ltl2tgba_fm.cc 11.8 KB
Newer Older
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// Copyright (C) 2003  Laboratoire d'Informatique de Paris 6 (LIP6),
// dpartement Systmes Rpartis Coopratifs (SRC), Universit Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

22
#include "misc/hash.hh"
23
#include "misc/bddalloc.hh"
24
#include "misc/minato.hh"
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/destroy.hh"
#include "ltlvisit/tostring.hh"
#include <cassert>

#include "tgba/tgbabddconcretefactory.hh"
#include "ltl2tgba_fm.hh"

namespace spot
{
  using namespace ltl;

  namespace
  {

    // Helper dictionary.  We represent formula using a BDD to simplify
    // them, and them translate the BDD back into formulae.
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
    class translate_dict: public bdd_allocator
    {
    public:

      translate_dict()
	: bdd_allocator(),
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = a_map.begin(); i != a_map.end(); ++i)
66
	  destroy(i->first);
67
	for (i = var_map.begin(); i != var_map.end(); ++i)
68
	  destroy(i->first);
69
	for (i = next_map.begin(); i != next_map.end(); ++i)
70
	  destroy(i->first);
71
72
73
      }

      /// Formula-to-BDD-variable maps.
74
75
      typedef Sgi::hash_map<const formula*, int,
			    ptr_hash<formula> > fv_map;
76
      /// BDD-variable-to-formula maps.
77
      typedef Sgi::hash_map<int, const formula*> vf_map;
78
79
80
81
82
83
84
85
86
87
88
89
90

      fv_map a_map;	       ///< Maps formulae to "a" BDD variables
      vf_map a_formula_map;    ///< Maps "a" BDD variables to formulae
      fv_map var_map;	       ///< Maps atomic propisitions to BDD variables
      vf_map var_formula_map;  ///< Maps BDD variables to atomic propisitions
      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
91
      register_proposition(const formula* f)
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
      {
	int num;
	// Do not build a variable that already exists.
	fv_map::iterator sii = var_map.find(f);
	if (sii != var_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
	    num = allocate_variables(1);
	    var_map[f] = num;
	    var_formula_map[num] = f;
	  }
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
112
      register_a_variable(const formula* f)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
      {
	int num;
	// Do not build an accepting variable that already exists.
	fv_map::iterator sii = a_map.find(f);
	if (sii != a_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
	    num = allocate_variables(1);
	    a_map[f] = num;
	    a_formula_map[num] = f;
	  }
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
133
      register_next_variable(const formula* f)
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
	    num = allocate_variables(1);
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Atomic Propositions:" << std::endl;
	for (fi = var_map.begin(); fi != var_map.end(); ++fi)
	  {
	    os << "  " << fi->second << ": ";
	    to_string(fi->first, os) << std::endl;
	  }
	os << "a Variables:" << std::endl;
	for (fi = a_map.begin(); fi != a_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": a[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	return os;
      }

178
      formula*
179
180
181
182
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
183
	  return clone(isi->second);
184
185
	isi = a_formula_map.find(var);
	if (isi != a_formula_map.end())
186
	  return clone(isi->second);
187
188
	isi = var_formula_map.find(var);
	if (isi != var_formula_map.end())
189
	  return clone(isi->second);
190
191
192
	assert(0);
      }

193
      formula*
194
195
196
      conj_bdd_to_formula(bdd b)
      {
	if (b == bddfalse)
197
198
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
199
200
201
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
202
	    formula* res = var_to_formula(var);
203
204
205
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
206
		res = unop::instance(unop::Not, res);
207
208
209
210
		b = bdd_low(b);
	      }
	    else
	      {
211
		assert(bdd_low(b) == bddfalse);
212
213
214
215
216
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
217
	return multop::instance(multop::And, v);
218
219
      }

220
221
      const formula*
      bdd_to_formula(bdd f)
222
      {
223
	if (f == bddfalse)
224
	  return constant::false_instance();
225

226
227
228
229
230
231
232
233
234
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

      void
      conj_bdd_to_acc(tgba_explicit* a, bdd b, tgba_explicit::transition* t)
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
		// Simply ignore negated accepting variables.
		b = bdd_low(b);
	      }
	    else
	      {
251
		formula* ac = var_to_formula(var);
252
253

		if (! a->has_accepting_condition(ac))
254
		  a->declare_accepting_condition(clone(ac));
255
256
		a->add_accepting_condition(t, ac);

257
		atomic_prop::instance_count();
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


