ltl2tgba.org 22.2 KB
Newer Older
1
# -*- coding: utf-8 -*-
2
#+TITLE: =ltl2tgba=
3
4
#+SETUPFILE: setup.org
#+HTML_LINK_UP: tools.html
5
6

This tool translates LTL or PSL formulas into two kinds of Büchi
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
7
8
9
10
automata, or to monitors.  The default is to output Transition-based
Generalized Büchi Automata (hereinafter abbreviated TGBA), but more
traditional Büchi automata (BA) may be requested using the =-B=
option.
11
12
13
14
15
16

* TGBA and BA

Formulas to translate may be specified using [[file:ioltl.org][common input options for
LTL/PSL formulas]].

17
#+BEGIN_SRC sh :results verbatim :exports code
18
19
ltl2tgba -f 'Fa & GFb'
#+END_SRC
20
21
22
#+BEGIN_SRC sh :results verbatim :exports results
SPOT_DOTEXTRA= ltl2tgba -f 'Fa & GFb' --dot=
#+END_SRC
23
24
25
#+RESULTS:
#+begin_example
digraph G {
26
27
28
29
30
31
  rankdir=LR
  I [label="", style=invis, width=0]
  I -> 1
  0 [label="0"]
  0 -> 0 [label="b\n{0}"]
  0 -> 0 [label="!b"]
32
  1 [label="1"]
33
34
  1 -> 0 [label="a"]
  1 -> 1 [label="!a"]
35
36
37
38
39
40
41
42
43
}
#+end_example

Actually, because =ltl2tgba= is often used with a single formula
passed on the command line, the =-f= option can be omitted and any
command-line parameter that is not the argument of some option will be
assumed to be a formula to translate (this differs from [[file:ltlfilt.org][=ltlfilt=]],
where such parameters are assumed to be filenames).

44
=ltl2tgba= honors the [[file:aout.org][common options for selecting the output format]].
45
46
47
48
49
50
51
52
The default output format, as shown above, is [[http://http://www.graphviz.org/][GraphViz]]'s format.  This
can converted into a picture, or into vectorial format using =dot= or
=dotty=.  Typically, you could get a =pdf= of this TGBA using
#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba "Fa & GFb" | dot -Tpdf > tgba.pdf
#+END_SRC
#+RESULTS:

53
54
55
The result would look like this (note that in this documentation
we use some [[file:aout.org][environement variables]] to produce a more colorful
output by default)
56
57
#+NAME: dotex
#+BEGIN_SRC sh :results verbatim :exports none
58
ltl2tgba "Fa & GFb"
59
60
61
62
#+END_SRC
#+RESULTS: dotex
#+begin_example
digraph G {
63
  rankdir=LR
64
65
66
67
  fontname="Lato"
  node [fontname="Lato"]
  edge [fontname="Lato"]
  node[style=filled, fillcolor="#ffffa0"]
68
69
70
  I [label="", style=invis, width=0]
  I -> 1
  0 [label="0"]
71
72
  0 -> 0 [label=<b<br/><font color="#5DA5DA">⓿</font>>]
  0 -> 0 [label=<!b>]
73
  1 [label="1"]
74
75
  1 -> 0 [label=<a>]
  1 -> 1 [label=<!a>]
76
77
78
79
80
81
82
83
84
85
}
#+end_example

#+BEGIN_SRC dot :file dotex.png :cmdline -Tpng :var txt=dotex :exports results
$txt
#+END_SRC

#+RESULTS:
[[file:dotex.png]]

86
87
88
89
90
91
92
93
94
95
Characters like ⓿, ❶, etc. denotes the acceptance sets a transition
belongs to.  In this case, there is only one acceptance set, called
=0=, containing a single transition.  You may have many transitions in
the same acceptance set, and a transition may also belong to multiple
acceptance sets.  An infinite path through this automaton is accepting
iff it visit each acceptance set infinitely often.  Therefore, in the
above example, any accepted path will /necessarily/ leave the initial
state after a finite amount of steps, and then it will verify the
property =b= infinitely often.  It is also possible that an automaton
do not use any acceptance set at all, in which any run is accepting.
96
97
98
99
100

