ltl2tgba_fm.cc 24.5 KB
Newer Older
1
2
3
// Copyright (C) 2003, 2004, 2005, 2006, 2008 Laboratoire
// d'Informatique de Paris 6 (LIP6), dpartement Systmes Rpartis
// Coopratifs (SRC), Universit Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

22
#include "misc/hash.hh"
23
#include "misc/bddalloc.hh"
24
#include "misc/bddlt.hh"
25
#include "misc/minato.hh"
26
27
28
29
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/destroy.hh"
#include "ltlvisit/tostring.hh"
30
#include "ltlvisit/postfix.hh"
31
#include "ltlvisit/apcollect.hh"
32
#include <cassert>
33
#include <memory>
34
#include "ltl2tgba_fm.hh"
35
#include "ltlvisit/contain.hh"
36
37
38
39
40
41
42
43

namespace spot
{
  using namespace ltl;

  namespace
  {

44
45
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
46
47
48
49
50
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
51
    class translate_dict
52
53
54
    {
    public:

55
56
      translate_dict(bdd_dict* dict)
	: dict(dict),
57
58
59
60
61
62
63
64
65
66
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
67
	  destroy(dynamic_cast<const ltl::formula*>(i->first));
68
	dict->unregister_all_my_variables(this);
69
70
      }

71
72
      bdd_dict* dict;

73
74
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
75
76
77
78
79
80
81
82
83

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
84
      register_proposition(const formula* f)
85
      {
86
	int num = dict->register_proposition(f, this);
87
88
89
90
91
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
92
      register_a_variable(const formula* f)
93
      {
94
	int num = dict->register_acceptance_variable(f, this);
95
96
97
98
99
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
100
      register_next_variable(const formula* f)
101
102
103
104
105
106
107
108
109
110
111
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
112
	    num = dict->register_anonymous_variables(1, this);
113
114
115
116
117
118
119
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

120
      formula*
121
122
123
124
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
125
	  return dynamic_cast<ltl::formula*>(isi->second->clone());
126
127
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
128
	  return dynamic_cast<ltl::formula*>(isi->second->clone());
129
130
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
131
	  return dynamic_cast<ltl::formula*>(isi->second->clone());
132
	assert(0);
133
134
135
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
136
137
      }

138
      formula*
139
140
141
      conj_bdd_to_formula(bdd b)
      {
	if (b == bddfalse)
142
143
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
144
145
146
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
147
	    formula* res = var_to_formula(var);
148
149
150
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
151
		res = unop::instance(unop::Not, res);
152
153
154
155
		b = bdd_low(b);
	      }
	    else
	      {
156
		assert(bdd_low(b) == bddfalse);
157
158
159
160
161
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
162
	return multop::instance(multop::And, v);
163
164
      }

165
166
      const formula*
      bdd_to_formula(bdd f)
167
      {
168
	if (f == bddfalse)
169
	  return constant::false_instance();
170

171
172
173
174
175
176
177
178
179
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
180
181
182
183
184
185
186
187
188
189
190

      void
      conj_bdd_to_acc(tgba_explicit* a, bdd b, tgba_explicit::transition* t)
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
191
		// Simply ignore negated acceptance variables.
192
193
194
195
		b = bdd_low(b);
	      }
	    else
	      {
196
		formula* ac = var_to_formula(var);
197

198
		if (!a->has_acceptance_condition(ac))
199
200
		  a->declare_acceptance_condition(clone(ac));
		a->add_acceptance_condition(t, ac);
201
202
203
204
205
206
207
208
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };


253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    // The rewrite rules used here are adapted from Jean-Michel
    // Couvreur's FM paper.
    class ltl_trad_visitor: public const_visitor
    {
    public:
      ltl_trad_visitor(translate_dict& dict)
	: dict_(dict)
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

