__init__.py 30.3 KB
Newer Older
1
# -*- coding: utf-8 -*-
2
# Copyright (C) 2014, 2015, 2016  Laboratoire de
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Recherche et Développement de l'Epita (LRDE).
#
# This file is part of Spot, a model checking library.
#
# Spot is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Spot is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

20
21
22
23
24
25
26
27

import sys


if sys.hexversion < 0x03030000:
    sys.exit("This module requires Python 3.3 or newer")


28
from spot.impl import *
29
import subprocess
30
31
import os
import signal
32
from functools import lru_cache
33

34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
def _extend(*classes):
    """
    Decorator that extends all the given classes with the contents
    of the class currently being defined.
    """
    def wrap(this):
        for cls in classes:
            for (name, val) in this.__dict__.items():
                if name not in ('__dict__', '__weakref__') \
                   and not (name == '__doc__' and val is None):
                    setattr(cls, name, val)
        return classes[0]
    return wrap

49
_show_default = None
50

51
52
53
def setup(**kwargs):
    """Configure Spot for fancy display.

54
    This is manly useful in Jupyter/IPython.
55

56
57
    Note that this function needs to be called before any automaton is
    displayed.  Afterwards it will have no effect (you should restart
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    Python, or the Jupyter/IPython Kernel).

    Parameters
    ----------
    bullets : bool
        whether to display acceptance conditions as UTF8 bullets
        (default: True)
    fillcolor : str
        the color to use for states (default: '#ffffaa')
    size : str
        the width and height of the GraphViz output in inches
        (default: '10.2,5')
    font : str
        the font to use in the GraphViz output (default: 'Lato')
72
73
    show_default : str
        default options for show()
74
    """
Etienne Renault's avatar
Etienne Renault committed
75
    import os
76

77
78
    s = ('size="{}" node[style=filled,fillcolor="{}"] '
         'edge[arrowhead=vee, arrowsize=.7]')
79
80
81
82
    os.environ['SPOT_DOTEXTRA'] = s.format(kwargs.get('size', '10.2,5'),
                                           kwargs.get('fillcolor', '#ffffaa'))

    bullets = 'B' if kwargs.get('bullets', True) else ''
83
    d = 'rf({})'.format(kwargs.get('font', 'Lato')) + bullets
84
85
    global _show_default
    _show_default = kwargs.get('show_default', None)
86
87
    os.environ['SPOT_DOTDEFAULT'] = d

88

89
90
91
92
# In version 3.0.2, Swig puts strongly typed enum in the main
# namespace without prefixing them.  Latter versions fix this.  So we
# can remove for following hack once 3.0.2 is no longer used in our
# build farm.
93
if 'op_ff' not in globals():
94
95
96
97
98
99
    for i in ('ff', 'tt', 'eword', 'ap', 'Not', 'X', 'F', 'G',
              'Closure', 'NegClosure', 'NegClosureMarked',
              'Xor', 'Implies', 'Equiv', 'U', 'R', 'W', 'M',
              'EConcat', 'EConcatMarked', 'UConcat', 'Or',
              'OrRat', 'And', 'AndRat', 'AndNLM', 'Concat',
              'Fusion', 'Star', 'FStar'):
100
        globals()['op_' + i] = globals()[i]
101
102
103
        del globals()[i]


104
105
# Global BDD dict so that we do not have to create one in user code.
_bdd_dict = make_bdd_dict()
Etienne Renault's avatar
Etienne Renault committed
106

107

108
109
110
111
112
# Add a small LRU cache so that when we display automata into a
# interactive widget, we avoid some repeated calls to dot for
# identical inputs.
@lru_cache(maxsize=64)
def _str_to_svg(str):
113
114
115
    dotty = subprocess.Popen(['dot', '-Tsvg'],
                             stdin=subprocess.PIPE,
                             stdout=subprocess.PIPE)
116
    dotty.stdin.write(str)
117
118
119
    res = dotty.communicate()
    return res[0].decode('utf-8')

120

121
122
123
def _ostream_to_svg(ostr):
    return _str_to_svg(ostr.str().encode('utf-8'))