    // The rewrite rules used here are adapted from Jean-Michel
    // Couvreur's FM paper.
    class ltl_trad_visitor: public const_visitor
    {
    public:
      ltl_trad_visitor(translate_dict& dict)
	: dict_(dict)
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

      bdd result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
	      bdd y = recurse(node->child());
	      int a = dict_.register_a_variable(node);
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
	      return;
	    }
	  case unop::G:
	    {
324
	      const formula* child = node->child();
325
	      int x = dict_.register_next_variable(node);
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
	      // GFy is pretty frequent and easy to optimize, to we
	      // want to detect it.
	      const unop* Fy = dynamic_cast<const unop*>(child);
	      if (Fy && Fy->op() == unop::F)
		{
		  // r(GFy) = (r(y) + a(y))r(XGFy)
		  const formula* child = Fy->child();
		  bdd y = recurse(child);
		  int a = dict_.register_a_variable(child);
		  res_ = (y | bdd_ithvar(a)) & bdd_ithvar(x);
		}
	      else
		{
		  // r(Gy) = r(y)r(XGy)
		  bdd y = recurse(child);
		  res_ = y & bdd_ithvar(x);
		}
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
	      return;
	    }
	  case unop::Not:
	    {
	      res_ = bdd_not(recurse(node->child()));
	      return;
	    }
	  case unop::X:
	    {
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop* node)
      {
	bdd f1 = recurse(node->first());
	bdd f2 = recurse(node->second());

	switch (node->op())
	  {
	  case binop::Xor:
	    res_ = bdd_apply(f1, f2, bddop_xor);
	    return;
	  case binop::Implies:
	    res_ = bdd_apply(f1, f2, bddop_imp);
	    return;
	  case binop::Equiv:
	    res_ = bdd_apply(f1, f2, bddop_biimp);
	    return;
	  case binop::U:
	    {
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
	      return;
	    }
	  case binop::R:
	    {
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const multop* node)
      {
	int op = -1;
	switch (node->op())
	  {
	  case multop::And:
	    op = bddop_and;
	    res_ = bddtrue;
	    break;
	  case multop::Or:
	    op = bddop_or;
	    res_ = bddfalse;
	    break;
	  }
	assert(op != -1);
	unsigned s = node->size();
	for (unsigned n = 0; n < s; ++n)
	  {
	    res_ = bdd_apply(res_, recurse(node->nth(n)), op);
	  }
      }

      bdd
      recurse(const formula* f)
      {
	ltl_trad_visitor v(dict_);
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
    };

  }

  tgba_explicit*
438
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict)
439
440
441
442
443
  {
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
444
445
446
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
    destroy(f1);
447

448
449
    std::set<formula*> formulae_seen;
    std::set<formula*> formulae_to_translate;
450
451
452
453
454
455
456
457
458
459
460

    formulae_seen.insert(f2);
    formulae_to_translate.insert(f2);

    tgba_explicit* a = new tgba_explicit(dict);

    a->set_init_state(to_string(f2));

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
461
	formula* f = *formulae_to_translate.begin();
462
463
464
465
466
467
468
469
470
471
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
	translate_dict d;
	ltl_trad_visitor v(d);
	f->accept(v);
	bdd res = v.result();

	std::string now = to_string(f);

472
	minato_isop isop(res, d.next_set & d.a_set);
473
474
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
475
	  {
476
	    formula* dest =
477
478
479
480
481
482
	      d.conj_bdd_to_formula(bdd_existcomp(cube, d.next_set));

	    std::string next = to_string(dest);

	    tgba_explicit::transition* t = a->create_transition(now, next);

483
484
	    a->add_condition(t,
			     d.bdd_to_formula(bdd_existcomp(cube, d.var_set)));
485
486
487
488
489
490
491
492
493
	    d.conj_bdd_to_acc(a, bdd_existcomp(cube, d.a_set), t);

	    if (formulae_seen.find(dest) == formulae_seen.end())
	      {
		formulae_seen.insert(dest);
		formulae_to_translate.insert(dest);
	      }
	    else
	      {
494
		destroy(dest);
495
496
497
498
499
	      }
	  }
      }

    // Free all formulae.
500
    for (std::set<formula*>::iterator i = formulae_seen.begin();
501
	 i != formulae_seen.end(); ++i)
502
      destroy(*i);
503
504
505
506
507
508
509

    // Turn all promises into real accepting conditions.
    a->complement_all_accepting_conditions();
    return a;
  }

}