minimize.cc 17.1 KB
Newer Older
1
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Développement
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

21
22
23
24
25
26
27
28
29

//#define TRACE

#ifdef TRACE
#  define trace std::cerr
#else
#  define trace while (0) std::cerr
#endif

30
#include <queue>
31
32
33
#include <deque>
#include <set>
#include <list>
34
#include <vector>
35
#include <sstream>
36
37
38
#include "minimize.hh"
#include "ltlast/allnodes.hh"
#include "misc/hash.hh"
39
#include "misc/bddlt.hh"
40
41
#include "tgba/tgbaproduct.hh"
#include "tgba/tgbatba.hh"
42
#include "tgba/wdbacomp.hh"
43
#include "tgbaalgos/powerset.hh"
44
45
46
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/sccfilter.hh"
47
#include "tgbaalgos/scc.hh"
48
#include "tgbaalgos/ltl2tgba_fm.hh"
49
#include "tgbaalgos/bfssteps.hh"
50
51
52
53
54
55
56
57

namespace spot
{
  typedef Sgi::hash_set<const state*,
                        state_ptr_hash, state_ptr_equal> hash_set;
  typedef Sgi::hash_map<const state*, unsigned,
                        state_ptr_hash, state_ptr_equal> hash_map;

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  namespace
  {
    static std::ostream&
    dump_hash_set(const hash_set* hs, const tgba* aut, std::ostream& out)
    {
      out << "{";
      const char* sep = "";
      for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
	{
	  out << sep << aut->format_state(*i);
	  sep = ", ";
	}
      out << "}";
      return out;
    }

    static std::string
    format_hash_set(const hash_set* hs, const tgba* aut)
    {
      std::ostringstream s;
      dump_hash_set(hs, aut, s);
      return s.str();
    }
  }

83
84
85
86
  // Given an automaton a, find all states that are not in "final" and add
  // them to the set "non_final".
  void init_sets(const tgba_explicit* a,
                 hash_set& final,
87
                 hash_set& non_final)
88
89
  {
    hash_set seen;
Felix Abecassis's avatar
Felix Abecassis committed
90
    std::queue<const state*> tovisit;
91
    // Perform breadth-first traversal.
Felix Abecassis's avatar
Felix Abecassis committed
92
    const state* init = a->get_init_state();
93
94
95
96
    tovisit.push(init);
    seen.insert(init);
    while (!tovisit.empty())
    {
Felix Abecassis's avatar
Felix Abecassis committed
97
      const state* src = tovisit.front();
98
99
100
      tovisit.pop();
      // Is the state final ?
      if (final.find(src) == final.end())
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
101
102
	// No, add it to the set non_final
	non_final.insert(src->clone());
103
104
105
      tgba_succ_iterator* sit = a->succ_iter(src);
      for (sit->first(); !sit->done(); sit->next())
      {
Felix Abecassis's avatar
Felix Abecassis committed
106
        const state* dst = sit->current_state();
107
108
109
110
111
112
113
114
115
116
        // Is it a new state ?
        if (seen.find(dst) == seen.end())
        {
          // Register the successor for later processing.
          tovisit.push(dst);
          seen.insert(dst);
        }
        else
          delete dst;
      }
Felix Abecassis's avatar
Felix Abecassis committed
117
      delete sit;
118
    }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
119
120
121
122
123
124
125
126
127

    while (!seen.empty())
      {
	hash_set::iterator i = seen.begin();
	const state* s = *i;
	seen.erase(i);
	delete s;
      }