Here is a TGBA with multiple acceptance sets (we omit the call to
=dot= to render the output of =ltl2tgba= from now on):

#+NAME: dotex2
101
102
#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba "GFa & GFb"
103
104
#+END_SRC
#+RESULTS: dotex2
105
106
107
#+begin_example
digraph G {
  rankdir=LR
108
109
110
111
  fontname="Lato"
  node [fontname="Lato"]
  edge [fontname="Lato"]
  node[style=filled, fillcolor="#ffffa0"]
112
113
114
  I [label="", style=invis, width=0]
  I -> 0
  0 [label="0"]
115
116
117
118
  0 -> 0 [label=<a &amp; b<br/><font color="#5DA5DA">⓿</font><font color="#F17CB0">❶</font>>]
  0 -> 0 [label=<!a &amp; !b>]
  0 -> 0 [label=<!a &amp; b<br/><font color="#F17CB0">❶</font>>]
  0 -> 0 [label=<a &amp; !b<br/><font color="#5DA5DA">⓿</font>>]
119
120
}
#+end_example
121
122
123
124
125
126
127

#+BEGIN_SRC dot :file dotex2.png :cmdline -Tpng :var txt=dotex2 :exports results
$txt
#+END_SRC
#+RESULTS:
[[file:dotex2.png]]

128
The above TGBA has two acceptance sets: ⓿ and ❶.  The position of
129
130
these acceptance sets ensures that atomic propositions =a= and =b= must
be true infinitely often.
131
132
133
134

A Büchi automaton for the previous formula can be obtained with the
=-B= option:

135
#+NAME: dotex2ba
136
137
138
139
140
141
#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba -B 'GFa & GFb'
#+END_SRC
#+RESULTS: dotex2ba
#+begin_example
digraph G {
142
  rankdir=LR
143
144
145
146
  fontname="Lato"
  node [fontname="Lato"]
  edge [fontname="Lato"]
  node[style=filled, fillcolor="#ffffa0"]
147
148
149
  I [label="", style=invis, width=0]
  I -> 0
  0 [label="0", peripheries=2]
150
151
152
  0 -> 0 [label=<a &amp; b>]
  0 -> 1 [label=<!b>]
  0 -> 2 [label=<!a &amp; b>]
153
  1 [label="1"]
154
155
156
  1 -> 0 [label=<a &amp; b>]
  1 -> 1 [label=<!b>]
  1 -> 2 [label=<!a &amp; b>]
157
  2 [label="2"]
158
159
  2 -> 0 [label=<a>]
  2 -> 2 [label=<!a>]
160
161
162
163
164
165
166
167
168
169
170
}
#+end_example

#+BEGIN_SRC dot :file dotex2ba.png :cmdline -Tpng :var txt=dotex2ba :exports results
$txt
#+END_SRC
#+RESULTS:
[[file:dotex2ba.png]]

Although accepting states in the Büchi automaton are pictured with
double-lines, internally this automaton is still handled as a TGBA
171
with a single acceptance set such that the transitions
172
leaving the state are either all accepting, or all non-accepting.
173
174
175
You can see this underlying TGBA if you pass the =--dot=t= option
(the =t= requests the use of transition-based acceptance at it
is done internally):
176

177
178
179
180
181
182
#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba --dot=t -B 'GFa & GFb'
#+END_SRC

#+NAME: dotex2ba-t
#+BEGIN_SRC sh :results verbatim :exports none
183
ltl2tgba --dot=.t -B 'GFa & GFb'
184
185
186
187
188
189
#+END_SRC

