twa.hh 26.1 KB
Newer Older
1
// -*- coding: utf-8 -*-
2 3
// Copyright (C) 2009, 2011, 2013, 2014, 2015 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
Guillaume Sadegh's avatar
Guillaume Sadegh committed
4
// Copyright (C) 2003, 2004, 2005 Laboratoire d'Informatique de
5 6
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
7 8 9 10 11
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
12
// the Free Software Foundation; either version 3 of the License, or
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
13 14 15 16 17 18 19 20
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
21
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
22

23
#pragma once
24

25
#include "fwd.hh"
26
#include "acc.hh"
27
#include "bdddict.hh"
28 29
#include <cassert>
#include <memory>
30 31
#include <unordered_map>
#include <functional>
32
#include <array>
33
#include <vector>
34 35
#include "misc/casts.hh"
#include "misc/hash.hh"
36
#include "tl/formula.hh"
37 38 39

namespace spot
{
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
40
  /// \ingroup twa_essentials
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  /// \brief Abstract class for states.
  class SPOT_API state
  {
  public:
    /// \brief Compares two states (that come from the same automaton).
    ///
    /// This method returns an integer less than, equal to, or greater
    /// than zero if \a this is found, respectively, to be less than, equal
    /// to, or greater than \a other according to some implicit total order.
    ///
    /// This method should not be called to compare states from
    /// different automata.
    ///
    /// \sa spot::state_ptr_less_than
    virtual int compare(const state* other) const = 0;

    /// \brief Hash a state.
    ///
    /// This method returns an integer that can be used as a
    /// hash value for this state.
    ///
    /// Note that the hash value is guaranteed to be unique for all
    /// equal states (in compare()'s sense) for only has long has one
    /// of these states exists.  So it's OK to use a spot::state as a
    /// key in a \c hash_map because the mere use of the state as a
    /// key in the hash will ensure the state continues to exist.
    ///
    /// However if you create the state, get its hash key, delete the
    /// state, recreate the same state, and get its hash key, you may
    /// obtain two different hash keys if the same state were not
    /// already used elsewhere.  In practice this weird situation can
    /// occur only when the state is BDD-encoded, because BDD numbers
    /// (used to build the hash value) can be reused for other
    /// formulas.  That probably doesn't matter, since the hash value
    /// is meant to be used in a \c hash_map, but it had to be noted.
    virtual size_t hash() const = 0;

    /// Duplicate a state.
    virtual state* clone() const = 0;

    /// \brief Release a state.
    ///
83
    /// Methods from the tgba or twa_succ_iterator always return a
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    /// new state that you should deallocate with this function.
    /// Before Spot 0.7, you had to "delete" your state directly.
    /// Starting with Spot 0.7, you should update your code to use
    /// this function instead. destroy() usually call delete, except
    /// in subclasses that destroy() to allow better memory management
    /// (e.g., no memory allocation for explicit automata).
    virtual void destroy() const
    {
      delete this;
    }

  protected:
    /// \brief Destructor.
    ///
    /// Note that client code should call
    /// <code>s->destroy();</code> instead of <code>delete s;</code>.
    virtual ~state()
    {
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
105
  /// \ingroup twa_essentials
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  /// \brief Strict Weak Ordering for \c state*.
  ///
  /// This is meant to be used as a comparison functor for
  /// STL \c map whose key are of type \c state*.
  ///
  /// For instance here is how one could declare
  /// a map of \c state*.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::map<spot::state*, int, spot::state_ptr_less_than> seen;
  /// \endcode
  struct state_ptr_less_than
  {
    bool
    operator()(const state* left, const state* right) const
    {
      assert(left);
      return left->compare(right) < 0;
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
127
  /// \ingroup twa_essentials
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  /// \brief An Equivalence Relation for \c state*.
  ///
  /// This is meant to be used as a comparison functor for
  /// an \c unordered_map whose key are of type \c state*.
  ///
  /// For instance here is how one could declare
  /// a map of \c state*.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<spot::state*, int, spot::state_ptr_hash,
  ///                                    spot::state_ptr_equal> seen;
  /// \endcode
  struct state_ptr_equal
  {
    bool
    operator()(const state* left, const state* right) const
    {
      assert(left);
      return 0 == left->compare(right);
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
150
  /// \ingroup twa_essentials
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  /// \ingroup hash_funcs
  /// \brief Hash Function for \c state*.
  ///
  /// This is meant to be used as a hash functor for
  /// an \c unordered_map whose key are of type \c state*.
  ///
  /// For instance here is how one could declare
  /// a map of \c state*.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<spot::state*, int, spot::state_ptr_hash,
  ///                                    spot::state_ptr_equal> seen;
  /// \endcode
  struct state_ptr_hash
  {
    size_t
    operator()(const state* that) const
    {
      assert(that);
      return that->hash();
    }
  };

