__init__.py 30.7 KB
Newer Older
1
# -*- coding: utf-8 -*-
2
# Copyright (C) 2014, 2015, 2016  Laboratoire de
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Recherche et Développement de l'Epita (LRDE).
#
# This file is part of Spot, a model checking library.
#
# Spot is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Spot is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

20
21
22
23
24
25
26
27

import sys


if sys.hexversion < 0x03030000:
    sys.exit("This module requires Python 3.3 or newer")


28
from spot.impl import *
29
import subprocess
30
31
import os
import signal
32
from functools import lru_cache
33

34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
def _extend(*classes):
    """
    Decorator that extends all the given classes with the contents
    of the class currently being defined.
    """
    def wrap(this):
        for cls in classes:
            for (name, val) in this.__dict__.items():
                if name not in ('__dict__', '__weakref__') \
                   and not (name == '__doc__' and val is None):
                    setattr(cls, name, val)
        return classes[0]
    return wrap

49
_show_default = None
50

51
52
53
def setup(**kwargs):
    """Configure Spot for fancy display.

54
    This is manly useful in Jupyter/IPython.
55

56
57
    Note that this function needs to be called before any automaton is
    displayed.  Afterwards it will have no effect (you should restart
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    Python, or the Jupyter/IPython Kernel).

    Parameters
    ----------
    bullets : bool
        whether to display acceptance conditions as UTF8 bullets
        (default: True)
    fillcolor : str
        the color to use for states (default: '#ffffaa')
    size : str
        the width and height of the GraphViz output in inches
        (default: '10.2,5')
    font : str
        the font to use in the GraphViz output (default: 'Lato')
72
73
    show_default : str
        default options for show()
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
74
75
    max_states : int
        maximum number of states in GraphViz output (default: 50)
76
    """
Etienne Renault's avatar
Etienne Renault committed
77
    import os
78

79
80
    s = ('size="{}" node[style=filled,fillcolor="{}"] '
         'edge[arrowhead=vee, arrowsize=.7]')
81
82
83
84
    os.environ['SPOT_DOTEXTRA'] = s.format(kwargs.get('size', '10.2,5'),
                                           kwargs.get('fillcolor', '#ffffaa'))

    bullets = 'B' if kwargs.get('bullets', True) else ''
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
85
86
    max_states = '<' + str(kwargs.get('max_states', 50))
    d = 'rf({})'.format(kwargs.get('font', 'Lato')) + bullets + max_states
87
88
    global _show_default
    _show_default = kwargs.get('show_default', None)
89
90
    os.environ['SPOT_DOTDEFAULT'] = d

91

92
93
94
95
# In version 3.0.2, Swig puts strongly typed enum in the main
# namespace without prefixing them.  Latter versions fix this.  So we
# can remove for following hack once 3.0.2 is no longer used in our
# build farm.
96
if 'op_ff' not in globals():
97
98
99
100
101
102
    for i in ('ff', 'tt', 'eword', 'ap', 'Not', 'X', 'F', 'G',
              'Closure', 'NegClosure', 'NegClosureMarked',
              'Xor', 'Implies', 'Equiv', 'U', 'R', 'W', 'M',
              'EConcat', 'EConcatMarked', 'UConcat', 'Or',
              'OrRat', 'And', 'AndRat', 'AndNLM', 'Concat',
              'Fusion', 'Star', 'FStar'):
103
        globals()['op_' + i] = globals()[i]
104
105
106
        del globals()[i]


107
108
# Global BDD dict so that we do not have to create one in user code.
_bdd_dict = make_bdd_dict()
Etienne Renault's avatar
Etienne Renault committed
109

110

111
112
113
114
115
# Add a small LRU cache so that when we display automata into a
# interactive widget, we avoid some repeated calls to dot for
# identical inputs.
@lru_cache(maxsize=64)
def _str_to_svg(str):
116
117
118
    dotty = subprocess.Popen(['dot', '-Tsvg'],
                             stdin=subprocess.PIPE,
                             stdout=subprocess.PIPE)
119
    dotty.stdin.write(str)
120
121
122
    res = dotty.communicate()
    return res[0].decode('utf-8')