124

125
126
127
128
129
@_extend(twa, ta)
class twa:
    def _repr_svg_(self, opt=None):
        """Output the automaton as SVG"""
        ostr = ostringstream()
130
131
132
        if opt is None:
            global _show_default
            opt = _show_default
133
134
135
136
137
        print_dot(ostr, self, opt)
        return _ostream_to_svg(ostr)

    def show(self, opt=None):
        """Display the automaton as SVG, in the IPython/Jupyter notebook"""
138
139
140
        if opt is None:
            global _show_default
            opt = _show_default
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        # Load the SVG function only if we need it. This way the
        # bindings can still be used outside of IPython if IPython is
        # not installed.
        from IPython.display import SVG
        return SVG(self._repr_svg_(opt))


@_extend(twa)
class twa:
    def to_str(a, format='hoa', opt=None):
        format = format.lower()
        if format == 'hoa':
            ostr = ostringstream()
            print_hoa(ostr, a, opt)
            return ostr.str()
        if format == 'dot':
            ostr = ostringstream()
            print_dot(ostr, a, opt)
            return ostr.str()
        if format == 'spin':
            ostr = ostringstream()
            print_never_claim(ostr, a, opt)
            return ostr.str()
        if format == 'lbtt':
            ostr = ostringstream()
            print_lbtt(ostr, a, opt)
            return ostr.str()
168
        raise ValueError("unknown string format: " + format)
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    def save(a, filename, format='hoa', opt=None, append=False):
        with open(filename, 'a' if append else 'w') as f:
            s = a.to_str(format, opt)
            f.write(s)
            if s[-1] != '\n':
                f.write('\n')
        return a


@_extend(formula)
class formula:
    def __init__(self, str):
        """Parse the given string to create a formula."""
        self.this = parse_formula(str)

    def show_ast(self):
        """Display the syntax tree of the formula."""
        # Load the SVG function only if we need it. This way the bindings
        # can still be used outside of IPython if IPython is not
        # installed.
        from IPython.display import SVG
191
        return SVG(_str_to_svg(self.to_str('d')))
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

    def to_str(self, format='spot', parenth=False):
        if format == 'spot' or format == 'f':
            return str_psl(self, parenth)
        elif format == 'spin' or format == 's':
            return str_spin_ltl(self, parenth)
        elif format == 'utf8' or format == '8':
            return str_utf8_psl(self, parenth)
        elif format == 'lbt' or format == 'l':
            return str_lbt_ltl(self)
        elif format == 'wring' or format == 'w':
            return str_wring_ltl(self)
        elif format == 'latex' or format == 'x':
            return str_latex_psl(self, parenth)
        elif format == 'sclatex' or format == 'X':
            return str_sclatex_psl(self, parenth)
208
209
210
211
        elif format == 'dot' or format == 'd':
            ostr = ostringstream()
            print_dot_psl(ostr, self)
            return ostr.str().encode('utf-8')
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        else:
            raise ValueError("unknown string format: " + format)

    def __format__(self, spec):
        """Format the formula according to `spec`.

        Parameters
        ----------
        spec : str, optional
            a list of letters that specify how the formula
            should be formatted.

        Supported specifiers
        --------------------

        - 'f': use Spot's syntax (default)
        - '8': use Spot's syntax in UTF-8 mode
        - 's': use Spin's syntax
        - 'l': use LBT's syntax
        - 'w': use Wring's syntax
        - 'x': use LaTeX output
        - 'X': use self-contained LaTeX output

        Add some of those letters for additional options:

        - 'p': use full parentheses
        - 'c': escape the formula for CSV output (this will
               enclose the formula in double quotes, and escape
               any included double quotes)
        - 'h': escape the formula for HTML output
        - 'd': escape double quotes and backslash,
               for use in C-strings (the outermost double
               quotes are *not* added)
        - 'q': quote and escape for shell output, using single
               quotes or double quotes depending on the contents.

        - ':spec': pass the remaining specification to the
                   formating function for strings.

        """

        syntax = 'f'
        parent = False
        escape = None

        while spec:
            c, spec = spec[0], spec[1:]
            if c in ('f', 's', '8', 'l', 'w', 'x', 'X'):
                syntax = c
            elif c == 'p':
                parent = True
            elif c in ('c', 'd', 'h', 'q'):
                escape = c
            elif c == ':':
                break
            else:
                raise ValueError("unknown format specification: " + c + spec)

        s = self.to_str(syntax, parent)

        if escape == 'c':
            o = ostringstream()
            escape_rfc4180(o, s)
            s = '"' + o.str() + '"'
        elif escape == 'd':
            s = escape_str(s)
        elif escape == 'h':
            o = ostringstream()
            escape_html(o, s)
            s = o.str()
        elif escape == 'q':
            o = ostringstream()
            quote_shell_string(o, s)
            s = o.str()