  typedef std::unordered_set<const state*,
			     state_ptr_hash, state_ptr_equal> state_set;


Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
178
  /// \ingroup twa_essentials
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  /// \brief Render state pointers unique via a hash table.
  class SPOT_API state_unicity_table
  {
    state_set m;
  public:

    /// \brief Canonicalize state pointer.
    ///
    /// If this is the first time a state is seen, this return the
    /// state pointer as-is, otherwise it frees the state and returns
    /// a point to the previously seen copy.
    ///
    /// States are owned by the table and will be freed on
    /// destruction.
    const state* operator()(const state* s)
    {
      auto p = m.insert(s);
      if (!p.second)
	s->destroy();
      return *p.first;
    }

    /// \brief Canonicalize state pointer.
    ///
    /// Same as operator(), except that a nullptr
    /// is returned if the state is not new.
    const state* is_new(const state* s)
    {
      auto p = m.insert(s);
      if (!p.second)
	{
	  s->destroy();
	  return nullptr;
	}
      return *p.first;
    }

    ~state_unicity_table()
    {
      for (state_set::iterator i = m.begin(); i != m.end();)
	{
	  // Advance the iterator before destroying its key.  This
	  // avoid issues with old g++ implementations.
	  state_set::iterator old = i++;
	  (*old)->destroy();
	}
    }

    size_t
    size()
    {
      return m.size();
    }
  };



  // Functions related to shared_ptr.
  //////////////////////////////////////////////////

  typedef std::shared_ptr<const state> shared_state;

  inline void shared_state_deleter(state* s) { s->destroy(); }

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
243
  /// \ingroup twa_essentials
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  /// \brief Strict Weak Ordering for \c shared_state
  /// (shared_ptr<const state*>).
  ///
  /// This is meant to be used as a comparison functor for
  /// STL \c map whose key are of type \c shared_state.
  ///
  /// For instance here is how one could declare
  /// a map of \c shared_state.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::map<shared_state, int, spot::state_shared_ptr_less_than> seen;
  /// \endcode
  struct state_shared_ptr_less_than
  {
    bool
    operator()(shared_state left,
               shared_state right) const
    {
      assert(left);
      return left->compare(right.get()) < 0;
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
267
  /// \ingroup twa_essentials
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  /// \brief An Equivalence Relation for \c shared_state
  /// (shared_ptr<const state*>).
  ///
  /// This is meant to be used as a comparison functor for
  /// un \c unordered_map whose key are of type \c shared_state.
  ///
  /// For instance here is how one could declare
  /// a map of \c shared_state
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<shared_state, int,
  ///                      state_shared_ptr_hash,
  ///                      state_shared_ptr_equal> seen;
  /// \endcode
  struct state_shared_ptr_equal
  {
    bool
    operator()(shared_state left,
               shared_state right) const
    {
      assert(left);
      return 0 == left->compare(right.get());
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
293
  /// \ingroup twa_essentials
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
  /// \ingroup hash_funcs
  /// \brief Hash Function for \c shared_state (shared_ptr<const state*>).
  ///
  /// This is meant to be used as a hash functor for
  /// an \c unordered_map whose key are of type
  /// \c shared_state.
  ///
  /// For instance here is how one could declare
  /// a map of \c shared_state.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<shared_state, int,
  ///                      state_shared_ptr_hash,
  ///                      state_shared_ptr_equal> seen;
  /// \endcode
  struct state_shared_ptr_hash
  {
    size_t
    operator()(shared_state that) const
    {
      assert(that);
      return that->hash();
    }
  };