123

124
125
126
def _ostream_to_svg(ostr):
    return _str_to_svg(ostr.str().encode('utf-8'))

127

128
129
130
131
132
@_extend(twa, ta)
class twa:
    def _repr_svg_(self, opt=None):
        """Output the automaton as SVG"""
        ostr = ostringstream()
133
134
135
        if opt is None:
            global _show_default
            opt = _show_default
136
137
138
139
140
        print_dot(ostr, self, opt)
        return _ostream_to_svg(ostr)

    def show(self, opt=None):
        """Display the automaton as SVG, in the IPython/Jupyter notebook"""
141
142
143
        if opt is None:
            global _show_default
            opt = _show_default
144
145
146
147
148
149
        # Load the SVG function only if we need it. This way the
        # bindings can still be used outside of IPython if IPython is
        # not installed.
        from IPython.display import SVG
        return SVG(self._repr_svg_(opt))

150
151
152
153
154
155
156
157
158
    def highlight_states(self, states, color):
        for state in states:
            self.highlight_state(state, color)
        return self

    def highlight_edges(self, edges, color):
        for edge in edges:
            self.highlight_edge(edge, color)
        return self
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

@_extend(twa)
class twa:
    def to_str(a, format='hoa', opt=None):
        format = format.lower()
        if format == 'hoa':
            ostr = ostringstream()
            print_hoa(ostr, a, opt)
            return ostr.str()
        if format == 'dot':
            ostr = ostringstream()
            print_dot(ostr, a, opt)
            return ostr.str()
        if format == 'spin':
            ostr = ostringstream()
            print_never_claim(ostr, a, opt)
            return ostr.str()
        if format == 'lbtt':
            ostr = ostringstream()
            print_lbtt(ostr, a, opt)
            return ostr.str()
180
        raise ValueError("unknown string format: " + format)
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    def save(a, filename, format='hoa', opt=None, append=False):
        with open(filename, 'a' if append else 'w') as f:
            s = a.to_str(format, opt)
            f.write(s)
            if s[-1] != '\n':
                f.write('\n')
        return a


@_extend(formula)
class formula:
    def __init__(self, str):
        """Parse the given string to create a formula."""
        self.this = parse_formula(str)

    def show_ast(self):
        """Display the syntax tree of the formula."""
        # Load the SVG function only if we need it. This way the bindings
        # can still be used outside of IPython if IPython is not
        # installed.
        from IPython.display import SVG
203
        return SVG(_str_to_svg(self.to_str('d')))
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    def to_str(self, format='spot', parenth=False):
        if format == 'spot' or format == 'f':
            return str_psl(self, parenth)
        elif format == 'spin' or format == 's':
            return str_spin_ltl(self, parenth)
        elif format == 'utf8' or format == '8':
            return str_utf8_psl(self, parenth)
        elif format == 'lbt' or format == 'l':
            return str_lbt_ltl(self)
        elif format == 'wring' or format == 'w':
            return str_wring_ltl(self)
        elif format == 'latex' or format == 'x':
            return str_latex_psl(self, parenth)
        elif format == 'sclatex' or format == 'X':
            return str_sclatex_psl(self, parenth)
220
221
222
223
        elif format == 'dot' or format == 'd':
            ostr = ostringstream()
            print_dot_psl(ostr, self)
            return ostr.str().encode('utf-8')
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        else:
            raise ValueError("unknown string format: " + format)

    def __format__(self, spec):
        """Format the formula according to `spec`.

        Parameters
        ----------
        spec : str, optional
            a list of letters that specify how the formula
            should be formatted.