        return s.__format__(spec)

    def traverse(self, func):
        if func(self):
            return
        for f in self:
            f.traverse(func)

    def map(self, func):
        k = self.kind()
        if k in (op_ff, op_tt, op_eword, op_ap):
            return self
        if k in (op_Not, op_X, op_F, op_G, op_Closure,
                 op_NegClosure, op_NegClosureMarked):
            return formula.unop(k, func(self[0]))
        if k in (op_Xor, op_Implies, op_Equiv, op_U, op_R, op_W,
                 op_M, op_EConcat, op_EConcatMarked, op_UConcat):
            return formula.binop(k, func(self[0]), func(self[1]))
        if k in (op_Or, op_OrRat, op_And, op_AndRat, op_AndNLM,
                 op_Concat, op_Fusion):
            return formula.multop(k, [func(x) for x in self])
        if k in (op_Star, op_FStar):
            return formula.bunop(k, func(self[0]), self.min(), self.max())
        raise ValueError("unknown type of formula")
311

312

313
314
def automata(*sources, timeout=None, ignore_abort=True,
             trust_hoa=True, debug=False):
315
316
    """Read automata from a list of sources.

317
318
319
320
321
322
    Parameters
    ----------
    *sources : list of str
        These sources can be either commands (end with `|`),
        textual represantations of automata (contain `\n`),
        or filenames (else).
323
    timeout : int, optional
324
325
        Number of seconds to wait for the result of a command.
        If None (the default), not limit is used.
326
327
328
329
    ignore_abort : bool, optional
        If True (the default), skip HOA atomata that ends with
        `--ABORT--`, and return the next automaton in the stream.
        If False, aborted automata are reported as syntax errors.
330
331
332
    trust_hoa : bool, optional
        If True (the default), supported HOA properies that
        cannot be easily verified are trusted.
333
334
    debug : bool, optional
        Whether to run the parser in debug mode.
335
336
337

    Notes
    -----
338
339
340

    The automata can be written in the `HOA format`_, as `never
    claims`_, in `LBTT's format`_, or in `ltl2dstar's format`_.
341

342
343
344
345
346
347
    .. _HOA format: http://adl.github.io/hoaf/
    .. _never claims: http://spinroot.com/spin/Man/never.html
    .. _LBTT's format:
       http://www.tcs.hut.fi/Software/lbtt/doc/html/Format-for-automata.html
    .. _ltl2dstar's format:
       http://www.ltl2dstar.de/docs/ltl2dstar.html#output-format-dstar
348

349
    If an argument ends with a `|`, then this argument is interpreted as
350
    a shell command, and the output of that command (without the `|`)
351
352
353
354
355
356
    is parsed.

    If an argument contains a newline, then it is interpreted as
    actual contents to be parsed.

    Otherwise, the argument is assumed to be a filename.
357
358
359
360

    The result of this function is a generator on all the automata
    objects read from these sources.  The typical usage is::

361
        for aut in spot.automata(filename, command, ...):
362
363
            # do something with aut

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    When the source is a command, and no `timeout` is specified,
    parsing is done straight out of the pipe connecting the
    command.  So

        for aut in spot.automata('randaut -H -n 10 2 |'):
            process(aut)

    will call `process(aut)` on each automaton as soon as it is output by
    `randaut`, and without waiting for `randaut` to terminate.

    However if `timeout` is passed, then `automata()` will wait for
    the entire command to terminate before parsing its entire output.
    If one command takes more than `timeout` seconds,
    `subprocess.TimeoutExpired` is raised.

    If any command terminates with a non-zero error,
    `subprocess.CalledProcessError` is raised.
381
    """
382