  typedef std::unordered_set<shared_state,
			     state_shared_ptr_hash,
			     state_shared_ptr_equal> shared_state_set;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
323
  /// \ingroup twa_essentials
324 325 326 327 328 329 330
  /// \brief Iterate over the successors of a state.
  ///
  /// This class provides the basic functionalities required to
  /// iterate over the successors of a state, as well as querying
  /// transition labels.  Because transitions are never explicitely
  /// encoded, labels (conditions and acceptance conditions) can only
  /// be queried while iterating over the successors.
331
  class SPOT_API twa_succ_iterator
332 333 334
  {
  public:
    virtual
335
    ~twa_succ_iterator()
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    {
    }

    /// \name Iteration
    //@{

    /// \brief Position the iterator on the first successor (if any).
    ///
    /// This method can be called several times to make multiple
    /// passes over successors.
    ///
    /// \warning One should always call \c done() (or better: check
    /// the return value of first()) to ensure there is a successor,
    /// even after \c first().  A common trap is to assume that there
    /// is at least one successor: this is wrong.
    ///
    /// \return whether there is actually a successor
    virtual bool first() = 0;

    /// \brief Jump to the next successor (if any).
    ///
    /// \warning Again, one should always call \c done() (or better:
    /// check the return value of next()) ensure there is a successor.
    ///
    /// \return whether there is actually a successor
    virtual bool next() = 0;

    /// \brief Check whether the iteration is finished.
    ///
    /// This function should be called after any call to \c first()
    /// or \c next() and before any enquiry about the current state.
    ///
    /// The usual way to do this is with a \c for loop.
    ///
    ///     for (s->first(); !s->done(); s->next())
    ///       ...
    virtual bool done() const = 0;

    //@}

    /// \name Inspection
    //@{

    /// \brief Get the state of the current successor.
    ///
    /// Note that the same state may occur at different points
    /// in the iteration.  These actually correspond to the same
    /// destination.  It just means there were several transitions,
    /// with different conditions, leading to the same state.
    ///
    /// The returned state should be destroyed (see state::destroy)
    /// by the caller after it is no longer used.
    virtual state* current_state() const = 0;
    /// \brief Get the condition on the transition leading to this successor.
    ///
    /// This is a boolean function of atomic propositions.
    virtual bdd current_condition() const = 0;
    /// \brief Get the acceptance conditions on the transition leading
    /// to this successor.
395
    virtual acc_cond::mark_t current_acceptance_conditions() const = 0;
396 397 398 399 400 401 402 403 404

    //@}
  };

  namespace internal
  {
    struct SPOT_API succ_iterator
    {
    protected:
405
      twa_succ_iterator* it_;
406 407
    public:

408
      succ_iterator(twa_succ_iterator* it):
409 410 411 412 413 414 415 416 417 418 419 420 421 422
	it_(it)
      {
      }

      bool operator==(succ_iterator o) const
      {
	return it_ == o.it_;
      }

      bool operator!=(succ_iterator o) const
      {
	return it_ != o.it_;
      }

423
      const twa_succ_iterator* operator*() const
424 425 426 427 428 429 430 431 432 433 434
      {
	return it_;
      }

      void operator++()
      {
	if (!it_->next())
	  it_ = nullptr;
      }
    };
  }
435

436
  /// \defgroup twa TωA (Transition-based ω-Automata)
437
  ///
438
  /// Spot is centered around the spot::twa type.  This type and its
439 440 441 442
  /// cousins are listed \ref tgba_essentials "here".  This is an
  /// abstract interface.  Its implementations are either \ref
  /// tgba_representation "concrete representations", or \ref
  /// tgba_on_the_fly_algorithms "on-the-fly algorithms".  Other
443
  /// algorithms that work on spot::twa are \ref tgba_algorithms
444 445
  /// "listed separately".