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
  }

  // From the base automaton and the list of sets, build the minimal
  // resulting automaton
  tgba_explicit_number* build_result(const tgba* a,
                                     std::list<hash_set*>& sets,
                                     hash_set* final)
  {
    // For each set, create a state in the resulting automaton.
    // For a state s, state_num[s] is the number of the state in the minimal
    // automaton.
    hash_map state_num;
    std::list<hash_set*>::iterator sit;
    unsigned num = 0;
    for (sit = sets.begin(); sit != sets.end(); ++sit)
    {
      hash_set::iterator hit;
      hash_set* h = *sit;
      for (hit = h->begin(); hit != h->end(); ++hit)
        state_num[*hit] = num;
      ++num;
    }
    typedef tgba_explicit_number::transition trs;
    tgba_explicit_number* res = new tgba_explicit_number(a->get_dict());
    // For each transition in the initial automaton, add the corresponding
    // transition in res.
154
155
    if (!final->empty())
      res->declare_acceptance_condition(ltl::constant::true_instance());
156
157
158
159
160
161
162
163
164
    for (sit = sets.begin(); sit != sets.end(); ++sit)
    {
      hash_set::iterator hit;
      hash_set* h = *sit;
      for (hit = h->begin(); hit != h->end(); ++hit)
      {
        const state* src = *hit;
        unsigned src_num = state_num[src];
        tgba_succ_iterator* succit = a->succ_iter(src);
Felix Abecassis's avatar
Felix Abecassis committed
165
        bool accepting = (final->find(src) != final->end());
166
167
        for (succit->first(); !succit->done(); succit->next())
        {
Felix Abecassis's avatar
Felix Abecassis committed
168
          const state* dst = succit->current_state();
169
          unsigned dst_num = state_num[dst];
Felix Abecassis's avatar
Felix Abecassis committed
170
          delete dst;
171
172
173
174
175
          trs* t = res->create_transition(src_num, dst_num);
          res->add_conditions(t, succit->current_condition());
          if (accepting)
            res->add_acceptance_condition(t, ltl::constant::true_instance());
        }
Felix Abecassis's avatar
Felix Abecassis committed
176
        delete succit;
177
178
179
180
181
      }
    }
    res->merge_transitions();
    const state* init_state = a->get_init_state();
    unsigned init_num = state_num[init_state];
Felix Abecassis's avatar
Felix Abecassis committed
182
    delete init_state;
183
184
185
186
    res->set_init_state(init_num);
    return res;
  }

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

  namespace
  {

    struct wdba_search_acc_loop : public bfs_steps
    {
      wdba_search_acc_loop(const tgba* det_a,
			   unsigned scc_n, scc_map& sm,
			   power_map& pm, const state* dest)
	: bfs_steps(det_a), scc_n(scc_n), sm(sm), pm(pm), dest(dest)
      {
	seen.insert(dest);
      }

      virtual
      ~wdba_search_acc_loop()
      {
	hash_set::const_iterator i = seen.begin();
	while (i != seen.end())
	  {
	    hash_set::const_iterator old = i;
	    ++i;
	    delete *old;
	  }
      }

      virtual const state*
      filter(const state* s)
      {
	// Use the state from seen.
	hash_set::const_iterator i = seen.find(s);
	if (i == seen.end())
	  {
	    seen.insert(s);
	  }
	else
	  {
	    delete s;
	    s = *i;
	  }
	// Ignore states outside SCC #n.
	if (sm.scc_of_state(s) != scc_n)
	  return 0;
	return s;
      }

      virtual bool
      match(tgba_run::step&, const state* to)
      {
	return to == dest;
      }

      unsigned scc_n;
      scc_map& sm;
      power_map& pm;
      const state* dest;
      hash_set seen;
    };


    bool
    wdba_scc_is_accepting(const tgba_explicit_number* det_a, unsigned scc_n,
			  const tgba* orig_a, scc_map& sm, power_map& pm)
    {
      // Get some state from the SCC #n.
      const state* start = sm.one_state_of(scc_n)->clone();

      // Find a loop around START in SCC #n.
      wdba_search_acc_loop wsal(det_a, scc_n, sm, pm, start);
      tgba_run::steps loop;
      const state* reached = wsal.search(start, loop);
      assert(reached == start);
      (void)reached;

      // Build an automaton representing this loop.
      tgba_explicit_number loop_a(det_a->get_dict());
      tgba_run::steps::const_iterator i;
      int loop_size = loop.size();
      int n;
      for (n = 1, i = loop.begin(); n < loop_size; ++n, ++i)
	{
	  loop_a.create_transition(n - 1, n)->condition = i->label;
	  delete i->s;
	}
      assert(i != loop.end());
      loop_a.create_transition(n - 1, 0)->condition = i->label;
      delete i->s;
      assert(++i == loop.end());

      const state* loop_a_init = loop_a.get_init_state();
      assert(loop_a.get_label(loop_a_init) == 0);

      // Check if the loop is accepting in the original automaton.
      bool accepting = false;

      // Iterate on each original state corresponding to start.
      const power_map::power_state& ps = pm.states_of(det_a->get_label(start));
      for (power_map::power_state::const_iterator it = ps.begin();
	   it != ps.end() && !accepting; ++it)
	{
	  // Contrustruct a product between
	  // LOOP_A, and ORIG_A starting in *IT.

	  tgba* p = new tgba_product_init(&loop_a, orig_a,
					  loop_a_init, *it);

	  emptiness_check* ec = couvreur99(p);
	  emptiness_check_result* res = ec->check();

	  if (res)
	    accepting = true;
	  delete res;
	  delete ec;
	  delete p;
	}

      delete loop_a_init;
      return accepting;
    }

  }

309
310
  tgba_explicit_number* minimize_dfa(const tgba_explicit_number* det_a,
				     hash_set* final)
311
  {
312
313
314
    typedef std::list<hash_set*> partition_t;
    partition_t cur_run;
    partition_t next_run;
315

