minimize.cc 17.8 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
3
// Copyright (C) 2010, 2011, 2012, 2013, 2014 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19

20
21
22
23
24
25
26
27
28

//#define TRACE

#ifdef TRACE
#  define trace std::cerr
#else
#  define trace while (0) std::cerr
#endif

29
#include <queue>
30
31
32
#include <deque>
#include <set>
#include <list>
33
#include <vector>
34
#include <sstream>
35
36
37
#include "minimize.hh"
#include "ltlast/allnodes.hh"
#include "misc/hash.hh"
38
#include "misc/bddlt.hh"
39
#include "tgba/tgbaproduct.hh"
40
#include "tgbaalgos/powerset.hh"
41
42
43
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/sccfilter.hh"
44
#include "tgbaalgos/sccinfo.hh"
45
#include "tgbaalgos/ltl2tgba_fm.hh"
46
#include "tgbaalgos/bfssteps.hh"
47
#include "tgbaalgos/isdet.hh"
48
#include "tgbaalgos/dtgbacomp.hh"
49
50
51

namespace spot
{
52
53
  // FIXME: do we really want to use unordered_set instead of set here?
  // This calls for benchmarking.
54
55
56
57
  typedef std::unordered_set<const state*,
			     state_ptr_hash, state_ptr_equal> hash_set;
  typedef std::unordered_map<const state*, unsigned,
			     state_ptr_hash, state_ptr_equal> hash_map;
58

59
60
61
  namespace
  {
    static std::ostream&
62
63
64
    dump_hash_set(const hash_set* hs,
		  const const_tgba_ptr& aut,
		  std::ostream& out)
65
    {
66
      out << '{';
67
68
69
70
71
72
      const char* sep = "";
      for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
	{
	  out << sep << aut->format_state(*i);
	  sep = ", ";
	}
73
      out << '}';
74
75
76
77
      return out;
    }

    static std::string
78
    format_hash_set(const hash_set* hs, const_tgba_ptr aut)
79
80
81
82
83
84
85
    {
      std::ostringstream s;
      dump_hash_set(hs, aut, s);
      return s.str();
    }
  }

86
  // Find all states of an automaton.
87
  void build_state_set(const const_tgba_ptr& a, hash_set* seen)
88
  {
Felix Abecassis's avatar
Felix Abecassis committed
89
    std::queue<const state*> tovisit;
90
    // Perform breadth-first traversal.
Felix Abecassis's avatar
Felix Abecassis committed
91
    const state* init = a->get_init_state();
92
    tovisit.push(init);
93
    seen->insert(init);
94
95
    while (!tovisit.empty())
      {
96
97
98
99
	const state* src = tovisit.front();
	tovisit.pop();

	for (auto sit: a->succ(src))
100
	  {
101
102
103
104
105
106
107
108
109
110
	    const state* dst = sit->current_state();
	    // Is it a new state ?
	    if (seen->find(dst) == seen->end())
	      {
		// Register the successor for later processing.
		tovisit.push(dst);
		seen->insert(dst);
	      }
	    else
	      dst->destroy();
111
	  }
112
113
114
115
116
      }
  }

  // From the base automaton and the list of sets, build the minimal
  // resulting automaton
117
118
119
  tgba_digraph_ptr build_result(const const_tgba_ptr& a,
				std::list<hash_set*>& sets,
				hash_set* final)
120
  {
121
    auto dict = a->get_dict();
122
    auto res = make_tgba_digraph(dict);
123
    res->copy_ap_of(a);
124
    res->prop_state_based_acc();
125

126
127
128
129
130
131
    // For each set, create a state in the resulting automaton.
    // For a state s, state_num[s] is the number of the state in the minimal
    // automaton.
    hash_map state_num;
    std::list<hash_set*>::iterator sit;
    for (sit = sets.begin(); sit != sets.end(); ++sit)
132
133
134
      {
	hash_set::iterator hit;
	hash_set* h = *sit;
135
	unsigned num = res->new_state();
136
137
138
	for (hit = h->begin(); hit != h->end(); ++hit)
	  state_num[*hit] = num;
      }
139

140
141
    // For each transition in the initial automaton, add the corresponding
    // transition in res.
142

143
    if (!final->empty())
144
      res->set_single_acceptance_set();
145

146
    for (sit = sets.begin(); sit != sets.end(); ++sit)
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
      {
	hash_set::iterator hit;
	hash_set* h = *sit;