        Supported specifiers
        --------------------

        - 'f': use Spot's syntax (default)
        - '8': use Spot's syntax in UTF-8 mode
        - 's': use Spin's syntax
        - 'l': use LBT's syntax
        - 'w': use Wring's syntax
        - 'x': use LaTeX output
        - 'X': use self-contained LaTeX output

        Add some of those letters for additional options:

        - 'p': use full parentheses
        - 'c': escape the formula for CSV output (this will
               enclose the formula in double quotes, and escape
               any included double quotes)
        - 'h': escape the formula for HTML output
        - 'd': escape double quotes and backslash,
               for use in C-strings (the outermost double
               quotes are *not* added)
        - 'q': quote and escape for shell output, using single
               quotes or double quotes depending on the contents.

        - ':spec': pass the remaining specification to the
                   formating function for strings.

        """

        syntax = 'f'
        parent = False
        escape = None

        while spec:
            c, spec = spec[0], spec[1:]
            if c in ('f', 's', '8', 'l', 'w', 'x', 'X'):
                syntax = c
            elif c == 'p':
                parent = True
            elif c in ('c', 'd', 'h', 'q'):
                escape = c
            elif c == ':':
                break
            else:
                raise ValueError("unknown format specification: " + c + spec)

        s = self.to_str(syntax, parent)

        if escape == 'c':
            o = ostringstream()
            escape_rfc4180(o, s)
            s = '"' + o.str() + '"'
        elif escape == 'd':
            s = escape_str(s)
        elif escape == 'h':
            o = ostringstream()
            escape_html(o, s)
            s = o.str()
        elif escape == 'q':
            o = ostringstream()
            quote_shell_string(o, s)
            s = o.str()

        return s.__format__(spec)

    def traverse(self, func):
        if func(self):
            return
        for f in self:
            f.traverse(func)

    def map(self, func):
        k = self.kind()
        if k in (op_ff, op_tt, op_eword, op_ap):
            return self
        if k in (op_Not, op_X, op_F, op_G, op_Closure,
                 op_NegClosure, op_NegClosureMarked):
            return formula.unop(k, func(self[0]))
        if k in (op_Xor, op_Implies, op_Equiv, op_U, op_R, op_W,
                 op_M, op_EConcat, op_EConcatMarked, op_UConcat):
            return formula.binop(k, func(self[0]), func(self[1]))
        if k in (op_Or, op_OrRat, op_And, op_AndRat, op_AndNLM,
                 op_Concat, op_Fusion):
            return formula.multop(k, [func(x) for x in self])
        if k in (op_Star, op_FStar):
            return formula.bunop(k, func(self[0]), self.min(), self.max())
        raise ValueError("unknown type of formula")
323

324

325
326
def automata(*sources, timeout=None, ignore_abort=True,
             trust_hoa=True, debug=False):
327
328
    """Read automata from a list of sources.

329
330
331
332
333
334
    Parameters
    ----------
    *sources : list of str
        These sources can be either commands (end with `|`),
        textual represantations of automata (contain `\n`),
        or filenames (else).
335
    timeout : int, optional
336
337
        Number of seconds to wait for the result of a command.
        If None (the default), not limit is used.
338
339
340
341
    ignore_abort : bool, optional
        If True (the default), skip HOA atomata that ends with
        `--ABORT--`, and return the next automaton in the stream.
        If False, aborted automata are reported as syntax errors.
342
343
344
    trust_hoa : bool, optional
        If True (the default), supported HOA properies that
        cannot be easily verified are trusted.
345
346
    debug : bool, optional
        Whether to run the parser in debug mode.
347
348
349

    Notes
    -----
350
351
352

    The automata can be written in the `HOA format`_, as `never
    claims`_, in `LBTT's format`_, or in `ltl2dstar's format`_.
353

354
355
356
357
358
359
    .. _HOA format: http://adl.github.io/hoaf/
    .. _never claims: http://spinroot.com/spin/Man/never.html
    .. _LBTT's format:
       http://www.tcs.hut.fi/Software/lbtt/doc/html/Format-for-automata.html
    .. _ltl2dstar's format:
       http://www.ltl2dstar.de/docs/ltl2dstar.html#output-format-dstar
360

361
    If an argument ends with a `|`, then this argument is interpreted as
362
    a shell command, and the output of that command (without the `|`)
363
364
365
366
367
368
    is parsed.