268
269
      bdd
      result() const
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
      {
	return res_;
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
304
305
306
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
307
308
309
310
311
312
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
	      return;
	    }
	  case unop::G:
	    {
313
314
315
316
317
318
319
320
321
322
323
324
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
325
	      const formula* child = node->child();
326
	      int x = dict_.register_next_variable(node);
327
328
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
329
330
331
332
	      return;
	    }
	  case unop::Not:
	    {
333
	      // r(!y) = !r(y)
334
335
336
337
338
	      res_ = bdd_not(recurse(node->child()));
	      return;
	    }
	  case unop::X:
	    {
339
	      // r(Xy) = Next[y]
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop* node)
      {
	bdd f1 = recurse(node->first());
	bdd f2 = recurse(node->second());

	switch (node->op())
	  {
357
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
	  case binop::Xor:
	    res_ = bdd_apply(f1, f2, bddop_xor);
	    return;
	  case binop::Implies:
	    res_ = bdd_apply(f1, f2, bddop_imp);
	    return;
	  case binop::Equiv:
	    res_ = bdd_apply(f1, f2, bddop_biimp);
	    return;
	  case binop::U:
	    {
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
	      return;
	    }
	  case binop::R:
	    {
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const multop* node)
      {
	int op = -1;
	switch (node->op())
	  {
	  case multop::And:
	    op = bddop_and;
	    res_ = bddtrue;
	    break;
	  case multop::Or:
	    op = bddop_or;
	    res_ = bddfalse;
	    break;
	  }
	assert(op != -1);
	unsigned s = node->size();
	for (unsigned n = 0; n < s; ++n)
	  {
	    res_ = bdd_apply(res_, recurse(node->nth(n)), op);
	  }
      }

      bdd
      recurse(const formula* f)
      {
	ltl_trad_visitor v(dict_);
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
    };

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

    // Check whether a formula has a R or G operator at its top-level
    // (preceding logical operators do not count).
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
	    return;
	  case binop::R:
	    res_ = true;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
508
509
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
510
511
512
513
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
514
	pfl_[f] = rel;
515
516
517
518
	return rel;
      }

    private:
519
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
520
      pfl_map pfl_;
521
522
    };

523
524
525
    class formula_canonizer
    {
    public:
526
      formula_canonizer(translate_dict& d,
527
528
			bool fair_loop_approx, bdd all_promises,
			language_containment_checker* lcc)
529
530
	: v_(d),
	  fair_loop_approx_(fair_loop_approx),
531
532
	  all_promises_(all_promises),
	  lcc_(lcc)
533
534
535
536
537
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
538

539
540
      ~formula_canonizer()
      {
541
	while (!f2b_.empty())
542
	  {
543
544
545
546
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
	    destroy(f);
547
	  }
548
549
550
      }

      bdd
551
      translate(const formula* f, bool* new_flag = 0)
552
553
554
555
556
557
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

558
559
560
	if (new_flag)
	  *new_flag = true;

561
562
563
	// Perform the actual translation.
	f->accept(v_);
	bdd res = v_.result();
564
565
566
567
568
569
570
571
572
573
574
575

	// Apply the fair-loop approximation if requested.
	if (fair_loop_approx_)
	  {
	    // If the source cannot possibly be part of a fair
	    // loop, make all possible promises.
	    if (fair_loop_approx_
		&& f != constant::true_instance()
		&& !pflc_.check(f))
	      res &= all_promises_;
	  }

576
577
578
579
580
581
582
583
584
585
586
	f2b_[clone(f)] = res;

	// Register the reverse mapping if it is not already done.
	if (b2f_.find(res) == b2f_.end())
	  b2f_[res] = f;
	return res;
      }

      const formula*
      canonize(const formula* f)
      {
587
588
	bool new_variable = false;
	bdd b = translate(f, &new_variable);
589
590

	bdd_to_formula_map::iterator i = b2f_.find(b);
591
592
	// Since we have just translated the formula, it is
	// necessarily in b2f_.
593
594
595
	assert(i != b2f_.end());

	if (i->second != f)
596
	  {
597
	    // The translated bdd maps to an already seen formula.
598
599
	    destroy(f);
	    f = clone(i->second);
600
	  }
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
	else if (new_variable && lcc_)
	  {
	    // It's a new bdd for a new formula.  Let's see if we can
	    // find an equivalent formula with language containment
	    // checks.
	    for (formula_to_bdd_map::const_iterator j = f2b_.begin();
		 j != f2b_.end(); ++j)
	      if (f != j->first && lcc_->equal(f, j->first))
		{
		  f2b_[f] = j->second;
		  i->second = j->first;
		  destroy(f);
		  f = clone(i->second);
		  break;
		}
	  }
617
	return f;
618
619
      }

