG(p_2) | ... | FG(p_n)   if conj == false
// FG(p_1) & FG(p_2) & ... & FG(p_n)   if conj == true
389
static formula
390
391
392
FG_n(std::string name, int n, bool conj = false)
{
  if (n <= 0)
393
    return conj ? formula::tt() : formula::ff();
394

395
  formula result = nullptr;
396

397
  op o = conj ? op::And : op::Or;
398
399
400
401
402

  for (int i = 1; i <= n; ++i)
    {
      std::ostringstream p;
      p << name << i;
403
      formula f = F_(G_(formula::ap(p.str())));
404
405

      if (result)
406
	result = formula::multop(o, {f, result});
407
408
409
410
411
412
413
414
      else
	result = f;
    }
  return result;
}

//  (((p1 OP p2) OP p3)...OP pn)   if right_assoc == false
//  (p1 OP (p2 OP (p3 OP (... pn)  if right_assoc == true
415
416
static formula
bin_n(std::string name, int n, op o, bool right_assoc = false)
417
418
419
420
{
  if (n <= 0)
    n = 1;

421
  formula result = nullptr;
422
423
424
425
426

  for (int i = 1; i <= n; ++i)
    {
      std::ostringstream p;
      p << name << (right_assoc ? (n + 1 - i) : i);
427
      formula f = formula::ap(p.str());
428
429
430
      if (!result)
	result = f;
      else if (right_assoc)
431
	result = formula::binop(o, f, result);
432
      else
433
	result = formula::binop(o, result, f);
434
435
436
437
438
    }
  return result;
}

// (GF(p1)|FG(p2))&(GF(p2)|FG(p3))&...&(GF(pn)|FG(p{n+1}))"
439
static formula
440
441
442
R_n(std::string name, int n)
{
  if (n <= 0)
443
    return formula::tt();
444

445
  formula pi;
446
447
448
449

  {
    std::ostringstream p;
    p << name << 1;
450
    pi = formula::ap(p.str());
451
452
  }

453
  formula result = nullptr;
454
455
456

  for (int i = 1; i <= n; ++i)
    {
457
      formula gf = G_(F_(pi));
458
459
      std::ostringstream p;
      p << name << i + 1;
460
      pi = formula::ap(p.str());
461

462
      formula fg = F_(G_(pi));
463

464
      formula f = Or_(gf, fg);
465
466
467
468
469
470
471
472
473
474

      if (result)
	result = And_(f, result);
      else
	result = f;
    }
  return result;
}

// (F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))"
475
static formula
476
477
478
Q_n(std::string name, int n)
{
  if (n <= 0)
479
    return formula::tt();
480

481
  formula pi;
482
483
484
485

  {
    std::ostringstream p;
    p << name << 1;
486
    pi = formula::ap(p.str());
487
488
  }

489
  formula result = nullptr;
490
491
492

  for (int i = 1; i <= n; ++i)
    {
493
      formula f = F_(pi);
494
495
496

      std::ostringstream p;
      p << name << i + 1;
497
      pi = formula::ap(p.str());
498

499
      formula g = G_(pi);
500
501
502
503
504
505
506
507
508
509
510
511
512

      f = Or_(f, g);

      if (result)
	result = And_(f, result);
      else
	result = f;
    }
  return result;
}

//  OP(p1) | OP(p2) | ... | OP(Pn) if conj == false
//  OP(p1) & OP(p2) & ... & OP(Pn) if conj == true
513
514
static formula
combunop_n(std::string name, int n, op o, bool conj = false)
515
516
{
  if (n <= 0)
517
    return conj ? formula::tt() : formula::ff();
518

519
  formula result = nullptr;
520

521
  op cop = conj ? op::And : op::Or;
522
523
524
525
526

  for (int i = 1; i <= n; ++i)
    {
      std::ostringstream p;
      p << name << i;
527
      formula f = formula::unop(o, formula::ap(p.str()));
528
529

      if (result)
530
	result = formula::multop(cop, {f, result});
531
532
533
534
535
536
537
538
      else
	result = f;
    }
  return result;
}

// !((GF(p1)&GF(p2)&...&GF(pn))->G(q -> F(r)))
// From "Fast LTL to Büchi Automata Translation" [gastin.01.cav]
539
static formula
540
541
fair_response(std::string p, std::string q, std::string r, int n)
{
542
543
  formula fair = GF_n(p, n);
  formula resp = G_(Implies_(formula::ap(q), F_(formula::ap(r))));
544
545
546
547
548
  return Not_(Implies_(fair, resp));
}


// Builds X(X(...X(p))) with n occurrences of X.
549
550
static formula
X_n(formula p, int n)
551
552
{
  assert(n >= 0);
553
  formula res = p;
554
555
556
557
558
559
560
  while (n--)
    res = X_(res);
  return res;
}

// Based on LTLcounter.pl from Kristin Rozier.
// http://shemesh.larc.nasa.gov/people/kyr/benchmarking_scripts/
561
static formula
562
563
ltl_counter(std::string bit, std::string marker, int n, bool linear)
{
564
565
566
567
  formula b = formula::ap(bit);
  formula neg_b = Not_(b);
  formula m = formula::ap(marker);
  formula neg_m = Not_(m);
568