    If an argument contains a newline, then it is interpreted as
    actual contents to be parsed.

    Otherwise, the argument is assumed to be a filename.
369
370
371
372

    The result of this function is a generator on all the automata
    objects read from these sources.  The typical usage is::

373
        for aut in spot.automata(filename, command, ...):
374
375
            # do something with aut

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    When the source is a command, and no `timeout` is specified,
    parsing is done straight out of the pipe connecting the
    command.  So

        for aut in spot.automata('randaut -H -n 10 2 |'):
            process(aut)

    will call `process(aut)` on each automaton as soon as it is output by
    `randaut`, and without waiting for `randaut` to terminate.

    However if `timeout` is passed, then `automata()` will wait for
    the entire command to terminate before parsing its entire output.
    If one command takes more than `timeout` seconds,
    `subprocess.TimeoutExpired` is raised.

    If any command terminates with a non-zero error,
    `subprocess.CalledProcessError` is raised.
393
    """
394

395
396
397
    o = automaton_parser_options()
    o.debug = debug
    o.ignore_abort = ignore_abort
398
    o.trust_hoa = trust_hoa
399
    o.raise_errors = True
400
    for filename in sources:
401
        try:
402
            p = None
403
            proc = None
404
            if filename[-1] == '|':
405
406
407
408
409
410
411
                # universal_newlines for str output instead of bytes
                # when the pipe is read from Python (which happens
                # when timeout is set).
                proc = subprocess.Popen(filename[:-1], shell=True,
                                        preexec_fn=os.setsid,
                                        universal_newlines=True,
                                        stdout=subprocess.PIPE)
412
413
                if timeout is None:
                    p = automaton_stream_parser(proc.stdout.fileno(),
414
                                                filename, o)
415
                else:
416
417
418
419
420
421
422
                    try:
                        out, err = proc.communicate(timeout=timeout)
                    except subprocess.TimeoutExpired:
                        # Using subprocess.check_output() with timeout
                        # would just kill the shell, not its children.
                        os.killpg(proc.pid, signal.SIGKILL)
                        raise
423
424
425
426
427
                    else:
                        ret = proc.wait()
                        if ret:
                            raise subprocess.CalledProcessError(ret,
                                                                filename[:-1])
428
429
                    finally:
                        proc = None
430
                    p = automaton_stream_parser(out, filename, o)
431
            elif '\n' in filename:
432
                p = automaton_stream_parser(filename, "<string>", o)
433
            else:
434
                p = automaton_stream_parser(filename, o)
435
436
            a = True
            while a:
437
                # This returns None when we reach the end of the file.
438
                a = p.parse(_bdd_dict).aut
439
440
441
                if a:
                    yield a
        finally:
442
443
            # Make sure we destroy the parser (p) and the subprocess
            # (prop) in the correct order...
444
            del p
445
            if proc is not None:
446
447
                if not a:
                    # We reached the end of the stream.  Wait for the
448
                    # process to finish, so that we get its exit code.
449
450
451
                    ret = proc.wait()
                else:
                    # if a != None, we probably got there through an
452
                    # exception, and the subprocess might still be
453
454
455
                    # running.  Check if an exit status is available
                    # just in case.
                    ret = proc.poll()
456
457
                del proc
                if ret:
458
                    raise subprocess.CalledProcessError(ret, filename[:-1])
459
460
461
462
463
464
    # deleting o explicitely now prevents Python 3.5 from
    # reporting the following error: "<built-in function
    # delete_automaton_parser_options> returned a result with
    # an error set".  It's not clear to me if the bug is in Python
    # or Swig.  At least it's related to the use of generators.
    del o
465
466
    return

467

468
def automaton(filename, **kwargs):
469
470
    """Read a single automaton from a file.