620
621
622
623
624
625
626
627
628
629
630
631
632
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;
      bdd_to_formula_map b2f_;
      // Map a representation of successors to a canonical formula.
      // We do this because many formulae (such as `aR(bRc)' and
      // `aR(bRc).(bRc)') are equivalent, and are trivially identified
      // by looking at the set of successors.
      typedef std::map<const formula*, bdd> formula_to_bdd_map;
      formula_to_bdd_map f2b_;
633
634
635
636

      possible_fair_loop_checker pflc_;
      bool fair_loop_approx_;
      bdd all_promises_;
637
      language_containment_checker* lcc_;
638
639
640
641
642
    };

  }

  typedef std::map<bdd, bdd, bdd_less_than> prom_map;
643
  typedef Sgi::hash_map<const formula*, prom_map, formula_ptr_hash> dest_map;
644
645
646
647

  static void
  fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
  {
648
    bdd conds = bdd_existcomp(label, d.var_set);
649
650
    bdd promises = bdd_existcomp(label, d.a_set);

651
652
653
654
655
656
657
658
659
660
661
662
663
    dest_map::iterator i = dests.find(dest);
    if (i == dests.end())
      {
	dests[dest][promises] = conds;
      }
    else
      {
	i->second[promises] |= conds;
	destroy(dest);
      }
  }


664
  tgba_explicit*
665
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
666
		 bool exprop, bool symb_merge, bool branching_postponement,
667
		 bool fair_loop_approx, const atomic_prop_set* unobs,
668
		 int reduce_ltl, bool containment_checks)
669
  {
670
671
    symb_merge |= containment_checks;

672
673
674
675
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
676
677
678
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
    destroy(f1);
679

680
681
682
683
684
685
686
687
    // Simplify the formula, if requested.
    if (reduce_ltl)
      {
	formula* tmp = reduce(f2, reduce_ltl);
	destroy(f2);
	f2 = tmp;
      }

688
689
690
    typedef std::set<const formula*, formula_ptr_less_than> set_type;
    set_type formulae_seen;
    set_type formulae_to_translate;
691

692
    translate_dict d(dict);
693

694
695
    // Compute the set of all promises that can possibly occurre
    // inside the formula.
696
    bdd all_promises = bddtrue;
697
    if (fair_loop_approx || unobs)
698
699
700
701
702
703
      {
	ltl_promise_visitor pv(d);
	f2->accept(pv);
	all_promises = pv.result();
      }

704
705
706
707
708
709
    language_containment_checker lcc(dict, exprop, symb_merge,
				     branching_postponement,
				     fair_loop_approx);

    formula_canonizer fc(d, fair_loop_approx, all_promises,
			 containment_checks ? &lcc : 0);
710

711
712
713
714
715
716
717
718
719
720
    // These are used when atomic propositions are interpreted as
    // events.  There are two kinds of events: observable events are
    // those used in the formula, and unobservable events or other
    // events that can occur at anytime.  All events exclude each
    // other.
    bdd observable_events = bddfalse;
    bdd unobservable_events = bddfalse;
    if (unobs)
      {
	bdd neg_events = bddtrue;
721
722
	std::auto_ptr<atomic_prop_set> aps(atomic_prop_collect(f));
	for (atomic_prop_set::const_iterator i = aps->begin();
723
724
725
726
727
728
729
730
	     i != aps->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    observable_events = (observable_events & neg) | (neg_events & pos);
	    neg_events &= neg;
	  }
731
	for (atomic_prop_set::const_iterator i = unobs->begin();
732
733
734
735
736
737
738
739
740
741
742
743
744
	     i != unobs->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    unobservable_events = ((unobservable_events & neg)
				   | (neg_events & pos));
	    observable_events &= neg;
	    neg_events &= neg;
	  }
      }
    bdd all_events = observable_events | unobservable_events;