383
384
385
    o = automaton_parser_options()
    o.debug = debug
    o.ignore_abort = ignore_abort
386
    o.trust_hoa = trust_hoa
387
    o.raise_errors = True
388
    for filename in sources:
389
        try:
390
            p = None
391
            proc = None
392
            if filename[-1] == '|':
393
394
395
396
397
398
399
                # universal_newlines for str output instead of bytes
                # when the pipe is read from Python (which happens
                # when timeout is set).
                proc = subprocess.Popen(filename[:-1], shell=True,
                                        preexec_fn=os.setsid,
                                        universal_newlines=True,
                                        stdout=subprocess.PIPE)
400
401
                if timeout is None:
                    p = automaton_stream_parser(proc.stdout.fileno(),
402
                                                filename, o)
403
                else:
404
405
406
407
408
409
410
                    try:
                        out, err = proc.communicate(timeout=timeout)
                    except subprocess.TimeoutExpired:
                        # Using subprocess.check_output() with timeout
                        # would just kill the shell, not its children.
                        os.killpg(proc.pid, signal.SIGKILL)
                        raise
411
412
413
414
415
                    else:
                        ret = proc.wait()
                        if ret:
                            raise subprocess.CalledProcessError(ret,
                                                                filename[:-1])
416
417
                    finally:
                        proc = None
418
                    p = automaton_stream_parser(out, filename, o)
419
            elif '\n' in filename:
420
                p = automaton_stream_parser(filename, "<string>", o)
421
            else:
422
                p = automaton_stream_parser(filename, o)
423
424
            a = True
            while a:
425
                # This returns None when we reach the end of the file.
426
                a = p.parse(_bdd_dict).aut
427
428
429
                if a:
                    yield a
        finally:
430
431
            # Make sure we destroy the parser (p) and the subprocess
            # (prop) in the correct order...
432
            del p
433
            if proc is not None:
434
435
                if not a:
                    # We reached the end of the stream.  Wait for the
436
                    # process to finish, so that we get its exit code.
437
438
439
                    ret = proc.wait()
                else:
                    # if a != None, we probably got there through an
440
                    # exception, and the subprocess might still be
441
442
443
                    # running.  Check if an exit status is available
                    # just in case.
                    ret = proc.poll()
444
445
                del proc
                if ret:
446
                    raise subprocess.CalledProcessError(ret, filename[:-1])
447
448
449
450
451
452
    # deleting o explicitely now prevents Python 3.5 from
    # reporting the following error: "<built-in function
    # delete_automaton_parser_options> returned a result with
    # an error set".  It's not clear to me if the bug is in Python
    # or Swig.  At least it's related to the use of generators.
    del o
453
454
    return

455

456
def automaton(filename, **kwargs):
457
458
    """Read a single automaton from a file.

459
    See `spot.automata` for a list of supported formats."""
460
    try:
461
        return next(automata(filename, **kwargs))
462
463
    except StopIteration:
        raise RuntimeError("Failed to read automaton from {}".format(filename))
464

465

466
def _postproc_translate_options(obj, default_type, *args):
467
468
469
470
471
472
473
474
475
    type_ = None
    pref_ = None
    optm_ = None
    comp_ = 0
    unam_ = 0
    sbac_ = 0

    def type_set(val):
        nonlocal type_
476
        if type_ is not None and type_ != val:
477
478
            raise ValueError("type cannot be both {} and {}"
                             .format(type_, val))
479
480
        elif val == 'generic':
            type_ = postprocessor.Generic
481
482
483
484
        elif val == 'tgba':
            type_ = postprocessor.TGBA
        elif val == 'ba':
            type_ = postprocessor.BA
485
        else:
486
487
488
489
490
            assert(val == 'monitor')
            type_ = postprocessor.Monitor

    def pref_set(val):
        nonlocal pref_
491
        if pref_ is not None and pref_ != val:
492
493
494
495
496
497
498
499
500
501
502
503
            raise ValueError("preference cannot be both {} and {}"
                             .format(pref_, val))
        elif val == 'small':
            pref_ = postprocessor.Small
        elif val == 'deterministic':
            pref_ = postprocessor.Deterministic
        else:
            assert(val == 'any')
            pref_ = postprocessor.Any

    def optm_set(val):
        nonlocal optm_
504
        if optm_ is not None and optm_ != val:
505
506
            raise ValueError("optimization level cannot be both {} and {}"
                             .format(optm_, val))
507
        if val == 'high':
508
            optm_ = postprocessor.High
509
        elif val.startswith('med'):
510
511
            optm_ = postprocessor.Medium
        else:
512
            assert(val == 'low')
513
514
515
516
517
518
519
520
            optm_ = postprocessor.Low

    def misc_set(val):
        nonlocal comp_, unam_, sbac_
        if val == 'complete':
            comp_ = postprocessor.Complete
        elif val == 'sbacc' or val == 'state-based-acceptance':
            sbac_ = postprocessor.SBAcc
521
        else:
522
523
524
525
526
527
528
            assert(val == 'unambiguous')
            unam_ = postprocessor.Unambiguous