471
    See `spot.automata` for a list of supported formats."""
472
    try:
473
        return next(automata(filename, **kwargs))
474
475
    except StopIteration:
        raise RuntimeError("Failed to read automaton from {}".format(filename))
476

477

478
def _postproc_translate_options(obj, default_type, *args):
479
480
481
482
483
484
485
486
487
    type_ = None
    pref_ = None
    optm_ = None
    comp_ = 0
    unam_ = 0
    sbac_ = 0

    def type_set(val):
        nonlocal type_
488
        if type_ is not None and type_ != val:
489
490
            raise ValueError("type cannot be both {} and {}"
                             .format(type_, val))
491
492
        elif val == 'generic':
            type_ = postprocessor.Generic
493
494
495
496
        elif val == 'tgba':
            type_ = postprocessor.TGBA
        elif val == 'ba':
            type_ = postprocessor.BA
497
        else:
498
499
500
501
502
            assert(val == 'monitor')
            type_ = postprocessor.Monitor

    def pref_set(val):
        nonlocal pref_
503
        if pref_ is not None and pref_ != val:
504
505
506
507
508
509
510
511
512
513
514
515
            raise ValueError("preference cannot be both {} and {}"
                             .format(pref_, val))
        elif val == 'small':
            pref_ = postprocessor.Small
        elif val == 'deterministic':
            pref_ = postprocessor.Deterministic
        else:
            assert(val == 'any')
            pref_ = postprocessor.Any

    def optm_set(val):
        nonlocal optm_
516
        if optm_ is not None and optm_ != val:
517
518
            raise ValueError("optimization level cannot be both {} and {}"
                             .format(optm_, val))
519
        if val == 'high':
520
            optm_ = postprocessor.High
521
        elif val.startswith('med'):
522
523
            optm_ = postprocessor.Medium
        else:
524
            assert(val == 'low')
525
526
527
528
529
530
531
532
            optm_ = postprocessor.Low

    def misc_set(val):
        nonlocal comp_, unam_, sbac_
        if val == 'complete':
            comp_ = postprocessor.Complete
        elif val == 'sbacc' or val == 'state-based-acceptance':
            sbac_ = postprocessor.SBAcc
533
        else:
534
535
536
537
538
539
540
            assert(val == 'unambiguous')
            unam_ = postprocessor.Unambiguous

    options = {
        'tgba': type_set,
        'ba': type_set,
        'monitor': type_set,
541
        'generic': type_set,
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
        'small': pref_set,
        'deterministic': pref_set,
        'any': pref_set,
        'high': optm_set,
        'medium': optm_set,
        'low': optm_set,
        'complete': misc_set,
        'unambiguous': misc_set,
        'statebasedacceptance': misc_set,
        'sbacc': misc_set,
    }

    for arg in args:
        arg = arg.lower()
        fn = options.get(arg)
        if fn:
            fn(arg)
559
        else:
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
            # arg is not an know option, but maybe it is a prefix of
            # one of them
            compat = []
            f = None
            for key, fn in options.items():
                if key.startswith(arg):
                    compat.append(key)
                    f = fn
            lc = len(compat)
            if lc == 1:
                f(compat[0])
            elif lc < 1:
                raise ValueError("unknown option '{}'".format(arg))
            else:
                raise ValueError("ambiguous option '{}' is prefix of {}"
                                 .format(arg, str(compat)))

577
    if type_ is None:
578
        type_ = default_type
579
    if pref_ is None:
580
        pref_ = postprocessor.Small
581
    if optm_ is None:
582
583
        optm_ = postprocessor.High

584
585
586
    obj.set_type(type_)
    obj.set_pref(pref_ | comp_ | unam_ | sbac_)
    obj.set_level(optm_)
587

588

589
def translate(formula, *args, dict=_bdd_dict):
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    """Translate a formula into an automaton.