745
746
747
748
749
750
751
752
753
754
    formulae_seen.insert(f2);
    formulae_to_translate.insert(f2);

    tgba_explicit* a = new tgba_explicit(dict);

    a->set_init_state(to_string(f2));

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
755
	const formula* f = *formulae_to_translate.begin();
756
757
758
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
759
	bdd res = fc.translate(f);
760

761
762
763
764
765
766
767
768
	// Handle exclusive events.
	if (unobs)
	  {
	    res &= observable_events;
	    int n = d.register_next_variable(f);
	    res |= unobservable_events & bdd_ithvar(n) & all_promises;
	  }

769
770
	std::string now = to_string(f);

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
	// We used to factor only Next and A variables while computing
	// prime implicants, with
	//    minato_isop isop(res, d.next_set & d.a_set);
	// in order to obtain transitions with formulae of atomic
	// proposition directly, but unfortunately this led to strange
	// factorizations.  For instance f U g was translated as
	//     r(f U g) = g + a(g).r(X(f U g)).(f + g)
	// instead of just
	//     r(f U g) = g + a(g).r(X(f U g)).f
	// Of course both formulae are logically equivalent, but the
	// latter is "more deterministic" than the former, so it should
	// be preferred.
	//
	// Therefore we now factor all variables.  This may lead to more
	// transitions than necessary (e.g.,  r(f + g) = f + g  will be
786
787
788
	// coded as two transitions), but we later merge all transitions
	// with same source/destination and acceptance conditions.  This
	// is the goal of the `dests' hash.
789
	//
790
	// Note that this is still not optimal.  For instance it is
791
	// better to encode `f U g' as
792
	//     r(f U g) = g + a(g).r(X(f U g)).f.!g
793
794
795
796
	// because that leads to a deterministic automaton.  In order
	// to handle this, we take the conditions of any transition
	// going to true (it's `g' here), and remove it from the other
	// transitions.
797
798
799
	//
	// In `exprop' mode, considering all possible combinations of
	// outgoing propositions generalizes the above trick.
800
	dest_map dests;
801

802
	// Compute all outgoing arcs.
803
804
805
806
807

	// If EXPROP is set, we will refine the symbolic
	// representation of the successors for all combinations of
	// the atomic properties involved in the formula.
	// VAR_SET is the set of these properties.
808
	bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
809
810
811
812
813
	// ALL_PROPS is the combinations we have yet to consider.
	// We used to start with `all_props = bddtrue', but it is
	// more efficient to start with the set of all satisfiable
	// variables combinations.
	bdd all_props = bdd_existcomp(res, d.var_set);
814
	while (all_props != bddfalse)
815
	  {
816
817
818
	    bdd one_prop_set = bddtrue;
	    if (exprop)
	      one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
819
	    all_props -= one_prop_set;
820

821
	    typedef std::map<bdd, const formula*, bdd_less_than> succ_map;
822
823
	    succ_map succs;

824
825
826
	    minato_isop isop(res & one_prop_set);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
827
	      {
828
		bdd label = bdd_exist(cube, d.next_set);
829
		bdd dest_bdd = bdd_existcomp(cube, d.next_set);
830
831
		const formula* dest = d.conj_bdd_to_formula(dest_bdd);

832
833
834
835
836
837
838
839
840
841
842
		// Simplify the formula, if requested.
		if (reduce_ltl)
		  {
		    formula* tmp = reduce(dest, reduce_ltl);
		    destroy(dest);
		    dest = tmp;
		    // Ignore the arc if the destination reduces to false.
		    if (dest == constant::false_instance())
		      continue;
		  }

843
844
845
846
		// If we already know a state with the same
		// successors, use it in lieu of the current one.
		if (symb_merge)
		  dest = fc.canonize(dest);
847