	// Pick one state.
	const state* src = *h->begin();
	unsigned src_num = state_num[src];
	bool accepting = (final->find(src) != final->end());

	// Connect it to all destinations.
	for (auto succit: a->succ(src))
	  {
	    const state* dst = succit->current_state();
	    hash_map::const_iterator i = state_num.find(dst);
	    dst->destroy();
	    if (i == state_num.end()) // Ignore useless destinations.
	      continue;
164
165
	    res->new_acc_transition(src_num, i->second,
				    succit->current_condition(), accepting);
166
167
	  }
      }
168
    res->merge_transitions();
169
170
171
172
173
174
175
    if (res->num_states() > 0)
      {
	const state* init_state = a->get_init_state();
	unsigned init_num = state_num[init_state];
	init_state->destroy();
	res->set_init_state(init_num);
      }
176
177
178
    return res;
  }

179
180
181
182
183
184

  namespace
  {

    struct wdba_search_acc_loop : public bfs_steps
    {
185
      wdba_search_acc_loop(const const_tgba_ptr& det_a,
186
			   unsigned scc_n, scc_info& sm,
187
188
189
			   power_map& pm, const state* dest)
	: bfs_steps(det_a), scc_n(scc_n), sm(sm), pm(pm), dest(dest)
      {
190
	seen(dest);
191
192
193
194
195
      }

      virtual const state*
      filter(const state* s)
      {
196
	s = seen(s);
197
198
	if (sm.scc_of(std::static_pointer_cast<const tgba_digraph>(a_)
		      ->state_number(s)) != scc_n)
199
200
201
202
203
204
205
206
207
208
209
	  return 0;
	return s;
      }

      virtual bool
      match(tgba_run::step&, const state* to)
      {
	return to == dest;
      }

      unsigned scc_n;
210
      scc_info& sm;
211
212
      power_map& pm;
      const state* dest;
213
      state_unicity_table seen;
214
215
216
217
    };


    bool
218
    wdba_scc_is_accepting(const const_tgba_digraph_ptr& det_a, unsigned scc_n,
219
			  const const_tgba_ptr& orig_a, scc_info& sm,
220
			  power_map& pm)
221
    {
222

223
      // Get some state from the SCC #n.
224
      const state* start = det_a->state_from_number(sm.one_state_of(scc_n));
225
226
227
228
229
230
231
232
233

      // Find a loop around START in SCC #n.
      wdba_search_acc_loop wsal(det_a, scc_n, sm, pm, start);
      tgba_run::steps loop;
      const state* reached = wsal.search(start, loop);
      assert(reached == start);
      (void)reached;

      // Build an automaton representing this loop.
234
      auto loop_a = make_tgba_digraph(det_a->get_dict());
235
236
      tgba_run::steps::const_iterator i;
      int loop_size = loop.size();
237
      loop_a->new_states(loop_size);
238
239
240
      int n;
      for (n = 1, i = loop.begin(); n < loop_size; ++n, ++i)
	{
241
	  loop_a->new_transition(n - 1, n, i->label);
242
	  i->s->destroy();
243
244
	}
      assert(i != loop.end());
245
      loop_a->new_transition(n - 1, 0, i->label);
246
      i->s->destroy();
247
248
      assert(++i == loop.end());

249
250
      loop_a->set_init_state(0U);
      const state* loop_a_init = loop_a->get_init_state();
251
252
253
254
255

      // Check if the loop is accepting in the original automaton.
      bool accepting = false;

      // Iterate on each original state corresponding to start.
256
257
258
      const power_map::power_state& ps =
	pm.states_of(det_a->state_number(start));
      for (auto& it: ps)
259
260
261
	{
	  // Contrustruct a product between
	  // LOOP_A, and ORIG_A starting in *IT.
262
	  // FIXME: This could be sped up a lot!
263
	  if (!product_at(loop_a, orig_a, loop_a_init, it)->is_empty())
264
265
266
267
	    {
	      accepting = true;
	      break;
	    }
268
269
	}

270
      loop_a_init->destroy();
271
272
273
274
275
      return accepting;
    }

  }

276
277
  tgba_digraph_ptr minimize_dfa(const const_tgba_digraph_ptr& det_a,
				hash_set* final, hash_set* non_final)
278
  {
279
280
281
    typedef std::list<hash_set*> partition_t;
    partition_t cur_run;
    partition_t next_run;
282