569
  std::vector<formula> res(4);
570
571
572
573
574
575

  // The marker starts with "1", followed by n-1 "0", then "1" again,
  // n-1 "0", etc.
  if (!linear)
    {
      // G(m -> X(!m)&XX(!m)&XXX(m))          [if n = 3]
576
      std::vector<formula> v(n);
577
      for (int i = 0; i + 1 < n; ++i)
578
579
580
	v[i] = X_n(neg_m, i + 1);
      v[n - 1] = X_n(m, n);
      res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v)))));
581
582
583
584
    }
  else
    {
      // G(m -> X(!m & X(!m X(m))))          [if n = 3]
585
      formula p = m;
586
      for (int i = n - 1; i > 0; --i)
587
588
	p = And_(neg_m, X_(p));
      res[0] = And_(m, G_(Implies_(m, X_(p))));
589
590
591
592
593
594
    }

  // All bits are initially zero.
  if (!linear)
    {
      // !b & X(!b) & XX(!b)    [if n = 3]
595
      std::vector<formula> v2(n);
596
      for (int i = 0; i < n; ++i)
597
598
	v2[i] = X_n(neg_b, i);
      res[1] = formula::And(std::move(v2));
599
600
601
602
    }
  else
    {
      // !b & X(!b & X(!b))     [if n = 3]
603
      formula p = neg_b;
604
      for (int i = n - 1; i > 0; --i)
605
606
	p = And_(neg_b, X_(p));
      res[1] = p;
607
608
609
610
611
612
    }

#define AndX_(x, y) (linear ? X_(And_((x), (y))) : And_(X_(x), X_(y)))

  // If the least significant bit is 0, it will be 1 at the next time,
  // and other bits stay the same.
613
614
615
616
  formula Xnm1_b = X_n(b, n - 1);
  formula Xn_b = X_(Xnm1_b);
  res[2] = G_(Implies_(And_(m, neg_b),
		       AndX_(Xnm1_b, U_(And_(Not_(m), Equiv_(b, Xn_b)), m))));
617
618
619

  // From the least significant bit to the first 0, all the bits
  // are flipped on the next value.  Remaining bits are identical.
620
621
622
623
624
625
626
627
628
629
630
  formula Xnm1_negb = X_n(neg_b, n - 1);
  formula Xn_negb = X_(Xnm1_negb);
  res[3] = G_(Implies_(And_(m, b),
		       AndX_(Xnm1_negb,
			     U_(And_(And_(b, neg_m), Xn_negb),
				Or_(m, And_(And_(neg_m, neg_b),
					    AndX_(Xnm1_b,
						  U_(And_(neg_m,
							  Equiv_(b, Xn_b)),
						     m))))))));
  return formula::And(std::move(res));
631
632
}

633
static formula
634
635
636
ltl_counter_carry(std::string bit, std::string marker,
		  std::string carry, int n, bool linear)
{
637
638
639
640
641
642
  formula b = formula::ap(bit);
  formula neg_b = Not_(b);
  formula m = formula::ap(marker);
  formula neg_m = Not_(m);
  formula c = formula::ap(carry);
  formula neg_c = Not_(c);
643

644
  std::vector<formula> res(6);
645
646
647
648
649
650

  // The marker starts with "1", followed by n-1 "0", then "1" again,
  // n-1 "0", etc.
  if (!linear)
    {
      // G(m -> X(!m)&XX(!m)&XXX(m))          [if n = 3]
651
      std::vector<formula> v(n);
652
      for (int i = 0; i + 1 < n; ++i)
653
654
655
	v[i] = X_n(neg_m, i + 1);
      v[n - 1] = X_n(m, n);
      res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v)))));
656
657
658
659
    }
  else
    {
      // G(m -> X(!m & X(!m X(m))))          [if n = 3]
660
      formula p = m;
661
      for (int i = n - 1; i > 0; --i)
662
663
	p = And_(neg_m, X_(p));
      res[0] = And_(m, G_(Implies_(m, X_(p))));
664
665
666
667
668
669
    }

  // All bits are initially zero.
  if (!linear)
    {
      // !b & X(!b) & XX(!b)    [if n = 3]
670
      std::vector<formula> v2(n);
671
      for (int i = 0; i < n; ++i)
672
673
	v2[i] = X_n(neg_b, i);
      res[1] = formula::And(std::move(v2));
674
675
676
677
    }
  else
    {
      // !b & X(!b & X(!b))     [if n = 3]
678
      formula p = neg_b;
679
      for (int i = n - 1; i > 0; --i)
680
681
	p = And_(neg_b, X_(p));
      res[1] = p;
682
683
    }

684
685
  formula Xn_b = X_n(b, n);
  formula Xn_negb = X_n(neg_b, n);
686
687

  // If m is 1 and b is 0 then c is 0 and n steps later b is 1.
688
  res[2] = G_(Implies_(And_(m, neg_b), And_(neg_c, Xn_b)));
689
690