    Keep in mind that 'Deterministic' expresses just a preference that
    may not be satisfied.

    The optional arguments should be strings among the following:
    - at most one in 'TGBA', 'BA', or 'Monitor'
      (type of automaton to build)
    - at most one in 'Small', 'Deterministic', 'Any'
      (preferred characteristics of the produced automaton)
    - at most one in 'Low', 'Medium', 'High'
      (optimization level)
    - any combination of 'Complete', 'Unambiguous', and
      'StateBasedAcceptance' (or 'SBAcc' for short)

    The default corresponds to 'tgba', 'small' and 'high'.
    """
607
    a = translator(dict)
608
609
610
    _postproc_translate_options(a, postprocessor.TGBA, *args)
    if type(formula) == str:
        formula = parse_formula(formula)
611
    return a.run(formula)
612

613

614
formula.translate = translate
615

616

617
def postprocess(automaton, *args, formula=None):
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
    """Post process an automaton.

    This applies a number of simlification algorithms, depending on
    the options supplied. Keep in mind that 'Deterministic' expresses
    just a preference that may not be satisfied if the input is
    not already 'Deterministic'.

    The optional arguments should be strings among the following:
    - at most one in 'Generic', 'TGBA', 'BA', or 'Monitor'
      (type of automaton to build)
    - at most one in 'Small', 'Deterministic', 'Any'
      (preferred characteristics of the produced automaton)
    - at most one in 'Low', 'Medium', 'High'
      (optimization level)
    - any combination of 'Complete' and 'StateBasedAcceptance'
      (or 'SBAcc' for short)

    The default corresponds to 'generic', 'small' and 'high'.
636
637
638
639

    If a formula denoted by this automaton is known, pass it to as the
    optional `formula` argument; it can help some algorithms by
    providing an easy way to complement the automaton.
640
641
642
643
644
    """
    p = postprocessor()
    if type(automaton) == str:
        automaton = globals()['automaton'](automaton)
    _postproc_translate_options(p, postprocessor.Generic, *args)
645
    return p.run(automaton, formula)
646
647
648
649


twa.postprocess = postprocess

650
651
652
653
# Wrap C++-functions into lambdas so that they get converted into
# instance methods (i.e., self passed as first argument
# automatically), because only used-defined functions are converted as
# instance methods.
654
def _add_twa_graph(meth):
655
656
    setattr(twa_graph, meth, (lambda self, *args, **kwargs:
                              globals()[meth](self, *args, **kwargs)))
657

658
659
660
661
for meth in ('scc_filter', 'scc_filter_states',
             'is_deterministic', 'is_unambiguous'):
    _add_twa_graph(meth)

662
663
664
665
666
667
668
669
670
671
672
673
674
# Wrapper around a formula iterator to which we add some methods of formula
# (using _addfilter and _addmap), so that we can write things like
# formulas.simplify().is_X_free().
class formulaiterator:
    def __init__(self, formulas):
        self._formulas = formulas

    def __iter__(self):
        return self

    def __next__(self):
        return next(self._formulas)

675

676
677
678
679
680
681
682
# fun shoud be a predicate and should be a method of formula.
# _addfilter adds this predicate as a filter whith the same name in
# formulaiterator.
def _addfilter(fun):
    def filtf(self, *args, **kwargs):
        it = filter(lambda f: getattr(f, fun)(*args, **kwargs), self)
        return formulaiterator(it)
683

684
685
686
    def nfiltf(self, *args, **kwargs):
        it = filter(lambda f: not getattr(f, fun)(*args, **kwargs), self)
        return formulaiterator(it)
687

