ltl2tgba_fm.cc 16 KB
Newer Older
1
// Copyright (C) 2003, 2004  Laboratoire d'Informatique de Paris 6 (LIP6),
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// dpartement Systmes Rpartis Coopratifs (SRC), Universit Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

22
#include "misc/hash.hh"
23
#include "misc/bddalloc.hh"
24
#include "misc/bddlt.hh"
25
#include "misc/minato.hh"
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/destroy.hh"
#include "ltlvisit/tostring.hh"
#include <cassert>

#include "tgba/tgbabddconcretefactory.hh"
#include "ltl2tgba_fm.hh"

namespace spot
{
  using namespace ltl;

  namespace
  {

44
45
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
    class translate_dict: public bdd_allocator
    {
    public:

      translate_dict()
	: bdd_allocator(),
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = a_map.begin(); i != a_map.end(); ++i)
67
	  destroy(i->first);
68
	for (i = var_map.begin(); i != var_map.end(); ++i)
69
	  destroy(i->first);
70
	for (i = next_map.begin(); i != next_map.end(); ++i)
71
	  destroy(i->first);
72
73
74
      }

      /// Formula-to-BDD-variable maps.
75
76
      typedef Sgi::hash_map<const formula*, int,
			    ptr_hash<formula> > fv_map;
77
      /// BDD-variable-to-formula maps.
78
      typedef Sgi::hash_map<int, const formula*> vf_map;
79
80
81
82
83
84
85
86
87
88
89
90
91

      fv_map a_map;	       ///< Maps formulae to "a" BDD variables
      vf_map a_formula_map;    ///< Maps "a" BDD variables to formulae
      fv_map var_map;	       ///< Maps atomic propisitions to BDD variables
      vf_map var_formula_map;  ///< Maps BDD variables to atomic propisitions
      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
92
      register_proposition(const formula* f)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
      {
	int num;
	// Do not build a variable that already exists.
	fv_map::iterator sii = var_map.find(f);
	if (sii != var_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
	    num = allocate_variables(1);
	    var_map[f] = num;
	    var_formula_map[num] = f;
	  }
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
113
      register_a_variable(const formula* f)
114
115
      {
	int num;
116
	// Do not build an acceptance variable that already exists.
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
	fv_map::iterator sii = a_map.find(f);
	if (sii != a_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
	    num = allocate_variables(1);
	    a_map[f] = num;
	    a_formula_map[num] = f;
	  }
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
134
      register_next_variable(const formula* f)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
	    num = allocate_variables(1);
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Atomic Propositions:" << std::endl;
	for (fi = var_map.begin(); fi != var_map.end(); ++fi)
	  {
	    os << "  " << fi->second << ": ";
	    to_string(fi->first, os) << std::endl;
	  }
	os << "a Variables:" << std::endl;
	for (fi = a_map.begin(); fi != a_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": a[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	return os;
      }

179
      formula*
180
181
182
183
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
184
	  return clone(isi->second);
185
186
	isi = a_formula_map.find(var);
	if (isi != a_formula_map.end())
187
	  return clone(isi->second);
188
189
	isi = var_formula_map.find(var);
	if (isi != var_formula_map.end())
190
	  return clone(isi->second);
191
192
193
	assert(0);
      }

194
      formula*
195
196
197
      conj_bdd_to_formula(bdd b)
      {
	if (b == bddfalse)
198
199
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
200
201
202
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
203
	    formula* res = var_to_formula(var);
204
205
206
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
207
		res = unop::instance(unop::Not, res);
208
209
210
211
		b = bdd_low(b);
	      }
	    else
	      {
212
		assert(bdd_low(b) == bddfalse);
213
214
215
216
217
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
218
	return multop::instance(multop::And, v);
219
220
      }

221
222
      const formula*
      bdd_to_formula(bdd f)
223
      {
224
	if (f == bddfalse)
225
	  return constant::false_instance();
226

227
228
229
230
231
232
233
234
235
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
236
237
238
239
240
241
242
243
244
245
246

      void
      conj_bdd_to_acc(tgba_explicit* a, bdd b, tgba_explicit::transition* t)
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
247
		// Simply ignore negated acceptance variables.
248
249
250
251
		b = bdd_low(b);
	      }
	    else
	      {
252
		formula* ac = var_to_formula(var);
253

254
255
256
		if (! a->has_acceptance_condition(ac))
		  a->declare_acceptance_condition(clone(ac));
		a->add_acceptance_condition(t, ac);
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