#+RESULTS: dotex2ba-t
#+begin_example
digraph G {
  rankdir=LR
190
191
192
193
  fontname="Lato"
  node [fontname="Lato"]
  edge [fontname="Lato"]
  node[style=filled, fillcolor="#ffffa0"]
194
195
196
  I [label="", style=invis, width=0]
  I -> 0
  0 [label="0"]
197
198
199
  0 -> 0 [label=<a &amp; b<br/><font color="#5DA5DA">⓿</font>>]
  0 -> 1 [label=<!b<br/><font color="#5DA5DA">⓿</font>>]
  0 -> 2 [label=<!a &amp; b<br/><font color="#5DA5DA">⓿</font>>]
200
  1 [label="1"]
201
202
203
  1 -> 0 [label=<a &amp; b>]
  1 -> 1 [label=<!b>]
  1 -> 2 [label=<!a &amp; b>]
204
  2 [label="2"]
205
206
  2 -> 0 [label=<a>]
  2 -> 2 [label=<!a>]
207
208
209
210
211
212
213
214
215
216
217
}
#+end_example

#+BEGIN_SRC dot :file dotex2ba-t.png :cmdline -Tpng :var txt=dotex2ba-t :exports results
$txt
#+END_SRC
#+RESULTS:
[[file:dotex2ba-t.png]]

As already discussed on the page about [[file:oaut.org][common output options]], various
options controls the output format of =ltl2tgba=:
218
219
220
221
222

#+BEGIN_SRC sh :results verbatim :exports results
ltl2tgba --help | sed -n '/Output format:/,/^$/p' | sed '1d;$d'
#+END_SRC
#+RESULTS:
223
224
225
#+begin_example
  -8, --utf8                 enable UTF-8 characters in output (ignored with
                             --lbtt or --spin)
226
227
228
229
230
231
232
233
      --dot[=a|b|c|f(FONT)|h|n|N|r|R|s|t|v]
                             GraphViz's format (default).  Add letters for (a)
                             acceptance display, (b) acceptance sets as
                             bullets,(c) circular nodes, (f(FONT)) use FONT,
                             (h) horizontal layout, (v) vertical layout, (n)
                             with name, (N) without name, (r) rainbow colors
                             for acceptance set, (R) color acceptance set by
                             Inf/Fin, (s) with SCCs, (t) force transition-based
234
                             acceptance.
235
236
237
238
239
240
241
  -H, --hoaf[=i|s|t|m|l]     Output the automaton in HOA format.  Add letters
                             to select (i) use implicit labels for complete
                             deterministic automata, (s) prefer state-based
                             acceptance when possible [default], (t) force
                             transition-based acceptance, (m) mix state and
                             transition-based acceptance, (l) single-line
                             output
242
243
244
      --lbtt[=t]             LBTT's format (add =t to force transition-based
                             acceptance even on Büchi automata)
      --name=FORMAT          set the name of the output automaton
245
246
247
  -o, --output=FORMAT        send output to a file named FORMAT instead of
                             standard output.  The first automaton sent to a
                             file truncates it unless FORMAT starts with '>>'.
248
  -q, --quiet                suppress all normal output
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
249
250
251
  -s, --spin[=6|c]           Spin neverclaim (implies --ba).  Add letters to
                             select (6) Spin's 6.2.4 style, (c) comments on
                             states
252
253
      --stats=FORMAT         output statistics about the automaton
#+end_example
254

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
255
Option =-8= can be used to improve the readability of the output
256
257
258
if your system can display UTF-8 correctly.

#+NAME: dotex2ba8
259
260
#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba -B8 "GFa & GFb"
261
262
263
264
#+END_SRC
#+RESULTS: dotex2ba8
#+begin_example
digraph G {
265
  rankdir=LR
266
267
268
269
  fontname="Lato"
  node [fontname="Lato"]
  edge [fontname="Lato"]
  node[style=filled, fillcolor="#ffffa0"]
270
271
272
  I [label="", style=invis, width=0]
  I -> 0
  0 [label="0", peripheries=2]
273
274
275
  0 -> 0 [label=<a∧b>]
  0 -> 1 [label=<b̅>]
  0 -> 2 [label=<a̅∧b>]
276
  1 [label="1"]
277
278
279
  1 -> 0 [label=<a∧b>]
  1 -> 1 [label=<b̅>]
  1 -> 2 [label=<a̅∧b>]
280
  2 [label="2"]
281
282
  2 -> 0 [label=<a>]
  2 -> 2 [label=<a̅>]
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
}
#+end_example