    options = {
        'tgba': type_set,
        'ba': type_set,
        'monitor': type_set,
529
        'generic': type_set,
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
        'small': pref_set,
        'deterministic': pref_set,
        'any': pref_set,
        'high': optm_set,
        'medium': optm_set,
        'low': optm_set,
        'complete': misc_set,
        'unambiguous': misc_set,
        'statebasedacceptance': misc_set,
        'sbacc': misc_set,
    }

    for arg in args:
        arg = arg.lower()
        fn = options.get(arg)
        if fn:
            fn(arg)
547
        else:
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
            # arg is not an know option, but maybe it is a prefix of
            # one of them
            compat = []
            f = None
            for key, fn in options.items():
                if key.startswith(arg):
                    compat.append(key)
                    f = fn
            lc = len(compat)
            if lc == 1:
                f(compat[0])
            elif lc < 1:
                raise ValueError("unknown option '{}'".format(arg))
            else:
                raise ValueError("ambiguous option '{}' is prefix of {}"
                                 .format(arg, str(compat)))

565
    if type_ is None:
566
        type_ = default_type
567
    if pref_ is None:
568
        pref_ = postprocessor.Small
569
    if optm_ is None:
570
571
        optm_ = postprocessor.High

572
573
574
    obj.set_type(type_)
    obj.set_pref(pref_ | comp_ | unam_ | sbac_)
    obj.set_level(optm_)
575

576

577
def translate(formula, *args, dict=_bdd_dict):
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
    """Translate a formula into an automaton.

    Keep in mind that 'Deterministic' expresses just a preference that
    may not be satisfied.

    The optional arguments should be strings among the following:
    - at most one in 'TGBA', 'BA', or 'Monitor'
      (type of automaton to build)
    - at most one in 'Small', 'Deterministic', 'Any'
      (preferred characteristics of the produced automaton)
    - at most one in 'Low', 'Medium', 'High'
      (optimization level)
    - any combination of 'Complete', 'Unambiguous', and
      'StateBasedAcceptance' (or 'SBAcc' for short)

    The default corresponds to 'tgba', 'small' and 'high'.
    """
595
    a = translator(dict)
596
597
598
    _postproc_translate_options(a, postprocessor.TGBA, *args)
    if type(formula) == str:
        formula = parse_formula(formula)
599
    return a.run(formula)
600

601

602
formula.translate = translate
603

604

605
def postprocess(automaton, *args, formula=None):
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    """Post process an automaton.

    This applies a number of simlification algorithms, depending on
    the options supplied. Keep in mind that 'Deterministic' expresses
    just a preference that may not be satisfied if the input is
    not already 'Deterministic'.

    The optional arguments should be strings among the following:
    - at most one in 'Generic', 'TGBA', 'BA', or 'Monitor'
      (type of automaton to build)
    - at most one in 'Small', 'Deterministic', 'Any'
      (preferred characteristics of the produced automaton)
    - at most one in 'Low', 'Medium', 'High'
      (optimization level)
    - any combination of 'Complete' and 'StateBasedAcceptance'
      (or 'SBAcc' for short)

    The default corresponds to 'generic', 'small' and 'high'.
624
625
626
627

    If a formula denoted by this automaton is known, pass it to as the
    optional `formula` argument; it can help some algorithms by
    providing an easy way to complement the automaton.
628
629
630
631
632
    """
    p = postprocessor()
    if type(automaton) == str:
        automaton = globals()['automaton'](automaton)
    _postproc_translate_options(p, postprocessor.Generic, *args)
633
    return p.run(automaton, formula)
634
635
636
637


twa.postprocess = postprocess

638
639
640
641
# Wrap C++-functions into lambdas so that they get converted into
# instance methods (i.e., self passed as first argument
# automatically), because only used-defined functions are converted as
# instance methods.
642
def _add_twa_graph(meth):
643
644
    setattr(twa_graph, meth, (lambda self, *args, **kwargs:
                              globals()[meth](self, *args, **kwargs)))
645

646
647
648
649
for meth in ('scc_filter', 'scc_filter_states',
             'is_deterministic', 'is_unambiguous'):
    _add_twa_graph(meth)