316
317
    // The list of equivalent states.
    partition_t done;
318

319
    hash_map state_set_map;
320

321
    hash_set* non_final = new hash_set;
322
323

    init_sets(det_a, *final, *non_final);
324
325
    // Size of det_a
    unsigned size = final->size() + non_final->size();
326
327
    // Use bdd variables to number sets.  set_num is the first variable
    // available.
328
329
    unsigned set_num =
      det_a->get_dict()->register_anonymous_variables(size, det_a);
330
331
332
333
334
335

    std::set<int> free_var;
    for (unsigned i = set_num; i < set_num + size; ++i)
      free_var.insert(i);
    std::map<int, int> used_var;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
336
337
    hash_set* final_copy;

338
339
340
341
342
343
    if (!final->empty())
      {
	unsigned s = final->size();
	used_var[set_num] = s;
	free_var.erase(set_num);
	if (s > 1)
344
	  cur_run.push_back(final);
345
346
347
348
349
	else
	  done.push_back(final);
	for (hash_set::const_iterator i = final->begin();
	     i != final->end(); ++i)
	  state_set_map[*i] = set_num;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
350
351

	final_copy = new hash_set(*final);
352
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
353
354
355
356
357
    else
      {
	final_copy = final;
      }

358
359
360
361
362
363
364
    if (!non_final->empty())
      {
	unsigned s = non_final->size();
	unsigned num = set_num + 1;
	used_var[num] = s;
	free_var.erase(num);
	if (s > 1)
365
	  cur_run.push_back(non_final);
366
367
368
369
370
371
	else
	  done.push_back(non_final);
	for (hash_set::const_iterator i = non_final->begin();
	     i != non_final->end(); ++i)
	  state_set_map[*i] = num;
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
372
373
374
375
    else
      {
	delete non_final;
      }
376

377
378
    // A bdd_states_map is a list of formulae (in a BDD form) associated with a
    // destination set of states.
379
380
381
382
383
    typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;

    bool did_split = true;

    while (did_split)
384
      {
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
	did_split = false;
	while (!cur_run.empty())
	  {
	    // Get a set to process.
	    hash_set* cur = cur_run.front();
	    cur_run.pop_front();

	    trace << "processing " << format_hash_set(cur, det_a) << std::endl;

	    hash_set::iterator hi;
	    bdd_states_map bdd_map;
	    for (hi = cur->begin(); hi != cur->end(); ++hi)
	      {
		const state* src = *hi;
		bdd f = bddfalse;
		tgba_succ_iterator* si = det_a->succ_iter(src);
		for (si->first(); !si->done(); si->next())
		  {
		    const state* dst = si->current_state();
		    unsigned dst_set = state_set_map[dst];
		    delete dst;
		    f |= (bdd_ithvar(dst_set) & si->current_condition());
		  }
		delete si;

		// Have we already seen this formula ?
		bdd_states_map::iterator bsi = bdd_map.find(f);
		if (bsi == bdd_map.end())
		  {
		    // No, create a new set.
		    hash_set* new_set = new hash_set;
		    new_set->insert(src);
		    bdd_map[f] = new_set;
		  }
		else
		  {
		    // Yes, add the current state to the set.
		    bsi->second->insert(src);
		  }
	      }

	    bdd_states_map::iterator bsi = bdd_map.begin();
	    if (bdd_map.size() == 1)
	      {
		// The set was not split.
		trace << "set " << format_hash_set(bsi->second, det_a)
		      << " was not split" << std::endl;
		next_run.push_back(bsi->second);
	      }
	    else
	      {
		for (; bsi != bdd_map.end(); ++bsi)
		  {
		    hash_set* set = bsi->second;
		    // Free the number associated to these states.
		    unsigned num = state_set_map[*set->begin()];
		    assert(used_var.find(num) != used_var.end());
		    unsigned left = (used_var[num] -= set->size());
		    // Make sure LEFT does not become negative (hence bigger
		    // than SIZE when read as unsigned)
		    assert(left < size);
		    if (left == 0)
		      {
			used_var.erase(num);
			free_var.insert(num);
		      }
		    // Pick a free number
		    assert(!free_var.empty());
		    num = *free_var.begin();
		    free_var.erase(free_var.begin());
		    used_var[num] = set->size();
		    for (hash_set::iterator hit = set->begin();
			 hit != set->end(); ++hit)
		      state_set_map[*hit] = num;
		    // Trivial sets can't be splitted any further.
		    if (set->size() == 1)
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " is minimal" << std::endl;
			done.push_back(set);
		      }
		    else
		      {
			did_split = true;
			trace << "set " << format_hash_set(set, det_a)
			      << " should be processed further" << std::endl;
			next_run.push_back(set);
		      }
		  }
	      }
	    delete cur;
	  }
	if (did_split)
	  trace << "splitting did occur during this pass." << std::endl;
	else
	  trace << "splitting did not occur during this pass." << std::endl;
	std::swap(cur_run, next_run);
482
      }
483
484
485
486
487
488
489
490
491