#+BEGIN_SRC dot :file dotex2ba8.png :cmdline -Tpng :var txt=dotex2ba8 :exports results
$txt
#+END_SRC
#+RESULTS:
[[file:dotex2ba8.png]]

* Spin output

Using the =--spin= or =-s= option, =ltl2tgba= will produce a Büchi automaton
(the =-B= option is implied) as a never claim that can be fed to Spin.
=ltl2tgba -s= is therefore a drop-in replacement for =spin -f=.


#+BEGIN_SRC sh :results verbatim :exports both
ltl2tgba -s 'GFa & GFb'
#+END_SRC
#+RESULTS:
#+begin_example
never { /* G(Fa & Fb) */
accept_init:
  if
  :: ((a) && (b)) -> goto accept_init
308
309
  :: ((!(b))) -> goto T0_S2
  :: ((!(a)) && (b)) -> goto T0_S3
310
311
312
  fi;
T0_S2:
  if
313
314
315
  :: ((a) && (b)) -> goto accept_init
  :: ((!(b))) -> goto T0_S2
  :: ((!(a)) && (b)) -> goto T0_S3
316
317
318
  fi;
T0_S3:
  if
319
320
  :: ((a)) -> goto accept_init
  :: ((!(a))) -> goto T0_S3
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
  fi;
}
#+end_example

Since Spin 6 extended its syntax to support arbitrary atomic
propositions, you may also need put the parser in =--lenient= mode to
support these:

#+BEGIN_SRC sh :results verbatim :exports both
ltl2tgba -s --lenient '(a < b) U (process[2]@ok)'
#+END_SRC
#+RESULTS:
: never { /* "a < b" U "process[2]@ok" */
: T0_init:
:   if
:   :: ((process[2]@ok)) -> goto accept_all
:   :: ((a < b) && (!(process[2]@ok))) -> goto T0_init
:   fi;
: accept_all:
:   skip
: }


* Do you favor deterministic or small automata?

The translation procedure can be controled by a few switches.  A first
set of options specifies the intent of the translation: whenever
possible, would you prefer a small automaton or a deterministic
automaton?

#+BEGIN_SRC sh :results verbatim :exports results
ltl2tgba --help | sed -n '/Translation intent:/,/^$/p' | sed '1d;$d'
#+END_SRC
#+RESULTS:
:   -a, --any                  no preference
356
357
:   -C, --complete             output a complete automaton (combine with other
:                              intents)
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
:   -D, --deterministic        prefer deterministic automata
:       --small                prefer small automata (default)

The =--any= option tells the translator that it should not target any
particular form of result: any automaton denoting the given formula is
OK.  This effectively disables post-processings and speeds up the
translation.

With the =-D= option, the translator will /attempt/ to produce a
deterministic automaton, even if this requires a lot of states.  =ltl2tgba=
knows how to produce the minimal deterministic Büchi automaton for
any obligation property (this includes safety properties).

With the =--small= option (the default), the translator will not
produce a deterministic automaton when it knows how to build smaller
automaton.

An example formula where the difference between =-D= and =--small= is
flagrant is =Ga|Gb|Gc=:

#+NAME: gagbgc1
379
380
#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba "Ga|Gb|Gc"
381
382
383
384
#+END_SRC
#+RESULTS: gagbgc1
#+begin_example
digraph G {
385
  rankdir=LR
386
387
388
389
  fontname="Lato"
  node [fontname="Lato"]
  edge [fontname="Lato"]
  node[style=filled, fillcolor="#ffffa0"]
390
391
  I [label="", style=invis, width=0]
  I -> 0
392
393
394
395
396
397
398
399
400
401
  0 [label="0"]
  0 -> 1 [label=<a>]
  0 -> 2 [label=<b>]
  0 -> 3 [label=<c>]
  1 [label="1"]
  1 -> 1 [label=<a>]
  2 [label="2"]
  2 -> 2 [label=<b>]
  3 [label="3"]
  3 -> 3 [label=<c>]
402
403
404
405
406
407
408
409
410
}
#+end_example