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
446
  /// \addtogroup twa_essentials Essential TωA types
447
  /// \ingroup twa
448

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
449
  /// \ingroup twa_essentials
450
  /// \brief A Transition-based ω-Automaton.
451
  ///
452 453 454 455
  /// The acronym TωA stands for Transition-based ω-automaton.
  /// We may write it as TwA or twa, but never as TWA as the
  /// w is just a non-utf8 replacement for ω that should not be
  /// capitalized.
456
  ///
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
  /// TωAs are transition-based automata, meanings that not-only
  /// do they have labels on arcs, they also have an acceptance
  /// condition defined in term of sets of transitions.
  /// The acceptance condition can be anything supported by
  /// the HOA format (http://adl.github.io/hoaf/).  The only
  /// restriction w.r.t. the format is that this class does
  /// not support alternating automata
  ///
  /// Previous version of Spot supported a type of automata called
  /// TGBA, which are TωA in which the acceptance condition is a set
  /// of sets of transitions that must be intersected infinitely
  /// often.
  ///
  /// In this version, TGBAs are now represented by TωAs for which
  /// <code>aut->acc().is_generalized_buchi())</code> returns true.
472
  ///
Alexandre Duret-Lutz's avatar
typos  
Alexandre Duret-Lutz committed
473
  /// Browsing such automaton can be achieved using two functions:
474
  /// \c get_init_state, and \c succ.  The former returns
Alexandre Duret-Lutz's avatar
typos  
Alexandre Duret-Lutz committed
475
  /// the initial state while the latter lists the
476 477
  /// successor states of any state.
  ///
478 479 480 481 482
  /// Note that although this is a transition-based automata, we never
  /// represent transitions in the API!  Transition data are
  /// obtained by querying the iterator over the successors of a
  /// state.
  class SPOT_API twa: public std::enable_shared_from_this<twa>
483
  {
484
  protected:
485
    twa(const bdd_dict_ptr& d);
486
    // Any iterator returned via release_iter.
487
    mutable twa_succ_iterator* iter_cache_;
488
    bdd_dict_ptr dict_;
489
  public:
490 491 492 493 494

#ifndef SWIG
    class succ_iterable
    {
    protected:
495
      const twa* aut_;
496
      twa_succ_iterator* it_;
497
    public:
498
      succ_iterable(const twa* aut, twa_succ_iterator* it)
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	: aut_(aut), it_(it)
      {
      }

      succ_iterable(succ_iterable&& other)
	: aut_(other.aut_), it_(other.it_)
      {
	other.it_ = nullptr;
      }

      ~succ_iterable()
      {
	if (it_)
	  aut_->release_iter(it_);
      }

      internal::succ_iterator begin()
      {
517
	return it_->first() ? it_ : nullptr;
518 519 520 521 522 523 524 525 526
      }

      internal::succ_iterator end()
      {
	return nullptr;
      }
    };
#endif

527
    virtual ~twa();
528

529 530 531
    /// \brief Get the initial state of the automaton.
    ///
    /// The state has been allocated with \c new.  It is the
532
    /// responsability of the caller to \c destroy it when no
533 534
    /// longer needed.
    virtual state* get_init_state() const = 0;
535

536
    /// \brief Get an iterator over the successors of \a local_state.
537 538 539 540
    ///
    /// The iterator has been allocated with \c new.  It is the
    /// responsability of the caller to \c delete it when no
    /// longer needed.
541
    virtual twa_succ_iterator*
542
    succ_iter(const state* local_state) const = 0;
543

544
#ifndef SWIG
545 546 547
    /// \brief Build an iterable over the successors of \a s.
    ///
    /// This is meant to be used as
548
    /// <code>for (auto i: aut->succ(s)) { /* i->current_state() */ }</code>.
549
    succ_iterable
550 551 552 553
    succ(const state* s) const
    {
      return {this, succ_iter(s)};
    }
554 555 556 557 558 559
#endif