    // The rewrite rules used here are adapted from Jean-Michel
    // Couvreur's FM paper.
    class ltl_trad_visitor: public const_visitor
    {
    public:
      ltl_trad_visitor(translate_dict& dict)
	: dict_(dict)
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

      bdd result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
315
316
317
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
318
319
320
321
322
323
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
	      return;
	    }
	  case unop::G:
	    {
324
	      const formula* child = node->child();
325
	      int x = dict_.register_next_variable(node);
326
	      // GFy is pretty frequent and easy to optimize, so we
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
	      // want to detect it.
	      const unop* Fy = dynamic_cast<const unop*>(child);
	      if (Fy && Fy->op() == unop::F)
		{
		  // r(GFy) = (r(y) + a(y))r(XGFy)
		  const formula* child = Fy->child();
		  bdd y = recurse(child);
		  int a = dict_.register_a_variable(child);
		  res_ = (y | bdd_ithvar(a)) & bdd_ithvar(x);
		}
	      else
		{
		  // r(Gy) = r(y)r(XGy)
		  bdd y = recurse(child);
		  res_ = y & bdd_ithvar(x);
		}
343
344
345
346
	      return;
	    }
	  case unop::Not:
	    {
347
	      // r(!y) = !r(y)
348
349
350
351
352
	      res_ = bdd_not(recurse(node->child()));
	      return;
	    }
	  case unop::X:
	    {
353
	      // r(Xy) = Next[y]
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop* node)
      {
	bdd f1 = recurse(node->first());
	bdd f2 = recurse(node->second());

	switch (node->op())
	  {
371
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
	  case binop::Xor:
	    res_ = bdd_apply(f1, f2, bddop_xor);
	    return;
	  case binop::Implies:
	    res_ = bdd_apply(f1, f2, bddop_imp);
	    return;
	  case binop::Equiv:
	    res_ = bdd_apply(f1, f2, bddop_biimp);
	    return;
	  case binop::U:
	    {
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
	      return;
	    }
	  case binop::R:
	    {
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const multop* node)
      {
	int op = -1;
	switch (node->op())
	  {
	  case multop::And:
	    op = bddop_and;
	    res_ = bddtrue;
	    break;
	  case multop::Or:
	    op = bddop_or;
	    res_ = bddfalse;
	    break;
	  }
	assert(op != -1);
	unsigned s = node->size();
	for (unsigned n = 0; n < s; ++n)
	  {
	    res_ = bdd_apply(res_, recurse(node->nth(n)), op);
	  }
      }

      bdd
      recurse(const formula* f)
      {
	ltl_trad_visitor v(dict_);
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
    };

  }

  tgba_explicit*
441
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict, bool exprop)
442
443
444
445
446
  {
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
447
448
449
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
    destroy(f1);
450

451
452
    std::set<const formula*> formulae_seen;
    std::set<const formula*> formulae_to_translate;
453
454
455
456
457
458
459
460
461
    // Map a representation of successors to a canonical formula.
    // We do this because many formulae (such as `aR(bRc)' and
    // `aR(bRc).aR(bRc)') are equivalent, and are trivially identified
    // by looking at the set of successors.
    typedef std::map<bdd, const formula*, bdd_less_than> succ_to_formula;
    succ_to_formula canonical_succ;

    translate_dict d;
    ltl_trad_visitor v(d);
462
463
464
465
466
467
468
469
470
471
472

    formulae_seen.insert(f2);
    formulae_to_translate.insert(f2);

    tgba_explicit* a = new tgba_explicit(dict);

    a->set_init_state(to_string(f2));

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
473
	const formula* f = *formulae_to_translate.begin();
474
475
476
477
478
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
	f->accept(v);
	bdd res = v.result();
479
	canonical_succ[res] = f;
480
481
482

	std::string now = to_string(f);

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
	// We used to factor only Next and A variables while computing
	// prime implicants, with
	//    minato_isop isop(res, d.next_set & d.a_set);
	// in order to obtain transitions with formulae of atomic
	// proposition directly, but unfortunately this led to strange
	// factorizations.  For instance f U g was translated as
	//     r(f U g) = g + a(g).r(X(f U g)).(f + g)
	// instead of just
	//     r(f U g) = g + a(g).r(X(f U g)).f
	// Of course both formulae are logically equivalent, but the
	// latter is "more deterministic" than the former, so it should
	// be preferred.
	//
	// Therefore we now factor all variables.  This may lead to more
	// transitions than necessary (e.g.,  r(f + g) = f + g  will be
498
499
500
	// coded as two transitions), but we later merge all transitions
	// with same source/destination and acceptance conditions.  This
	// is the goal of the `dests' hash.
501
	//
502
503
	// Note that this is still not optimal.  For instance it us
	// better to encode `f U g' as
504
	//     r(f U g) = g + a(g).r(X(f U g)).f.!g
505
506
507
508
	// because that leads to a deterministic automaton.  In order
	// to handle this, we take the conditions of any transition
	// going to true (it's `g' here), and remove it from the other
	// transitions.
509
510
511
	//
	// In `exprop' mode, considering all possible combinations of
	// outgoing propositions generalizes the above trick.
512
513
514
515
516
517

