ltl2tgba_fm.cc 17.3 KB
Newer Older
1
// Copyright (C) 2003, 2004  Laboratoire d'Informatique de Paris 6 (LIP6),
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// dpartement Systmes Rpartis Coopratifs (SRC), Universit Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

22
#include "misc/hash.hh"
23
#include "misc/bddalloc.hh"
24
#include "misc/bddlt.hh"
25
#include "misc/minato.hh"
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/destroy.hh"
#include "ltlvisit/tostring.hh"
#include <cassert>

#include "tgba/tgbabddconcretefactory.hh"
#include "ltl2tgba_fm.hh"

namespace spot
{
  using namespace ltl;

  namespace
  {

44
45
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
    class translate_dict: public bdd_allocator
    {
    public:

      translate_dict()
	: bdd_allocator(),
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = a_map.begin(); i != a_map.end(); ++i)
67
	  destroy(i->first);
68
	for (i = var_map.begin(); i != var_map.end(); ++i)
69
	  destroy(i->first);
70
	for (i = next_map.begin(); i != next_map.end(); ++i)
71
	  destroy(i->first);
72
73
74
      }

      /// Formula-to-BDD-variable maps.
75
76
      typedef Sgi::hash_map<const formula*, int,
			    ptr_hash<formula> > fv_map;
77
      /// BDD-variable-to-formula maps.
78
      typedef Sgi::hash_map<int, const formula*> vf_map;
79
80
81
82
83
84
85
86
87
88
89
90
91

      fv_map a_map;	       ///< Maps formulae to "a" BDD variables
      vf_map a_formula_map;    ///< Maps "a" BDD variables to formulae
      fv_map var_map;	       ///< Maps atomic propisitions to BDD variables
      vf_map var_formula_map;  ///< Maps BDD variables to atomic propisitions
      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
92
      register_proposition(const formula* f)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
      {
	int num;
	// Do not build a variable that already exists.
	fv_map::iterator sii = var_map.find(f);
	if (sii != var_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
	    num = allocate_variables(1);
	    var_map[f] = num;
	    var_formula_map[num] = f;
	  }
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
113
      register_a_variable(const formula* f)
114
115
      {
	int num;
116
	// Do not build an acceptance variable that already exists.
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
	fv_map::iterator sii = a_map.find(f);
	if (sii != a_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
	    num = allocate_variables(1);
	    a_map[f] = num;
	    a_formula_map[num] = f;
	  }
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
134
      register_next_variable(const formula* f)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
	    num = allocate_variables(1);
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Atomic Propositions:" << std::endl;
	for (fi = var_map.begin(); fi != var_map.end(); ++fi)
	  {
	    os << "  " << fi->second << ": ";
	    to_string(fi->first, os) << std::endl;
	  }
	os << "a Variables:" << std::endl;
	for (fi = a_map.begin(); fi != a_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": a[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	return os;
      }

179
      formula*
180
181
182
183
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
184
	  return clone(isi->second);
185
186
	isi = a_formula_map.find(var);
	if (isi != a_formula_map.end())
187
	  return clone(isi->second);
188
189
	isi = var_formula_map.find(var);
	if (isi != var_formula_map.end())
190
	  return clone(isi->second);
191
192
193
	assert(0);
      }

194
      formula*
195
196
197
      conj_bdd_to_formula(bdd b)
      {
	if (b == bddfalse)
198
199
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
200
201
202
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
203
	    formula* res = var_to_formula(var);
204
205
206
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
207
		res = unop::instance(unop::Not, res);
208
209
210
211
		b = bdd_low(b);
	      }
	    else
	      {
212
		assert(bdd_low(b) == bddfalse);
213
214
215
216
217
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
218
	return multop::instance(multop::And, v);
219
220
      }

221
222
      const formula*
      bdd_to_formula(bdd f)
223
      {
224
	if (f == bddfalse)
225
	  return constant::false_instance();
226

227
228
229
230
231
232
233
234
235
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
236
237
238
239
240
241
242
243
244
245
246

      void
      conj_bdd_to_acc(tgba_explicit* a, bdd b, tgba_explicit::transition* t)
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
247
		// Simply ignore negated acceptance variables.
248
249
250
251
		b = bdd_low(b);
	      }
	    else
	      {
252
		formula* ac = var_to_formula(var);
253

254
255
256
		if (! a->has_acceptance_condition(ac))
		  a->declare_acceptance_condition(clone(ac));
		a->add_acceptance_condition(t, ac);
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


