eltl2tgba_lacim.cc 6.27 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Copyright (C) 2008 Laboratoire d'Informatique de Paris 6 (LIP6),
// dpartement Systmes Rpartis Coopratifs (SRC), Universit Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/destroy.hh"
#include "tgba/tgbabddconcretefactory.hh"
#include <cassert>

#include "eltl2tgba_lacim.hh"

namespace spot
{
  namespace
  {
    using namespace ltl;

    /// \brief Recursively translate a formula into a BDD.
    class eltl_trad_visitor: public const_visitor
    {
    public:
      eltl_trad_visitor(tgba_bdd_concrete_factory& fact, bool root = false)
	: fact_(fact), root_(root)
      {
      }

      virtual
      ~eltl_trad_visitor()
      {
      }

      bdd
      result()
      {
	return res_;
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(fact_.create_atomic_prop(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::Not:
	    {
	      res_ = bdd_not(recurse(node->child()));
	      return;
	    }
	  case unop::X:
	  case unop::F:
          case unop::G:
	    assert(!"unsupported operator");
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop* node)
      {
	bdd f1 = recurse(node->first());
	bdd f2 = recurse(node->second());

	switch (node->op())
	  {
	  case binop::Xor:
	    res_ = bdd_apply(f1, f2, bddop_xor);
	    return;
	  case binop::Implies:
	    res_ = bdd_apply(f1, f2, bddop_imp);
	    return;
	  case binop::Equiv:
	    res_ = bdd_apply(f1, f2, bddop_biimp);
	    return;
	  case binop::U:
	  case binop::R:
	    assert(!"unsupported operator");
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const multop* node)
      {
	int op = -1;
	bool root = false;
	switch (node->op())
	  {
	  case multop::And:
	    op = bddop_and;
	    res_ = bddtrue;
	    // When the root formula is a conjunction it's ok to
	    // consider all children as root formulae.  This allows the
	    // root-G trick to save many more variable.  (See the
	    // translation of G.)
	    root = root_;
	    break;
	  case multop::Or:
	    op = bddop_or;
	    res_ = bddfalse;
	    break;
	  }
	assert(op != -1);
	unsigned s = node->size();
	for (unsigned n = 0; n < s; ++n)
	  {
	    res_ = bdd_apply(res_, recurse(node->nth(n), root), op);
	  }
      }

      void
      visit (const automatop* node)
      {
	nmap m;
	bdd acc = bddtrue;
	std::pair<int, int> vp =
	  recurse_state(node, node->nfa()->get_init_state(), m, acc);

	bdd tmp = bddtrue;
	for (nmap::iterator it = m.begin(); it != m.end(); ++it)
	  tmp &= bdd_apply(bdd_ithvar(it->second.first  + 1),
			   bdd_ithvar(it->second.second + 1), bddop_biimp);
	fact_.constrain_relation(bdd_apply(acc, tmp, bddop_imp));

	if (!node->nfa()->is_loop())
	  fact_.declare_acceptance_condition(acc, node);

	bdd init = bdd_ithvar(vp.first);
	res_ = node->negated_ ? bdd_not(init) : init;
      }

      bdd
      recurse(const formula* f, bool root = false)
      {
	eltl_trad_visitor v(fact_, root);
	f->accept(v);
	return v.result();
      }

    private:
      bdd res_;
      tgba_bdd_concrete_factory& fact_;
      bool root_;

      // Table containing the two now variables associated with each state.
      // TODO: a little documentation about that.
      typedef Sgi::hash_map<
	const nfa::state*, std::pair<int, int>, ptr_hash<nfa::state> > nmap;

      std::pair<int, int>&
      recurse_state(const automatop* n, const nfa::state* s, nmap& m, bdd& acc)
      {
	const nfa::ptr nfa = n->nfa();
	nmap::iterator it;
	it = m.find(s);

	int v1 = 0;
	int v2 = 0;
	if (it != m.end())
	  return it->second;
	else
	{
	  v1 = fact_.create_anonymous_state();
	  v2 = fact_.create_anonymous_state();
	  m[s] = std::make_pair(v1, v2);
	}

	bdd tmp1 = bddfalse;
	bdd tmp2 = bddfalse;
	bdd tmpacc = !bdd_ithvar(v2);

	for (nfa::iterator i = nfa->begin(s); i != nfa->end(s); ++i)
	{
	  bdd f = (*i)->label == -1 ? bddtrue : recurse(n->nth((*i)->label));
	  if (nfa->is_final((*i)->dst))
	  {
	    tmp1 |= f;
	    tmp2 |= f;
	    tmpacc |= f;
	  }
	  else
	  {
	    std::pair<int, int> vp = recurse_state(n, (*i)->dst, m, acc);
	    tmp1 |= (f & bdd_ithvar(vp.first + 1));
	    tmp2 |= (f & bdd_ithvar(vp.second + 1));
	  }
	}
	acc &= tmpacc;
	fact_.constrain_relation(bdd_apply(bdd_ithvar(v1), tmp1, bddop_biimp));
	fact_.constrain_relation(bdd_apply(bdd_ithvar(v2), tmp2, bddop_imp));
	fact_.constrain_relation(
	  bdd_apply(bdd_ithvar(v2), bdd_ithvar(v1), bddop_imp));
	return m[s];
      }
    };
  } // anonymous

  tgba_bdd_concrete*
  eltl_to_tgba_lacim(const ltl::formula* f, bdd_dict* dict)
  {
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
    const ltl::formula* f1 = ltl::unabbreviate_logic(f);
    const ltl::formula* f2 = ltl::negative_normal_form(f1);
    ltl::destroy(f1);

    // Traverse the formula and draft the automaton in a factory.
    tgba_bdd_concrete_factory fact(dict);
    eltl_trad_visitor v(fact, true);
    f2->accept(v);
    ltl::destroy(f2);
    fact.finish();

    // Finally setup the resulting automaton.
    return new tgba_bdd_concrete(fact, v.result());
  }
}