    /// \brief Release an iterator after usage.
    ///
    /// This iterator can then be reused by succ_iter() to avoid
    /// memory allocation.
560
    void release_iter(twa_succ_iterator* i) const
561 562 563 564 565 566
    {
      if (iter_cache_)
	delete i;
      else
	iter_cache_ = i;
    }
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

    /// \brief Get a formula that must hold whatever successor is taken.
    ///
    /// \return A formula which must be verified for all successors
    ///  of \a state.
    ///
    /// This can be as simple as \c bddtrue, or more completely
    /// the disjunction of the condition of all successors.  This
    /// is used as an hint by \c succ_iter() to reduce the number
    /// of successor to compute in a product.
    ///
    /// Sub classes should implement compute_support_conditions(),
    /// this function is just a wrapper that will cache the
    /// last return value for efficiency.
    bdd support_conditions(const state* state) const;

583 584
    /// \brief Get the dictionary associated to the automaton.
    ///
585 586 587 588 589
    /// Atomic propositions and acceptance conditions are represented
    /// as BDDs.  The dictionary allows to map BDD variables back to
    /// formulae, and vice versa.  This is useful when dealing with
    /// several automata (which may use the same BDD variable for
    /// different formula), or simply when printing.
590 591
    bdd_dict_ptr get_dict() const
    {
592
      return dict_;
593
    }
594

595 596
    /// \brief Register an atomic proposition designated by formula \a ap.
    ///
597
    /// \return The BDD variable number.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
598
    int register_ap(formula ap)
599
    {
600
      aps_.push_back(ap);
601 602 603 604 605 606 607
      int res = dict_->register_proposition(ap, this);
      bddaps_ &= bdd_ithvar(res);
      return res;
    }

    /// \brief Register an atomic proposition designated by string \a ap.
    ///
608 609
    /// \return The BDD variable number.
    int register_ap(std::string name)
610
    {
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
611
      return register_ap(formula::ap(name));
612 613 614 615
    }

    /// \brief Get the vector of atomic propositions used by this
    /// automaton.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
616
    const std::vector<formula>&  ap() const
617 618 619 620 621 622 623 624 625
    {
      return aps_;
    }

    bdd ap_var() const
    {
      return bddaps_;
    }

626 627 628
    /// \brief Format the state as a string for printing.
    ///
    /// This formating is the responsability of the automata
629
    /// that owns the state.
630
    virtual std::string format_state(const state* state) const = 0;
631

632 633 634
    /// \brief Return a possible annotation for the transition
    /// pointed to by the iterator.
    ///
635 636 637 638 639
    /// You may decide to use annotations when building a tgba class
    /// that represents the state space of a model, for instance to
    /// indicate how the tgba transitions relate to the original model
    /// (e.g. the annotation could be the name of a PetriNet
    /// transition, or the line number of some textual formalism).
640
    ///
641 642 643
    /// Implementing this method is optional; the default annotation
    /// is the empty string.
    ///
644
    /// This method is used for instance in print_dot(),
645
    /// and replay_twa_run().
646
    ///
647
    /// \param t a non-done twa_succ_iterator for this automaton
648
    virtual std::string
649
    transition_annotation(const twa_succ_iterator* t) const;
650

651
    /// \brief Project a state on an automaton.
652 653 654 655 656 657 658 659 660 661 662
    ///
    /// This converts \a s, into that corresponding spot::state for \a
    /// t.  This is useful when you have the state of a product, and
    /// want restrict this state to a specific automata occuring in
    /// the product.
    ///
    /// It goes without saying that \a s and \a t should be compatible
    /// (i.e., \a s is a state of \a t).
    ///
    /// \return 0 if the projection fails (\a s is unrelated to \a t),
    ///    or a new \c state* (the projected state) that must be
663
    ///    destroyed by the caller.
664
    virtual state* project_state(const state* s,
665
				 const const_twa_ptr& t) const;
666