    // The rewrite rules used here are adapted from Jean-Michel
    // Couvreur's FM paper.
    class ltl_trad_visitor: public const_visitor
    {
    public:
      ltl_trad_visitor(translate_dict& dict)
	: dict_(dict)
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

      bdd result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
315
316
317
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
318
319
320
321
322
323
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
	      return;
	    }
	  case unop::G:
	    {
324
325
326
327
328
329
330
331
332
333
334
335
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
336
	      const formula* child = node->child();
337
	      int x = dict_.register_next_variable(node);
338
339
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
340
341
342
343
	      return;
	    }
	  case unop::Not:
	    {
344
	      // r(!y) = !r(y)
345
346
347
348
349
	      res_ = bdd_not(recurse(node->child()));
	      return;
	    }
	  case unop::X:
	    {
350
	      // r(Xy) = Next[y]
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop* node)
      {
	bdd f1 = recurse(node->first());
	bdd f2 = recurse(node->second());

	switch (node->op())
	  {
368
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
	  case binop::Xor:
	    res_ = bdd_apply(f1, f2, bddop_xor);
	    return;
	  case binop::Implies:
	    res_ = bdd_apply(f1, f2, bddop_imp);
	    return;
	  case binop::Equiv:
	    res_ = bdd_apply(f1, f2, bddop_biimp);
	    return;
	  case binop::U:
	    {
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
	      return;
	    }
	  case binop::R:
	    {
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const multop* node)
      {
	int op = -1;
	switch (node->op())
	  {
	  case multop::And:
	    op = bddop_and;
	    res_ = bddtrue;
	    break;
	  case multop::Or:
	    op = bddop_or;
	    res_ = bddfalse;
	    break;
	  }
	assert(op != -1);
	unsigned s = node->size();
	for (unsigned n = 0; n < s; ++n)
	  {
	    res_ = bdd_apply(res_, recurse(node->nth(n)), op);
	  }
      }

      bdd
      recurse(const formula* f)
      {
	ltl_trad_visitor v(dict_);
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
    };

  }

  tgba_explicit*
438
439
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
		 bool exprop, bool symb_merge)
440
441
442
443
444
  {
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
445
446
447
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
    destroy(f1);
448

449
450
    std::set<const formula*> formulae_seen;
    std::set<const formula*> formulae_to_translate;
451
452
    // Map a representation of successors to a canonical formula.
    // We do this because many formulae (such as `aR(bRc)' and
453
    // `aR(bRc).(bRc)') are equivalent, and are trivially identified
454
455
456
457
458
459
    // by looking at the set of successors.
    typedef std::map<bdd, const formula*, bdd_less_than> succ_to_formula;
    succ_to_formula canonical_succ;

    translate_dict d;
    ltl_trad_visitor v(d);
460
461
462
463
464
465
466
467
468
469
470

    formulae_seen.insert(f2);
    formulae_to_translate.insert(f2);

    tgba_explicit* a = new tgba_explicit(dict);

    a->set_init_state(to_string(f2));

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
471
	const formula* f = *formulae_to_translate.begin();
472
473
474
475
476
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
	f->accept(v);
	bdd res = v.result();
477
	canonical_succ[res] = f;
478
479
480

	std::string now = to_string(f);

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
	// We used to factor only Next and A variables while computing
	// prime implicants, with
	//    minato_isop isop(res, d.next_set & d.a_set);
	// in order to obtain transitions with formulae of atomic
	// proposition directly, but unfortunately this led to strange
	// factorizations.  For instance f U g was translated as
	//     r(f U g) = g + a(g).r(X(f U g)).(f + g)
	// instead of just
	//     r(f U g) = g + a(g).r(X(f U g)).f
	// Of course both formulae are logically equivalent, but the
	// latter is "more deterministic" than the former, so it should
	// be preferred.
	//
	// Therefore we now factor all variables.  This may lead to more
	// transitions than necessary (e.g.,  r(f + g) = f + g  will be
496
497
498
	// coded as two transitions), but we later merge all transitions
	// with same source/destination and acceptance conditions.  This
	// is the goal of the `dests' hash.
499
	//
500
	// Note that this is still not optimal.  For instance it is
501
	// better to encode `f U g' as
502
	//     r(f U g) = g + a(g).r(X(f U g)).f.!g
503
504
505
506
	// because that leads to a deterministic automaton.  In order
	// to handle this, we take the conditions of any transition
	// going to true (it's `g' here), and remove it from the other
	// transitions.
507
508
509
	//
	// In `exprop' mode, considering all possible combinations of
	// outgoing propositions generalizes the above trick.
510
511
512
513
514

	typedef std::map<bdd, bdd, bdd_less_than> prom_map;
	typedef Sgi::hash_map<const formula*, prom_map, ptr_hash<formula> >
	  dest_map;
	dest_map dests;
515