688
    if fun[:3] == 'is_':
689
        notfun = 'is_not_' + fun[3:]
690
    elif fun[:4] == 'has_':
691
        notfun = 'has_no_' + fun[4:]
692
693
694
695
696
    else:
        notfun = 'not_' + fun
    setattr(formulaiterator, fun, filtf)
    setattr(formulaiterator, notfun, nfiltf)

697
698
699
700

# fun should be a function taking a formula as its first parameter and
# returning a formula.  _addmap adds this function as a method of
# formula and formulaiterator.
701
702
703
def _addmap(fun):
    def mapf(self, *args, **kwargs):
        return formulaiterator(map(lambda f: getattr(f, fun)(*args, **kwargs),
704
705
                                   self))
    setattr(formula, fun,
706
707
            lambda self, *args, **kwargs:
            globals()[fun](self, *args, **kwargs))
708
709
    setattr(formulaiterator, fun, mapf)

710
711

def randltl(ap, n=-1, **kwargs):
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
    """Generate random formulas.

    Returns a random formula iterator.

    ap: the number of atomic propositions used to generate random formulas.

    n: number of formulas to generate, or unbounded if n < 0.

    **kwargs:
    seed: seed for the random number generator (0).
    output: can be 'ltl', 'psl', 'bool' or 'sere' ('ltl').
    allow_dups: allow duplicate formulas (False).
    tree_size: tree size of the formulas generated, before mandatory
    simplifications (15)
    boolean_priorities: set priorities for Boolean formulas.
    ltl_priorities: set priorities for LTL formulas.
    sere_priorities: set priorities for SERE formulas.
    dump_priorities: show current priorities, do not generate any formula.
    simplify:
      0           No rewriting
      1           basic rewritings and eventual/universal rules
      2           additional syntactic implication rules
      3 (default) better implications using containment
    """
    opts = option_map()
    output_map = {
738
739
740
741
        "ltl": OUTPUTLTL,
        "psl": OUTPUTPSL,
        "bool": OUTPUTBOOL,
        "sere": OUTPUTSERE
742
743
744
745
746
    }

    if isinstance(ap, list):
        aprops = atomic_prop_set()
        for elt in ap:
747
            aprops.insert(formula.ap(elt))
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
        ap = aprops
    ltl_priorities = kwargs.get("ltl_priorities", None)
    sere_priorities = kwargs.get("sere_priorities", None)
    boolean_priorities = kwargs.get("boolean_priorities", None)
    output = output_map[kwargs.get("output", "ltl")]
    opts.set("output", output)
    opts.set("seed", kwargs.get("seed", 0))
    tree_size = kwargs.get("tree_size", 15)
    if isinstance(tree_size, tuple):
        tree_size_min, tree_size_max = tree_size
    else:
        tree_size_min = tree_size_max = tree_size
    opts.set("tree_size_min", tree_size_min)
    opts.set("tree_size_max", tree_size_max)
    opts.set("unique", not kwargs.get("allow_dups", False))
    opts.set("wf", kwargs.get("weak_fairness", False))
    simpl_level = kwargs.get("simplify", 0)
    if simpl_level > 3 or simpl_level < 0:
        sys.stderr.write('invalid simplification level: ' + simpl_level)
        return
    opts.set("simplification_level", simpl_level)

    rg = randltlgenerator(ap, opts, ltl_priorities, sere_priorities,
771
                          boolean_priorities)
772
773
774
775
776