650
651
652
653
654
655
656
657
658
659
660
661
662
# Wrapper around a formula iterator to which we add some methods of formula
# (using _addfilter and _addmap), so that we can write things like
# formulas.simplify().is_X_free().
class formulaiterator:
    def __init__(self, formulas):
        self._formulas = formulas

    def __iter__(self):
        return self

    def __next__(self):
        return next(self._formulas)

663

664
665
666
667
668
669
670
# fun shoud be a predicate and should be a method of formula.
# _addfilter adds this predicate as a filter whith the same name in
# formulaiterator.
def _addfilter(fun):
    def filtf(self, *args, **kwargs):
        it = filter(lambda f: getattr(f, fun)(*args, **kwargs), self)
        return formulaiterator(it)
671

672
673
674
    def nfiltf(self, *args, **kwargs):
        it = filter(lambda f: not getattr(f, fun)(*args, **kwargs), self)
        return formulaiterator(it)
675

676
    if fun[:3] == 'is_':
677
        notfun = 'is_not_' + fun[3:]
678
    elif fun[:4] == 'has_':
679
        notfun = 'has_no_' + fun[4:]
680
681
682
683
684
    else:
        notfun = 'not_' + fun
    setattr(formulaiterator, fun, filtf)
    setattr(formulaiterator, notfun, nfiltf)

685
686
687
688

# fun should be a function taking a formula as its first parameter and
# returning a formula.  _addmap adds this function as a method of
# formula and formulaiterator.
689
690
691
def _addmap(fun):
    def mapf(self, *args, **kwargs):
        return formulaiterator(map(lambda f: getattr(f, fun)(*args, **kwargs),
692
693
                                   self))
    setattr(formula, fun,
694
695
            lambda self, *args, **kwargs:
            globals()[fun](self, *args, **kwargs))
696
697
    setattr(formulaiterator, fun, mapf)

698
699

def randltl(ap, n=-1, **kwargs):
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
    """Generate random formulas.

    Returns a random formula iterator.

    ap: the number of atomic propositions used to generate random formulas.

    n: number of formulas to generate, or unbounded if n < 0.

    **kwargs:
    seed: seed for the random number generator (0).
    output: can be 'ltl', 'psl', 'bool' or 'sere' ('ltl').
    allow_dups: allow duplicate formulas (False).
    tree_size: tree size of the formulas generated, before mandatory
    simplifications (15)
    boolean_priorities: set priorities for Boolean formulas.
    ltl_priorities: set priorities for LTL formulas.
    sere_priorities: set priorities for SERE formulas.
    dump_priorities: show current priorities, do not generate any formula.
    simplify:
      0           No rewriting
      1           basic rewritings and eventual/universal rules
      2           additional syntactic implication rules
      3 (default) better implications using containment
    """
    opts = option_map()
    output_map = {
726
727
728
729
        "ltl": OUTPUTLTL,
        "psl": OUTPUTPSL,
        "bool": OUTPUTBOOL,
        "sere": OUTPUTSERE
730
731
732
733
734
    }

    if isinstance(ap, list):
        aprops = atomic_prop_set()
        for elt in ap:
735
            aprops.insert(formula.ap(elt))
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
        ap = aprops
    ltl_priorities = kwargs.get("ltl_priorities", None)
    sere_priorities = kwargs.get("sere_priorities", None)
    boolean_priorities = kwargs.get("boolean_priorities", None)
    output = output_map[kwargs.get("output", "ltl")]
    opts.set("output", output)
    opts.set("seed", kwargs.get("seed", 0))
    tree_size = kwargs.get("tree_size", 15)
    if isinstance(tree_size, tuple):
        tree_size_min, tree_size_max = tree_size
    else:
        tree_size_min = tree_size_max = tree_size
    opts.set("tree_size_min", tree_size_min)
    opts.set("tree_size_max", tree_size_max)
    opts.set("unique", not kwargs.get("allow_dups", False))
    opts.set("wf", kwargs.get("weak_fairness", False))
    simpl_level = kwargs.get("simplify", 0)
    if simpl_level > 3 or simpl_level < 0:
        sys.stderr.write('invalid simplification level: ' + simpl_level)
        return
    opts.set("simplification_level", simpl_level)

    rg = randltlgenerator(ap, opts, ltl_priorities, sere_priorities,
759
                          boolean_priorities)
760
761
762
763
764