516
	// Compute all outgoing arcs.
517
518
519
520
521

	// If EXPROP is set, we will refine the symbolic
	// representation of the successors for all combinations of
	// the atomic properties involved in the formula.
	// VAR_SET is the set of these properties.
522
	bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
523
524
525
526
527
	// ALL_PROPS is the combinations we have yet to consider.
	// We used to start with `all_props = bddtrue', but it is
	// more efficient to start with the set of all satisfiable
	// variables combinations.
	bdd all_props = bdd_existcomp(res, d.var_set);
528
	while (all_props != bddfalse)
529
	  {
530
531
532
533
534
535
	    bdd one_prop_set =
	      exprop ? bdd_satoneset(all_props, var_set, bddtrue) : bddtrue;
	    all_props -= one_prop_set;
	    minato_isop isop(res & one_prop_set);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
536
	      {
537
538
539
540
541
542
543
		const formula* dest =
		  d.conj_bdd_to_formula(bdd_existcomp(cube, d.next_set));

		// If we already know a state with the same successors,
		// use it in lieu of the current one.  (See the comments
		// for canonical_succ.)  We need to do this only for new
		// destinations.
544
545
		if (symb_merge
		    && formulae_seen.find(dest) == formulae_seen.end())
546
		  {
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
		    dest->accept(v);
		    bdd succbdd = v.result();
		    succ_to_formula::iterator cs =
		      canonical_succ.find(succbdd);
		    if (cs != canonical_succ.end())
		      {
			destroy(dest);
			dest = clone(cs->second);
		      }
		    else
		      {
			canonical_succ[succbdd] = dest;
		      }
		  }

		bdd promises = bdd_existcomp(cube, d.a_set);
		bdd conds =
		  exprop ? one_prop_set : bdd_existcomp(cube, var_set);

		dest_map::iterator i = dests.find(dest);
		if (i == dests.end())
		  {
		    dests[dest][promises] = conds;
570
571
572
		  }
		else
		  {
573
574
		    i->second[promises] |= conds;
		    destroy(dest);
575
576
		  }
	      }
577
	  }
578

579
	// Check for an arc going to 1 (True).  Register it first, that
580
581
582
	// way it will be explored before the other during the model
	// checking.
	dest_map::const_iterator i = dests.find(constant::true_instance());
583
584
585
586
587
	// conditions of the True arc, so when can remove them from
	// all other arcs.  It might sounds that this is not needed
	// when exprop is used, but it fact it is complementary.
	//
	// Consider
588
	//   f = r(X(1) R p) = p.(1 + r(X(1) R p))
589
	// with exprop the two outgoing arcs would be
590
591
        //         p                  p
	//     f ----> 1       f ----------> 1
592
593
	//
	// where in fact we could output
594
595
        //         p
	//     f ----> 1
596
	//
597
	// because there is no point in looping on f if we can go to 1.
598
	bdd cond_for_true = bddfalse;
599
600
	if (i != dests.end())
	  {
601
602
	    // Transitions going to 1 (true) are not expected to make
	    // any promises.
603
604
605
606
	    assert(i->second.size() == 1);
	    prom_map::const_iterator j = i->second.find(bddtrue);
	    assert(j != i->second.end());

607
	    cond_for_true = j->second;
608
609
	    tgba_explicit::transition* t =
	      a->create_transition(now, constant::true_instance()->val_name());
610
	    a->add_condition(t, d.bdd_to_formula(cond_for_true));
611
612
613
614
615
	  }
	// Register other transitions.
	for (i = dests.begin(); i != dests.end(); ++i)
	  {
	    const formula* dest = i->first;
616
617
618
619
	    // The cond_for_true optimization can cause some
	    // transitions to be removed.  So we have to remember
	    // whether a formula is actually reachable.
	    bool reachable = false;
620

621
622
623
624
625
626
	    if (dest != constant::true_instance())
	      {
		std::string next = to_string(dest);
		for (prom_map::const_iterator j = i->second.begin();
		     j != i->second.end(); ++j)
		  {
627
628
629
		    bdd cond = j->second - cond_for_true;
		    if (cond == bddfalse) // Skip false transitions.
		      continue;
630
631
		    tgba_explicit::transition* t =
		      a->create_transition(now, next);
632
		    a->add_condition(t, d.bdd_to_formula(cond));
633
		    d.conj_bdd_to_acc(a, j->first, t);
634
		    reachable = true;
635
636
		  }
	      }
637
638
639
640
641
642
643
	    else
	      {
		// "1" is reachable.
		reachable = true;
	      }
	    if (reachable
		&& formulae_seen.find(dest) == formulae_seen.end())
644
645
646
647
648
649
	      {
		formulae_seen.insert(dest);
		formulae_to_translate.insert(dest);
	      }
	    else
	      {
650
		destroy(dest);
651
652
653
654
655
	      }
	  }
      }

    // Free all formulae.
656
    for (std::set<const formula*>::iterator i = formulae_seen.begin();
657
	 i != formulae_seen.end(); ++i)
658
      destroy(*i);
659

660
661
    // Turn all promises into real acceptance conditions.
    a->complement_all_acceptance_conditions();
662
663
664
665
    return a;
  }

}