	typedef std::map<bdd, bdd, bdd_less_than> prom_map;
	typedef Sgi::hash_map<const formula*, prom_map, ptr_hash<formula> >
	  dest_map;
	dest_map dests;
	// Compute all outgoing arcs.
518
519
520
	bdd all_props = bddtrue;
	bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
	while (all_props != bddfalse)
521
	  {
522
523
524
525
526
527
	    bdd one_prop_set =
	      exprop ? bdd_satoneset(all_props, var_set, bddtrue) : bddtrue;
	    all_props -= one_prop_set;
	    minato_isop isop(res & one_prop_set);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
528
	      {
529
530
531
532
533
534
535
536
		const formula* dest =
		  d.conj_bdd_to_formula(bdd_existcomp(cube, d.next_set));

		// If we already know a state with the same successors,
		// use it in lieu of the current one.  (See the comments
		// for canonical_succ.)  We need to do this only for new
		// destinations.
		if (formulae_seen.find(dest) == formulae_seen.end())
537
		  {
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
		    dest->accept(v);
		    bdd succbdd = v.result();
		    succ_to_formula::iterator cs =
		      canonical_succ.find(succbdd);
		    if (cs != canonical_succ.end())
		      {
			destroy(dest);
			dest = clone(cs->second);
		      }
		    else
		      {
			canonical_succ[succbdd] = dest;
		      }
		  }

		bdd promises = bdd_existcomp(cube, d.a_set);
		bdd conds =
		  exprop ? one_prop_set : bdd_existcomp(cube, var_set);

		dest_map::iterator i = dests.find(dest);
		if (i == dests.end())
		  {
		    dests[dest][promises] = conds;
561
562
563
		  }
		else
		  {
564
565
		    i->second[promises] |= conds;
		    destroy(dest);
566
567
		  }
	      }
568
	  }
569

570
571
572
573
	// Check for an arc going to True.  Register it first, that
	// way it will be explored before the other during the model
	// checking.
	dest_map::const_iterator i = dests.find(constant::true_instance());
574
575
576
	// conditions of the True arc, so when can remove them from
	// all other arcs.  This is not needed when exprop is used,
	// but it does not hurt.
577
578
579
580
581
582
583
584
585
586
587
588
589
	bdd cond_for_true = bddfalse;
	if (i != dests.end())
	  {
	    // Transitions going to True are not expected to make any promises.
	    assert(i->second.size() == 1);
	    prom_map::const_iterator j = i->second.find(bddtrue);
	    assert(j != i->second.end());

	    cond_for_true = j->second;
	    tgba_explicit::transition* t =
	      a->create_transition(now, constant::true_instance()->val_name());
	    a->add_condition(t, d.bdd_to_formula(cond_for_true));
	  }
590

591
592
593
594
	// Register other transitions.
	for (i = dests.begin(); i != dests.end(); ++i)
	  {
	    const formula* dest = i->first;
595

596
597
598
599
600
601
602
603
604
605
606
607
608
	    if (dest != constant::true_instance())
	      {
		std::string next = to_string(dest);
		for (prom_map::const_iterator j = i->second.begin();
		     j != i->second.end(); ++j)
		  {
		    tgba_explicit::transition* t =
		      a->create_transition(now, next);
		    a->add_condition(t, d.bdd_to_formula(j->second
							 - cond_for_true));
		    d.conj_bdd_to_acc(a, j->first, t);
		  }
	      }
609
610
611
612
613
614
615
	    if (formulae_seen.find(dest) == formulae_seen.end())
	      {
		formulae_seen.insert(dest);
		formulae_to_translate.insert(dest);
	      }
	    else
	      {
616
		destroy(dest);
617
618
619
620
621
	      }
	  }
      }

    // Free all formulae.
622
    for (std::set<const formula*>::iterator i = formulae_seen.begin();
623
	 i != formulae_seen.end(); ++i)
624
      destroy(*i);
625

626
627
    // Turn all promises into real acceptance conditions.
    a->complement_all_acceptance_conditions();
628
629
630
631
    return a;
  }

}