283
284
    // The list of equivalent states.
    partition_t done;
285

286
    hash_map state_set_map;
287

288
289
    // Size of det_a
    unsigned size = final->size() + non_final->size();
290
291
    // Use bdd variables to number sets.  set_num is the first variable
    // available.
292
293
    unsigned set_num =
      det_a->get_dict()->register_anonymous_variables(size, det_a);
294
295
296
297
298
299

    std::set<int> free_var;
    for (unsigned i = set_num; i < set_num + size; ++i)
      free_var.insert(i);
    std::map<int, int> used_var;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
300
301
    hash_set* final_copy;

302
303
304
305
306
307
    if (!final->empty())
      {
	unsigned s = final->size();
	used_var[set_num] = s;
	free_var.erase(set_num);
	if (s > 1)
308
	  cur_run.push_back(final);
309
310
311
312
313
	else
	  done.push_back(final);
	for (hash_set::const_iterator i = final->begin();
	     i != final->end(); ++i)
	  state_set_map[*i] = set_num;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
314
315

	final_copy = new hash_set(*final);
316
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
317
318
319
320
321
    else
      {
	final_copy = final;
      }

322
323
324
325
326
327
328
    if (!non_final->empty())
      {
	unsigned s = non_final->size();
	unsigned num = set_num + 1;
	used_var[num] = s;
	free_var.erase(num);
	if (s > 1)
329
	  cur_run.push_back(non_final);
330
331
332
333
334
335
	else
	  done.push_back(non_final);
	for (hash_set::const_iterator i = non_final->begin();
	     i != non_final->end(); ++i)
	  state_set_map[*i] = num;
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
336
337
338
339
    else
      {
	delete non_final;
      }
340

341
342
    // A bdd_states_map is a list of formulae (in a BDD form) associated with a
    // destination set of states.
343
344
345
346
347
    typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;

    bool did_split = true;

    while (did_split)
348
      {
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
	did_split = false;
	while (!cur_run.empty())
	  {
	    // Get a set to process.
	    hash_set* cur = cur_run.front();
	    cur_run.pop_front();

	    trace << "processing " << format_hash_set(cur, det_a) << std::endl;

	    hash_set::iterator hi;
	    bdd_states_map bdd_map;
	    for (hi = cur->begin(); hi != cur->end(); ++hi)
	      {
		const state* src = *hi;
		bdd f = bddfalse;
364
		for (auto si: det_a->succ(src))
365
366
		  {
		    const state* dst = si->current_state();
367
		    hash_map::const_iterator i = state_set_map.find(dst);
368
		    dst->destroy();
369
370
371
372
373
374
375
376
377
		    if (i == state_set_map.end())
		      // The destination state is not in our
		      // partition.  This can happen if the initial
		      // FINAL and NON_FINAL supplied to the algorithm
		      // do not cover the whole automaton (because we
		      // want to ignore some useless states).  Simply
		      // ignore these states here.
		      continue;
		    f |= (bdd_ithvar(i->second) & si->current_condition());
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
		  }

		// Have we already seen this formula ?
		bdd_states_map::iterator bsi = bdd_map.find(f);
		if (bsi == bdd_map.end())
		  {
		    // No, create a new set.
		    hash_set* new_set = new hash_set;
		    new_set->insert(src);
		    bdd_map[f] = new_set;
		  }
		else
		  {
		    // Yes, add the current state to the set.
		    bsi->second->insert(src);
		  }
	      }