#+BEGIN_SRC dot :file gagbgc1.png :cmdline -Tpng :var txt=gagbgc1 :exports results
$txt
#+END_SRC
#+RESULTS:
[[file:gagbgc1.png]]

411
#+NAME: gagbgc2
412
413
414
415
416
417
#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba -D 'Ga|Gb|Gc'
#+END_SRC
#+RESULTS: gagbgc2
#+begin_example
digraph G {
418
  rankdir=LR
419
420
421
422
  fontname="Lato"
  node [fontname="Lato"]
  edge [fontname="Lato"]
  node[style=filled, fillcolor="#ffffa0"]
423
424
425
  I [label="", style=invis, width=0]
  I -> 6
  0 [label="0", peripheries=2]
426
  0 -> 0 [label=<c>]
427
  1 [label="1", peripheries=2]
428
429
430
  1 -> 0 [label=<!b &amp; c>]
  1 -> 1 [label=<b &amp; c>]
  1 -> 2 [label=<b &amp; !c>]
431
  2 [label="2", peripheries=2]
432
  2 -> 2 [label=<b>]
433
  3 [label="3", peripheries=2]
434
435
436
  3 -> 2 [label=<!a &amp; b>]
  3 -> 3 [label=<a &amp; b>]
  3 -> 5 [label=<a &amp; !b>]
437
  4 [label="4", peripheries=2]
438
439
440
  4 -> 0 [label=<!a &amp; c>]
  4 -> 4 [label=<a &amp; c>]
  4 -> 5 [label=<a &amp; !c>]
441
  5 [label="5", peripheries=2]
442
  5 -> 5 [label=<a>]
443
  6 [label="6", peripheries=2]
444
445
446
447
448
449
450
  6 -> 0 [label=<!a &amp; !b &amp; c>]
  6 -> 1 [label=<!a &amp; b &amp; c>]
  6 -> 2 [label=<!a &amp; b &amp; !c>]
  6 -> 3 [label=<a &amp; b &amp; !c>]
  6 -> 4 [label=<a &amp; !b &amp; c>]
  6 -> 5 [label=<a &amp; !b &amp; !c>]
  6 -> 6 [label=<a &amp; b &amp; c>]
451
452
453
454
455
456
457
458
459
460
461
462
463
}
#+end_example

#+BEGIN_SRC dot :file gagbgc2.png :cmdline -Tpng :var txt=gagbgc2 :exports results
$txt
#+END_SRC
#+RESULTS:
[[file:gagbgc2.png]]

You can augment the number of terms in the disjunction to magnify the
difference.  For N terms, the =--small= automaton has N+1 states,
while the =--deterministic= automaton needs 2^N-1 states.

464
465
466
467
468
Add the =--complete= option if you want to obtain a complete
automaton, with a sink state capturing that rejected words that would
not otherwise have a run in the output automaton.


469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
A last parameter that can be used to tune the translation is the amount
of pre- and post-processing performed.  These two steps can be adjusted
via a common set of switches:
#+BEGIN_SRC sh :results verbatim :exports results
ltl2tgba --help | sed -n '/Optimization level:/,/^$/p' | sed '1d;$d'
#+END_SRC
#+RESULTS:
:       --high                 all available optimizations (slow, default)
:       --low                  minimal optimizations (fast)
:       --medium               moderate optimizations

Pre-processings are rewritings done on the LTL formulas, usually to
reduce its size, but mainly to put it in a form that will help the
translator (for instance =F(a|b)= is easier to translate than
=F(a)|F(b)=).  At =--low= level, only simple syntactic rewritings are
performed.  At =--medium= level, additional simplifications based on
syntactic implications are performed.  At =--high= level, language
containment is used instead of syntactic implications.