848
849
850
851
852
853
		// If we are not postponing the branching, we can
		// declare the outgoing transitions immediately.
		// Otherwise, we merge transitions with identical
		// label, and declare the outgoing transitions in a
		// second loop.
		if (!branching_postponement)
854
		  {
855
		    fill_dests(d, dests, label, dest);
856
857
858
		  }
		else
		  {
859
860
861
862
		    succ_map::iterator si = succs.find(label);
		    if (si == succs.end())
		      succs[label] = dest;
		    else
863
864
865
866
		      si->second =
			multop::instance(multop::Or,
					 const_cast<formula*>(si->second),
					 const_cast<formula*>(dest));
867
868
		  }
	      }
869
870
871
	    if (branching_postponement)
	      for (succ_map::const_iterator si = succs.begin();
		   si != succs.end(); ++si)
872
		fill_dests(d, dests, si->first, si->second);
873
	  }
874

875
	// Check for an arc going to 1 (True).  Register it first, that
876
877
878
	// way it will be explored before the other during the model
	// checking.
	dest_map::const_iterator i = dests.find(constant::true_instance());
879
880
881
882
	// COND_FOR_TRUE is the conditions of the True arc, so when
	// can remove them from all other arcs.  It might sounds that
	// this is not needed when exprop is used, but in fact it is
	// complementary.
883
884
	//
	// Consider
885
	//   f = r(X(1) R p) = p.(1 + r(X(1) R p))
886
	// with exprop the two outgoing arcs would be
887
888
        //         p                  p
	//     f ----> 1       f ----------> 1
889
890
	//
	// where in fact we could output
891
892
        //         p
	//     f ----> 1
893
	//
894
	// because there is no point in looping on f if we can go to 1.
895
	bdd cond_for_true = bddfalse;
896
897
	if (i != dests.end())
	  {
898
	    // When translating LTL for an event-based logic with
899
900
	    // unobservable events, the 1 state should accept all events,
	    // even unobservable events.
901
902
	    if (unobs && f == constant::true_instance())
	      cond_for_true = all_events;
903
904
905
906
907
	    else
	      {
		// There should be only one transition going to 1 (true) ...
		assert(i->second.size() == 1);
		prom_map::const_iterator j = i->second.begin();
908
909
910
		// ... and it is not expected to make any promises (unless
		// fair loop approximations are used).
		assert(fair_loop_approx || j->first == bddtrue);
911
912
		cond_for_true = j->second;
	      }
913
914
	    tgba_explicit::transition* t =
	      a->create_transition(now, constant::true_instance()->val_name());
915
	    a->add_condition(t, d.bdd_to_formula(cond_for_true));
916
917
918
919
920
	  }
	// Register other transitions.
	for (i = dests.begin(); i != dests.end(); ++i)
	  {
	    const formula* dest = i->first;
921
922
923
924
	    // The cond_for_true optimization can cause some
	    // transitions to be removed.  So we have to remember
	    // whether a formula is actually reachable.
	    bool reachable = false;
925

926
927
928
929
930
931
	    if (dest != constant::true_instance())
	      {
		std::string next = to_string(dest);
		for (prom_map::const_iterator j = i->second.begin();
		     j != i->second.end(); ++j)
		  {
932
933
934
		    bdd cond = j->second - cond_for_true;
		    if (cond == bddfalse) // Skip false transitions.
		      continue;
935
936
		    tgba_explicit::transition* t =
		      a->create_transition(now, next);
937
		    a->add_condition(t, d.bdd_to_formula(cond));
938
		    d.conj_bdd_to_acc(a, j->first, t);
939
		    reachable = true;
940
941
		  }
	      }
942
943
944
945
946
947
948
	    else
	      {
		// "1" is reachable.
		reachable = true;
	      }
	    if (reachable
		&& formulae_seen.find(dest) == formulae_seen.end())
949
950
951
952
953
954
	      {
		formulae_seen.insert(dest);
		formulae_to_translate.insert(dest);
	      }
	    else
	      {
955
		destroy(dest);
956
957
958
959
960
	      }
	  }
      }

    // Free all formulae.
961
    for (std::set<const formula*>::iterator i = formulae_seen.begin();
962
	 i != formulae_seen.end(); ++i)
963
      destroy(*i);
964

965
966
    // Turn all promises into real acceptance conditions.
    a->complement_all_acceptance_conditions();
967
968
969
970
    return a;
  }

}