	    bdd_states_map::iterator bsi = bdd_map.begin();
	    if (bdd_map.size() == 1)
	      {
		// The set was not split.
		trace << "set " << format_hash_set(bsi->second, det_a)
		      << " was not split" << std::endl;
		next_run.push_back(bsi->second);
	      }
	    else
	      {
406
		did_split = true;
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
		for (; bsi != bdd_map.end(); ++bsi)
		  {
		    hash_set* set = bsi->second;
		    // Free the number associated to these states.
		    unsigned num = state_set_map[*set->begin()];
		    assert(used_var.find(num) != used_var.end());
		    unsigned left = (used_var[num] -= set->size());
		    // Make sure LEFT does not become negative (hence bigger
		    // than SIZE when read as unsigned)
		    assert(left < size);
		    if (left == 0)
		      {
			used_var.erase(num);
			free_var.insert(num);
		      }
		    // Pick a free number
		    assert(!free_var.empty());
		    num = *free_var.begin();
		    free_var.erase(free_var.begin());
		    used_var[num] = set->size();
		    for (hash_set::iterator hit = set->begin();
			 hit != set->end(); ++hit)
		      state_set_map[*hit] = num;
		    // Trivial sets can't be splitted any further.
		    if (set->size() == 1)
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " is minimal" << std::endl;
			done.push_back(set);
		      }
		    else
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " should be processed further" << std::endl;
			next_run.push_back(set);
		      }
		  }
	      }
	    delete cur;
	  }
	if (did_split)
	  trace << "splitting did occur during this pass." << std::endl;
	else
	  trace << "splitting did not occur during this pass." << std::endl;
	std::swap(cur_run, next_run);
452
      }
453
454
455
456
457
458

    done.splice(done.end(), cur_run);

#ifdef TRACE
    trace << "Final partition: ";
    for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
459
      trace << format_hash_set(*i, det_a) << ' ';
460
461
    trace << std::endl;
#endif
Felix Abecassis's avatar
Felix Abecassis committed
462
463

    // Build the result.
464
    auto res = build_result(det_a, done, final_copy);
Felix Abecassis's avatar
Felix Abecassis committed
465
466
467
468

    // Free all the allocated memory.
    delete final_copy;
    hash_map::iterator hit;
469
470
471
    for (hit = state_set_map.begin(); hit != state_set_map.end();)
      {
	hash_map::iterator old = hit++;
472
	old->first->destroy();
473
      }
Felix Abecassis's avatar
Felix Abecassis committed
474
475
476
477
    std::list<hash_set*>::iterator it;
    for (it = done.begin(); it != done.end(); ++it)
      delete *it;

478
479
    return res;
  }
480

481

482
  tgba_digraph_ptr minimize_monitor(const const_tgba_digraph_ptr& a)
483
484
  {
    hash_set* final = new hash_set;
485
    hash_set* non_final = new hash_set;
486
    tgba_digraph_ptr det_a;
487
488
489
490
491

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);
    }
492
493

    // non_final contain all states.
494
    // final is empty: there is no acceptance condition
495
    build_state_set(det_a, non_final);
496
497
498
    auto res = minimize_dfa(det_a, final, non_final);
    res->prop_deterministic();
    res->prop_inherently_weak();
499
    res->prop_state_based_acc();
500
    return res;
501
502
  }

503
  tgba_digraph_ptr minimize_wdba(const const_tgba_digraph_ptr& a)
504
505
  {
    hash_set* final = new hash_set;
506
507
    hash_set* non_final = new hash_set;

508
    tgba_digraph_ptr det_a;
509
510
511
512
513

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);

514
515
516
517
518
      // For each SCC of the deterministic automaton, determine if it
      // is accepting or not.

      // This corresponds to the algorithm in Fig. 1 of "Efficient
      // minimization of deterministic weak omega-automata" written by
519
      // Christof Löding and published in Information Processing
520
521
522
523
524
      // Letters 79 (2001) pp 105--109.

      // We also keep track of whether an SCC is useless
      // (i.e., it is not the start of any accepting word).

525
      scc_info sm(det_a);
526
      unsigned scc_count = sm.scc_count();
527
528
      // SCC that have been marked as useless.
      std::vector<bool> useless(scc_count);
529
530
531
532
533
534
535
      // The "color".  Even number correspond to
      // accepting SCCs.
      std::vector<unsigned> d(scc_count);

      // An even number larger than scc_count.
      unsigned k = (scc_count | 1) + 1;

536
      // SCC are numbered in topological order
537
      // (but in the reverse order as Löding's)
538
      for (unsigned m = 0; m < scc_count; ++m)
539
	{
540
	  bool is_useless = true;
541
542
	  bool transient = sm.is_trivial(m);
	  auto& succ = sm.succ(m);
543

544
	  if (transient && succ.empty())
545
	    {
546
547
548
549
550
551
552
553
554
555
	      // A trivial SCC without successor is useless.
	      useless[m] = true;
	      d[m] = k - 1;
	      continue;
	    }