  // If m is 1 and b is 1 then c is 1 and n steps later b is 0.
691
  res[3] = G_(Implies_(And_(m, b), And_(c, Xn_negb)));
692
693
694
695

  if (!linear)
    {
      // If there's no carry, then all of the bits stay the same n steps later.
696
697
      res[4] = G_(Implies_(And_(neg_c, X_(neg_m)),
			   And_(X_(Not_(c)), Equiv_(X_(b), X_(Xn_b)))));
698
699
700

      // If there's a carry, then add one: flip the bits of b and
      // adjust the carry.
701
702
703
704
      res[5] = G_(Implies_(c, And_(Implies_(X_(neg_b),
					    And_(X_(neg_c), X_(Xn_b))),
				   Implies_(X_(b),
					    And_(X_(c), X_(Xn_negb))))));
705
706
707
708
    }
  else
    {
      // If there's no carry, then all of the bits stay the same n steps later.
709
710
      res[4] = G_(Implies_(And_(neg_c, X_(neg_m)),
			   X_(And_(Not_(c), Equiv_(b, Xn_b)))));
711
712
      // If there's a carry, then add one: flip the bits of b and
      // adjust the carry.
713
714
      res[5] = G_(Implies_(c, X_(And_(Implies_(neg_b, And_(neg_c, Xn_b)),
				      Implies_(b, And_(c, Xn_negb))))));
715
    }
716
  return formula::And(std::move(res));
717
718
719
720
721
722
}


static void
output_pattern(int pattern, int n)
{
723
  formula f = nullptr;
724
725
726
727
  switch (pattern)
    {
      // Keep this alphabetically-ordered!
    case OPT_AND_F:
728
      f = combunop_n("p", n, op::F, true);
729
730
731
732
733
734
735
736
      break;
    case OPT_AND_FG:
      f = FG_n("p", n, true);
      break;
    case OPT_AND_GF:
      f = GF_n("p", n, true);
      break;
    case OPT_CCJ_ALPHA:
737
      f = formula::And({E_n("p", n), E_n("q", n)});
738
739
      break;
    case OPT_CCJ_BETA:
740
      f = formula::And({N_n("p", n), N_n("q", n)});
741
742
      break;
    case OPT_CCJ_BETA_PRIME:
743
      f = formula::And({N_prime_n("p", n), N_prime_n("q", n)});
744
745
746
747
748
749
750
751
752
753
754
755
756
757
      break;
    case OPT_GH_Q:
      f = Q_n("p", n);
      break;
    case OPT_GH_R:
      f = R_n("p", n);
      break;
    case OPT_GO_THETA:
      f = fair_response("p", "q", "r", n);
      break;
    case OPT_OR_FG:
      f = FG_n("p", n, false);
      break;
    case OPT_OR_G:
758
      f = combunop_n("p", n, op::G, false);
759
760
761
762
763
      break;
    case OPT_OR_GF:
      f = GF_n("p", n, false);
      break;
    case OPT_R_LEFT:
764
      f = bin_n("p", n, op::R, false);
765
766
      break;
    case OPT_R_RIGHT:
767
      f = bin_n("p", n, op::R, true);
768
769
770
771
772
773
774
775
776
777
778
779
780
781
      break;
    case OPT_RV_COUNTER_CARRY:
      f = ltl_counter_carry("b", "m", "c", n, false);
      break;
    case OPT_RV_COUNTER_CARRY_LINEAR:
      f = ltl_counter_carry("b", "m", "c", n, true);
      break;
    case OPT_RV_COUNTER:
      f = ltl_counter("b", "m", n, false);
      break;
    case OPT_RV_COUNTER_LINEAR:
      f = ltl_counter("b", "m", n, true);
      break;
    case OPT_U_LEFT:
782
      f = bin_n("p", n, op::U, false);
783
784
      break;
    case OPT_U_RIGHT:
785
      f = bin_n("p", n, op::U, true);
786
787
788
789
790
      break;
    default:
      error(100, 0, "internal error: pattern not implemented");
    }

791
792
  // Make sure we use only "p42"-style of atomic propositions
  // in lbt's output.
793
794
  if (output_format == lbt_output && !f.has_lbt_atomic_props())
    f = relabel(f, Pnn);
795

796
  output_formula_checked(f, class_name[pattern - 1], n);
797
798
799
800
801
}

static void
run_jobs()
{
802
  for (auto& j: jobs)
803
    {
804
805
      int inc = (j.range.max < j.range.min) ? -1 : 1;
      int n = j.range.min;
806
807
      for (;;)
	{
808
809
	  output_pattern(j.pattern, n);
	  if (n == j.range.max)
810
811
812
813
814
815
816
817
818
819
	    break;
	  n += inc;
	}
    }
}


int
main(int argc, char** argv)
{
820
  setup(argv);
821

822
823
  const argp ap = { options, parse_opt, nullptr, argp_program_doc,
		    children, nullptr, nullptr };
824

825
  if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, nullptr, nullptr))
826
827
828
829
830
831
832
833
834
    exit(err);

  if (jobs.empty())
    error(1, 0, "Nothing to do.  Try '%s --help' for more information.",
	  program_name);

  run_jobs();
  return 0;
}