667

668 669 670 671
    const acc_cond& acc() const
    {
      return acc_;
    }
672

673 674 675 676
    acc_cond& acc()
    {
      return acc_;
    }
677

678 679
    virtual bool is_empty() const;

680
  protected:
681 682
    acc_cond acc_;

683 684 685 686 687 688 689 690 691 692
    void set_num_sets_(unsigned num)
    {
      if (num < acc_.num_sets())
	{
	  acc_.~acc_cond();
	  new (&acc_) acc_cond;
	}
      acc_.add_sets(num - acc_.num_sets());
    }

693
  public:
694 695 696 697 698
    unsigned num_sets() const
    {
      return acc_.num_sets();
    }

699
    const acc_cond::acc_code& get_acceptance() const
700 701 702
    {
      return acc_.get_acceptance();
    }
703 704 705

    void set_acceptance(unsigned num, const acc_cond::acc_code& c)
    {
706
      set_num_sets_(num);
707 708 709 710 711
      acc_.set_acceptance(c);
      if (num == 0)
	prop_state_based_acc();
    }

712
    /// \brief Copy the acceptance condition of another tgba.
713
    void copy_acceptance_of(const const_twa_ptr& a)
714 715 716 717 718 719 720
    {
      acc_ = a->acc();
      unsigned num = acc_.num_sets();
      if (num == 0)
	prop_state_based_acc();
    }

721
    void copy_ap_of(const const_twa_ptr& a)
722 723
    {
      get_dict()->register_all_propositions_of(a, this);
724
      for (auto f: a->ap())
725
	this->register_ap(f);
726 727
    }

728 729 730 731 732 733 734 735 736 737 738 739 740 741
    void set_generalized_buchi(unsigned num)
    {
      set_num_sets_(num);
      acc_.set_generalized_buchi();
      if (num == 0)
	prop_state_based_acc();
    }

    acc_cond::mark_t set_buchi()
    {
      set_generalized_buchi(1);
      return acc_.mark(0);
    }

742
  protected:
743 744 745
    /// Do the actual computation of tgba::support_conditions().
    virtual bdd compute_support_conditions(const state* state) const = 0;
    mutable const state* last_support_conditions_input_;
746 747
  private:
    mutable bdd last_support_conditions_output_;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
748
    std::vector<formula> aps_;
749
    bdd bddaps_;
750 751 752 753 754 755 756 757 758 759

  protected:

    // Boolean properties.  Beware: true means that the property
    // holds, but false means the property is unknown.
    struct bprop
    {
      bool state_based_acc:1;	// State-based acceptance.
      bool inherently_weak:1;	// Weak automaton.
      bool deterministic:1;	// Deterministic automaton.
760
      bool unambiguous:1;	// Unambiguous automaton.
761 762
      bool stutter_invariant:1;	// Stutter invariant language.
      bool stutter_sensitive:1;	// Stutter sensitive language.
763 764 765 766 767 768 769
    };
    union
    {
      unsigned props;
      bprop is;
    };

770 771 772 773 774 775
#ifndef SWIG
    // Dynamic properties, are given with a name and a destructor function.
    std::unordered_map<std::string,
		       std::pair<void*,
				 std::function<void(void*)>>> named_prop_;
#endif
776 777
    void* get_named_prop_(std::string s) const;

778 779
  public:

780 781 782
#ifndef SWIG
    void set_named_prop(std::string s,
			void* val, std::function<void(void*)> destructor);
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

    template<typename T>
    void set_named_prop(std::string s, T* val)
    {
      set_named_prop(s, val, [](void *p) { delete static_cast<T*>(p); });
    }

    template<typename T>
    T* get_named_prop(std::string s) const
    {
      void* p = get_named_prop_(s);
      if (!p)
	return nullptr;
      return static_cast<T*>(p);
    }
798 799
#endif

800 801 802 803 804 805 806 807
    void release_named_properties()
    {
      // Destroy all named properties.
      for (auto& np: named_prop_)
	np.second.second(np.second.first);
      named_prop_.clear();
    }