    dump_priorities = kwargs.get("dump_priorities", False)
    if dump_priorities:
        dumpstream = ostringstream()
        if output == OUTPUTLTL:
777
778
            print('Use argument ltl_priorities=STRING to set the following '
                  'LTL priorities:\n')
779
780
781
            rg.dump_ltl_priorities(dumpstream)
            print(dumpstream.str())
        elif output == OUTPUTBOOL:
782
783
            print('Use argument boolean_priorities=STRING to set the '
                  'following Boolean formula priorities:\n')
784
785
786
787
            rg.dump_bool_priorities(dumpstream)
            print(dumpstream.str())
        elif output == OUTPUTPSL or output == OUTPUTSERE:
            if output != OUTPUTSERE:
788
789
                print('Use argument ltl_priorities=STRING to set the '
                      'following LTL priorities:\n')
790
791
                rg.dump_psl_priorities(dumpstream)
                print(dumpstream.str())
792
793
            print('Use argument sere_priorities=STRING to set the '
                  'following SERE priorities:\n')
794
795
            rg.dump_sere_priorities(dumpstream)
            print(dumpstream.str())
796
797
            print('Use argument boolean_priorities=STRING to set the '
                  'following Boolean formula priorities:\n')
798
799
800
801
802
803
            rg.dump_sere_bool_priorities(dumpstream)
            print(dumpstream.str())
        else:
            sys.stderr.write("internal error: unknown type of output")
        return

804
805
806
807
808
    class _randltliterator:
        def __init__(self, rg, n):
            self.rg = rg
            self.i = 0
            self.n = n
809

810
811
        def __iter__(self):
            return self
812

813
814
815
816
        def __next__(self):
            if self.i == self.n:
                raise StopIteration
            f = self.rg.next()
817
            if f is None:
818
819
820
821
822
823
824
825
                sys.stderr.write("Warning: could not generate a new "
                                 "unique formula after {} trials.\n"
                                 .format(MAX_TRIALS))
                raise StopIteration
            self.i += 1
            return f

    return formulaiterator(_randltliterator(rg, n))
826

827

828
829
830
def simplify(f, **kwargs):
    level = kwargs.get('level', None)
    if level is not None:
831
        return tl_simplifier(tl_simplifier_options(level)).simplify(f)
832
833
834
835

    basics = kwargs.get('basics', True)
    synt_impl = kwargs.get('synt_impl', True)
    event_univ = kwargs.get('event_univ', True)
836
837
    cont_checks = kwargs.get('containment_checks', False)
    cont_checks_stronger = kwargs.get('containment_checks_stronger', False)
838
839
840
841
842
    nenoform_stop_on_boolean = kwargs.get('nenoform_stop_on_boolean', False)
    reduce_size_strictly = kwargs.get('reduce_size_strictly', False)
    boolean_to_isop = kwargs.get('boolean_to_isop', False)
    favor_event_univ = kwargs.get('favor_event_univ', False)

843
    simp_opts = tl_simplifier_options(basics,
844
845
                                       synt_impl,
                                       event_univ,
846
847
                                       cont_checks,
                                       cont_checks_stronger,
848
849
850
851
                                       nenoform_stop_on_boolean,
                                       reduce_size_strictly,
                                       boolean_to_isop,
                                       favor_event_univ)
852
    return tl_simplifier(simp_opts).simplify(f)
853

854

855
for fun in dir(formula):
856
857
    if (callable(getattr(formula, fun)) and (fun[:3] == 'is_' or
                                             fun[:4] == 'has_')):
858
859
        _addfilter(fun)

860
861
for fun in ['remove_x', 'relabel', 'relabel_bse',
            'simplify', 'unabbreviate']:
862
    _addmap(fun)
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886



# Better interface to the corresponding C++ function.
def sat_minimize(aut, acc=None, colored=False,
                 state_based=False, states=0,
                 max_states=0, dichotomy=False):
    args=''
    if acc is not None:
        if type(acc) is not str:
            raise ValueError("argument 'acc' should be a string")
        args += ',acc="' + acc + '"'
    if colored:
        args += ',colored'
    if states:
        if type(states) is not int or states < 0:
            raise ValueError("argument 'states' should be a positive integer")
        args += ',states=' + str(states)
    if max_states:
        if type(max_states) is not int or max_states < 0:
            raise ValueError("argument 'states' should be a positive integer")
        args += ',max-states=' + str(max_states)
    if dichotomy:
        args += ',dichotomy';
887
    from spot.impl import sat_minimize as sm
888
    return sm(aut, args, state_based)