Post-processings are cleanups and simplifications of the automaton
produced by the core translator.  The algorithms used during post-processing
are
- SCC filtering: removing useless strongly connected components,
  and useless acceptance sets.
- direct simulation: merge states based on suffix inclusion.
- iterated simulations: merge states based on suffix inclusion,
  or prefix inclusion, in a loop.
- WDBA minimization: determinize and minimize automata representing
  obligation properties.
- degeneralization: convert a TGBA into a BA

The chaining of these various algorithms depends on the selected
combination of optimization level (=--low=, =--medium=, =--high=),
translation intent (=--small=, =--deterministic=) and type of
automaton desired (=--tgba=, =--ba=).

A notable configuration is =--any --low=, which will produce a TGBA as
fast as possible.  In this case, post-processing is disabled, and only
syntactic rewritings are performed.  This can be used for
satisfiability checking, although in this context even building an
automaton is overkill (you only need an accepted run).

Finally, it should be noted that the default optimization options
(=--small --high=) are usually overkill.  =--low= will produce good
automata most of the time.  Most of pattern formulas of [[file:genltl.org][=genltl=]] will
be efficiently translated in this configuration (meaning that =--small
--high= will not produce a better automaton).  If you are planning to
generate automata for large family of pattern formulas, it makes sense
to experiment with the different settings on a small version of the
pattern, and select the lowest setting that satisfies your
expectations.

* Translating multiple formulas for statistics

If multiple formulas are given to =ltl2tgba=, the corresponding
automata will be output one after the other.  This is not very
convenient, since most of these output formats are not designed to
represent multiple automata, and tools like =dot= will only display
the first one.

One situation where passing many formulas to =ltl2tgba= is useful is
in combination with the =--stats=FORMAT= option.  This option will
output statistics about the translated automata instead of the
automata themselves.  The =FORMAT= string should indicate which
statistics should be output, and how they should be output using the
following sequence of characters (other characters are output as-is):

#+BEGIN_SRC sh :results verbatim :exports results
ltl2tgba --help | sed -n '/^ *%/p'
#+END_SRC
#+RESULTS:
540
541
542
543
#+begin_example
  %%                         a single %
  %a                         number of acceptance sets
  %c                         number of SCCs
544
  %d                         1 if the output is deterministic, 0 otherwise
545
546
  %e                         number of edges
  %f                         the formula, in Spot's syntax
547
548
549
550
551
552
  %F                         name of the input file
  %L                         location in the input file
  %m                         name of the automaton
  %n                         number of nondeterministic states in output
  %p                         1 if the output is complete, 0 otherwise
  %r                         processing time (excluding parsing) in seconds
553
554
  %s                         number of states
  %t                         number of transitions
555
  %w                         one word accepted by the output automaton
556
#+end_example
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

For instance we can study the size of the automata generated for the
right-nested =U= formulas as follows:

#+BEGIN_SRC sh :results verbatim :exports both
genltl --u-right=1..8 | ltl2tgba -F - --stats '%s states and %e edges for "%f"'
#+END_SRC
#+RESULTS:
: 2 states and 2 edges for "p1"
: 2 states and 3 edges for "p1 U p2"
: 3 states and 6 edges for "p1 U (p2 U p3)"
: 4 states and 10 edges for "p1 U (p2 U (p3 U p4))"
: 5 states and 15 edges for "p1 U (p2 U (p3 U (p4 U p5)))"
: 6 states and 21 edges for "p1 U (p2 U (p3 U (p4 U (p5 U p6))))"
: 7 states and 28 edges for "p1 U (p2 U (p3 U (p4 U (p5 U (p6 U p7)))))"
: 8 states and 36 edges for "p1 U (p2 U (p3 U (p4 U (p5 U (p6 U (p7 U p8))))))"

Here =-F -= means that formulas should be read from the standard input.

When computing the size of an automaton, we distinguish /transitions/
and /edges/.  An edge between two states is labeled by a Boolean
formula and may in fact represent several transitions labeled by
compatible Boolean assignment.

For instance if the atomic propositions are =x= and =y=, an edge labeled
by the formula =!x= actually represents two transitions labeled respectively
with =!x&y= and =!x&!y=.