    dump_priorities = kwargs.get("dump_priorities", False)
    if dump_priorities:
        dumpstream = ostringstream()
        if output == OUTPUTLTL:
765
766
            print('Use argument ltl_priorities=STRING to set the following '
                  'LTL priorities:\n')
767
768
769
            rg.dump_ltl_priorities(dumpstream)
            print(dumpstream.str())
        elif output == OUTPUTBOOL:
770
771
            print('Use argument boolean_priorities=STRING to set the '
                  'following Boolean formula priorities:\n')
772
773
774
775
            rg.dump_bool_priorities(dumpstream)
            print(dumpstream.str())
        elif output == OUTPUTPSL or output == OUTPUTSERE:
            if output != OUTPUTSERE:
776
777
                print('Use argument ltl_priorities=STRING to set the '
                      'following LTL priorities:\n')
778
779
                rg.dump_psl_priorities(dumpstream)
                print(dumpstream.str())
780
781
            print('Use argument sere_priorities=STRING to set the '
                  'following SERE priorities:\n')
782
783
            rg.dump_sere_priorities(dumpstream)
            print(dumpstream.str())
784
785
            print('Use argument boolean_priorities=STRING to set the '
                  'following Boolean formula priorities:\n')
786
787
788
789
790
791
            rg.dump_sere_bool_priorities(dumpstream)
            print(dumpstream.str())
        else:
            sys.stderr.write("internal error: unknown type of output")
        return

792
793
794
795
796
    class _randltliterator:
        def __init__(self, rg, n):
            self.rg = rg
            self.i = 0
            self.n = n
797

798
799
        def __iter__(self):
            return self
800

801
802
803
804
        def __next__(self):
            if self.i == self.n:
                raise StopIteration
            f = self.rg.next()
805
            if f is None:
806
807
808
809
810
811
812
813
                sys.stderr.write("Warning: could not generate a new "
                                 "unique formula after {} trials.\n"
                                 .format(MAX_TRIALS))
                raise StopIteration
            self.i += 1
            return f

    return formulaiterator(_randltliterator(rg, n))
814

815

816
817
818
def simplify(f, **kwargs):
    level = kwargs.get('level', None)
    if level is not None:
819
        return tl_simplifier(tl_simplifier_options(level)).simplify(f)
820
821
822
823

    basics = kwargs.get('basics', True)
    synt_impl = kwargs.get('synt_impl', True)
    event_univ = kwargs.get('event_univ', True)
824
825
    cont_checks = kwargs.get('containment_checks', False)
    cont_checks_stronger = kwargs.get('containment_checks_stronger', False)
826
827
828
829
830
    nenoform_stop_on_boolean = kwargs.get('nenoform_stop_on_boolean', False)
    reduce_size_strictly = kwargs.get('reduce_size_strictly', False)
    boolean_to_isop = kwargs.get('boolean_to_isop', False)
    favor_event_univ = kwargs.get('favor_event_univ', False)

831
    simp_opts = tl_simplifier_options(basics,
832
833
                                       synt_impl,
                                       event_univ,
834
835
                                       cont_checks,
                                       cont_checks_stronger,
836
837
838
839
                                       nenoform_stop_on_boolean,
                                       reduce_size_strictly,
                                       boolean_to_isop,
                                       favor_event_univ)
840
    return tl_simplifier(simp_opts).simplify(f)
841

842

843
for fun in dir(formula):
844
845
    if (callable(getattr(formula, fun)) and (fun[:3] == 'is_' or
                                             fun[:4] == 'has_')):
846
847
        _addfilter(fun)

848
849
for fun in ['remove_x', 'relabel', 'relabel_bse',
            'simplify', 'unabbreviate']:
850
    _addmap(fun)
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876



# Better interface to the corresponding C++ function.
def sat_minimize(aut, acc=None, colored=False,
                 state_based=False, states=0,
                 max_states=0, dichotomy=False):
    args=''
    if acc is not None:
        if type(acc) is not str:
            raise ValueError("argument 'acc' should be a string")
        args += ',acc="' + acc + '"'
    if colored:
        args += ',colored'
    if states:
        if type(states) is not int or states < 0:
            raise ValueError("argument 'states' should be a positive integer")
        args += ',states=' + str(states)
    if max_states:
        if type(max_states) is not int or max_states < 0:
            raise ValueError("argument 'states' should be a positive integer")
        args += ',max-states=' + str(max_states)
    if dichotomy:
        args += ',dichotomy';
    from spot_impl import sat_minimize as sm
    return sm(aut, args, state_based)