	  // Compute the minimum color l of the successors.
	  // Also SCCs are useless if all their successor are
	  // useless.
	  unsigned l = k;
556
	  for (auto& j: succ)
557
	    {
558
559
	      is_useless &= useless[j.dst];
	      unsigned dj = d[j.dst];
560
561
562
563
564
565
566
	      if (dj < l)
		l = dj;
	    }

	  if (transient)
	    {
	      d[m] = l;
567
568
569
570
	    }
	  else
	    {
	      // Regular SCCs are accepting if any of their loop
571
572
	      // corresponds to an accepted word in the original
	      // automaton.
573
	      if (wdba_scc_is_accepting(det_a, m, a, sm, pm))
574
575
		{
		  is_useless = false;
576
		  d[m] = l & ~1; // largest even number inferior or equal
577
578
579
		}
	      else
		{
580
		  d[m] = (l - 1) | 1; // largest odd number inferior or equal
581
		}
582
	    }
583

584
	  useless[m] = is_useless;
585

586
587
	  if (!is_useless)
	    {
588
	      hash_set* dest_set = (d[m] & 1) ? non_final : final;
589
590
	      for (auto s: sm.states_of(m))
		dest_set->insert(det_a->state_from_number(s));
591
	    }
592
593
594
	}
    }

595
596
597
598
    auto res = minimize_dfa(det_a, final, non_final);
    res->prop_deterministic();
    res->prop_inherently_weak();
    return res;
599
600
  }

601
602
603
604
  tgba_digraph_ptr
  minimize_obligation(const const_tgba_digraph_ptr& aut_f,
		      const ltl::formula* f,
		      const_tgba_digraph_ptr aut_neg_f,
605
		      bool reject_bigger)
606
  {
607
    auto min_aut_f = minimize_wdba(aut_f);
608

609
610
611
    if (reject_bigger)
      {
	// Abort if min_aut_f has more states than aut_f.
612
	unsigned orig_states = aut_f->num_states();
613
	if (orig_states < min_aut_f->num_states())
614
	  return std::const_pointer_cast<tgba_digraph>(aut_f);
615
616
      }

617
618
619
620
621
    // If the input automaton was already weak and deterministic, the
    // output is necessary correct.
    if (aut_f->is_inherently_weak() && aut_f->is_deterministic())
      return min_aut_f;

622
623
624
625
626
    // if f is a syntactic obligation formula, the WDBA minimization
    // must be correct.
    if (f && f->is_syntactic_obligation())
      return min_aut_f;

627
    // If aut_f is a guarantee automaton, the WDBA minimization must be
628
    // correct.
629
    if (is_guarantee_automaton(aut_f))
630
      return min_aut_f;
631
632
633
634

    // Build negation automaton if not supplied.
    if (!aut_neg_f)
      {
635
636
637
638
639
640
641
642
643
	if (f)
	  {
	    // If we know the formula, simply build the automaton for
	    // its negation.
	    const ltl::formula* neg_f =
	      ltl::unop::instance(ltl::unop::Not, f->clone());
	    aut_neg_f = ltl_to_tgba_fm(neg_f, aut_f->get_dict());
	    neg_f->destroy();
	    // Remove useless SCCs.
644
	    aut_neg_f = scc_filter(aut_neg_f, true);
645
646
647
648
649
	  }
	else if (is_deterministic(aut_f))
	  {
	    // If the automaton is deterministic, complementing is
	    // easy.
650
	    aut_neg_f = dtgba_complement(aut_f);
651
652
653
654
	  }
	else
	  {
	    // Otherwise, we cannot check if the minimization is safe.
655
	    return nullptr;
656
	  }
657
658
      }

659
    // If the negation is a guarantee automaton, then the
660
    // minimization is correct.
661
    if (is_guarantee_automaton(aut_neg_f))
662
663
664
665
666
667
      {
	return min_aut_f;
      }

    bool ok = false;

668
    if (product(min_aut_f, aut_neg_f)->is_empty())
669
      {
670
	// Complement the minimized WDBA.
671
672
	assert(min_aut_f->is_inherently_weak());
	auto neg_min_aut_f = dtgba_complement(min_aut_f);
673
674
675
676
	if (product(aut_f, neg_min_aut_f)->is_empty())
	  // Finally, we are now sure that it was safe
	  // to minimize the automaton.
	  ok = true;
677
678
679
680
      }

    if (ok)
      return min_aut_f;
681
    return std::const_pointer_cast<tgba_digraph>(aut_f);
682
  }
683
}