808 809 810 811 812 813 814 815 816 817 818 819
    bool has_state_based_acc() const
    {
      return is.state_based_acc;
    }

    void prop_state_based_acc(bool val = true)
    {
      is.state_based_acc = val;
    }

    bool is_sba() const
    {
820
      return has_state_based_acc() && acc().is_buchi();
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
    }

    bool is_inherently_weak() const
    {
      return is.inherently_weak;
    }

    void prop_inherently_weak(bool val = true)
    {
      is.inherently_weak = val;
    }

    bool is_deterministic() const
    {
      return is.deterministic;
    }

    void prop_deterministic(bool val = true)
    {
      is.deterministic = val;
    }

843 844 845 846 847 848 849 850 851 852
    bool is_unambiguous() const
    {
      return is.unambiguous;
    }

    void prop_unambiguous(bool val = true)
    {
      is.unambiguous = val;
    }

853 854
    bool is_stutter_invariant() const
    {
855 856 857 858 859 860
      return is.stutter_invariant;
    }

    bool is_stutter_sensitive() const
    {
      return is.stutter_sensitive;
861 862 863 864
    }

    void prop_stutter_invariant(bool val = true)
    {
865 866 867 868 869 870
      is.stutter_invariant = val;
    }

    void prop_stutter_sensitive(bool val = true)
    {
      is.stutter_sensitive = val;
871 872
    }

873
    struct prop_set
874
    {
875 876 877
      bool state_based;
      bool inherently_weak;
      bool deterministic;
878
      bool stutter_inv;
879 880 881

      static prop_set all()
      {
882
	return { true, true, true, true };
883 884 885 886 887
      }
    };

    // There is no default value here on purpose.  This way any time we
    // add a new property we have to update every call to prop_copy().
888
    void prop_copy(const const_twa_ptr& other, prop_set p)
889 890
    {
      if (p.state_based)
891
	prop_state_based_acc(other->has_state_based_acc());
892
      if (p.inherently_weak)
893
	prop_inherently_weak(other->is_inherently_weak());
894
      if (p.deterministic)
895 896 897 898
	{
	  prop_deterministic(other->is_deterministic());
	  prop_unambiguous(other->is_unambiguous());
	}
899
      if (p.stutter_inv)
900 901 902 903
	{
	  prop_stutter_invariant(other->is_stutter_invariant());
	  prop_stutter_sensitive(other->is_stutter_sensitive());
	}
904 905
    }

906 907 908 909 910 911 912
    void prop_keep(prop_set p)
    {
      if (!p.state_based)
	prop_state_based_acc(false);
      if (!p.inherently_weak)
	prop_inherently_weak(false);
      if (!p.deterministic)
913 914 915 916
	{
	  prop_deterministic(false);
	  prop_unambiguous(false);
	}
917 918 919 920 921
      if (!p.stutter_inv)
	{
	  prop_stutter_invariant(false);
	  prop_stutter_sensitive(false);
	}
922 923
    }

924
  };
925

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
926
  /// \addtogroup twa_representation TGBA representations
927
  /// \ingroup twa
928

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
929
  /// \addtogroup twa_algorithms TGBA algorithms
930
  /// \ingroup twa
931

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
932 933
  /// \addtogroup twa_on_the_fly_algorithms TGBA on-the-fly algorithms
  /// \ingroup twa_algorithms
934

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
935 936
  /// \addtogroup twa_io Input/Output of TGBA
  /// \ingroup twa_algorithms
937

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
938 939
  /// \addtogroup twa_ltl Translating LTL formulae into TGBA
  /// \ingroup twa_algorithms
940

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
941 942
  /// \addtogroup twa_generic Algorithm patterns
  /// \ingroup twa_algorithms
943

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
944 945
  /// \addtogroup twa_reduction TGBA simplifications
  /// \ingroup twa_algorithms
946

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
947 948
  /// \addtogroup twa_misc Miscellaneous algorithms on TGBA
  /// \ingroup twa_algorithms
949
}