Two automata with the same structures (states and edges) but differing
labels, may have a different count of transitions, e.g., if one has
more restricted labels.

589
590
591
[[file:csv.org][More examples of how to use =--stats= to create CSV
files are on a separate page]].

592
593
594
595
596
597
598
599
600
601
602
603
* Building Monitors

In addition to TGBA and BA, =ltl2tgba= can output /monitor/ using the
=-M= option.  These are finite automata that accept all prefixes of a
formula.  The idea is that you can use these automata to monitor a
system as it is running, and report a violation as soon as no
compatible outgoing transition exist.

=ltl2tgba -M= may output non-deterministic monitors while =ltl2tgba
-MD= (short for =--monitor --deterministic=) will output the minimal
deterministic monitor for the given formula.

604
#+NAME: monitor1
605
606
607
608
609
610
611
#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba -M '(Xa & Fb) | Gc'
#+END_SRC

#+RESULTS: monitor1
#+begin_example
digraph G {
612
  rankdir=LR
613
614
615
616
  fontname="Lato"
  node [fontname="Lato"]
  edge [fontname="Lato"]
  node[style=filled, fillcolor="#ffffa0"]
617
618
  I [label="", style=invis, width=0]
  I -> 0
619
620
621
622
623
624
625
626
627
  0 [label="0"]
  0 -> 1 [label=<1>]
  0 -> 3 [label=<c>]
  1 [label="1"]
  1 -> 2 [label=<a>]
  2 [label="2"]
  2 -> 2 [label=<1>]
  3 [label="3"]
  3 -> 3 [label=<c>]
628
629
630
631
632
633
634
635
636
637
}
#+end_example

#+BEGIN_SRC dot :file monitor1.png :cmdline -Tpng :var txt=monitor1 :exports results
$txt
#+END_SRC

#+RESULTS:
[[file:monitor1.png]]

638
#+NAME: monitor2
639
#+BEGIN_SRC sh :results verbatim :exports code
640
ltl2tgba -MD '(Xa & Fb) | Gc'
641
642
643
644
645
#+END_SRC

#+RESULTS: monitor2
#+begin_example
digraph G {
646
  rankdir=LR
647
648
649
650
  fontname="Lato"
  node [fontname="Lato"]
  edge [fontname="Lato"]
  node[style=filled, fillcolor="#ffffa0"]
651
652
  I [label="", style=invis, width=0]
  I -> 3
653
654
655
656
657
658
659
660
661
662
663
664
  0 [label="0"]
  0 -> 0 [label=<1>]
  1 [label="1"]
  1 -> 0 [label=<a>]
  2 [label="2"]
  2 -> 2 [label=<c>]
  3 [label="3"]
  3 -> 1 [label=<!c>]
  3 -> 4 [label=<c>]
  4 [label="4"]
  4 -> 0 [label=<a>]
  4 -> 2 [label=<!a &amp; c>]
665
666
667
668
669
670
671
672
673
674
675
676
}
#+end_example

#+BEGIN_SRC dot :file monitor2.png :cmdline -Tpng :var txt=monitor2 :exports results
$txt
#+END_SRC

#+RESULTS:
[[file:monitor2.png]]

Because they accept all finite executions that could be extended to
match the formula, monitor cannot be used to check for eventualities
677
678
such as =F(a)=: indeed, any finite execution can be extended to match
=F(a)=.
679
680
681
682
683
684
685
686
687

#  LocalWords:  ltl tgba num toc PSL Büchi automata SRC GFb invis Acc
#  LocalWords:  ltlfilt filenames GraphViz vectorial pdf Tpdf dotex
#  LocalWords:  sed png cmdline Tpng txt iff GFa ba utf UTF lbtt Fb
#  LocalWords:  GraphViz's LBTT's neverclaim SPOT's init goto fi Gb
#  LocalWords:  controled Gc gagbgc disjunction pre rewritings SCC Xa
#  LocalWords:  WDBA determinize degeneralization satisfiability SCCs
#  LocalWords:  genltl nondeterministic eval setenv concat getenv
#  LocalWords:  setq