    done.splice(done.end(), cur_run);

#ifdef TRACE
    trace << "Final partition: ";
    for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
      trace << format_hash_set(*i, det_a) << " ";
    trace << std::endl;
#endif
Felix Abecassis's avatar
Felix Abecassis committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505

    // Build the result.
    tgba_explicit_number* res = build_result(det_a, done, final_copy);

    // Free all the allocated memory.
    delete final_copy;
    hash_map::iterator hit;
    for (hit = state_set_map.begin(); hit != state_set_map.end(); ++hit)
      delete hit->first;
    std::list<hash_set*>::iterator it;
    for (it = done.begin(); it != done.end(); ++it)
      delete *it;
    delete det_a;

506
507
    return res;
  }
508

509

510
511
512
513
514
515
516
517
518
519
520
521
522
523
  tgba_explicit_number* minimize_monitor(const tgba* a)
  {
    hash_set* final = new hash_set;
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);
    }
    // final is empty: there is no acceptance condition
    return minimize_dfa(det_a, final);
  }

  tgba_explicit_number* minimize_wdba(const tgba* a)
524
525
526
527
528
529
530
531
  {
    hash_set* final = new hash_set;
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);

532
533
534
535
536
537
538
539
      // For each SCC of the deterministic automaton, determine if
      // it is accepting or not.
      scc_map sm(det_a);
      sm.build_map();
      unsigned scc_count = sm.scc_count();
      std::vector<bool> accepting(scc_count);
      // SCC are numbered in topological order
      for (unsigned n = 0; n < scc_count; ++n)
540
	{
541
	  bool acc = true;
542

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
	  if (sm.trivial(n))
	    {
	      // Trivial SCCs are accepting if all their
	      // successors are accepting.

	      // This corresponds to the algorithm in Fig. 1 of
	      // "Efficient minimization of deterministic weak
	      // omega-automata" written by Christof Löding and
	      // published in Information Processing Letters 79
	      // (2001) pp 105--109.  Except we do not keep track
	      // of the actual color associated to each SCC.

	      const scc_map::succ_type& succ = sm.succ(n);
	      for (scc_map::succ_type::const_iterator i = succ.begin();
		   i != succ.end(); ++i)
558
		{
559
		  if (!accepting[i->first])
560
		    {
561
562
		      acc = false;
		      break;
563
564
		    }
		}
565
566
567
568
569
570
571
	    }
	  else
	    {
	      // Regular SCCs are accepting if any of their loop
	      // corresponds to an accepting
	      acc = wdba_scc_is_accepting(det_a, n, a, sm, pm);
	    }
572

573
574
575
576
577
578
579
	  accepting[n] = acc;
	  if (acc)
	    {
	      std::list<const state*> l = sm.states_of(n);
	      std::list<const state*>::const_iterator il;
	      for (il = l.begin(); il != l.end(); ++il)
		final->insert((*il)->clone());
580
581
582
583
584
585
586
	    }
	}
    }

    return minimize_dfa(det_a, final);
  }

587
588
589
590
  const tgba*
  minimize_obligation(const tgba* aut_f,
		      const ltl::formula* f, const tgba* aut_neg_f)
  {
591
    tgba_explicit_number* min_aut_f = minimize_wdba(aut_f);
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

    // If aut_f is a safety automaton, the WDBA minimization must be
    // correct.
    if (is_safety_automaton(aut_f))
      {
	return min_aut_f;
      }

    if (!f && !aut_neg_f)
      {
	// We do not now if the minimization is safe.
	return 0;
      }

    const tgba* to_free = 0;

    // Build negation automaton if not supplied.
    if (!aut_neg_f)
      {
	assert(f);

	ltl::formula* neg_f = ltl::unop::instance(ltl::unop::Not, f->clone());
	aut_neg_f = ltl_to_tgba_fm(neg_f, aut_f->get_dict());
	neg_f->destroy();

	// Remove useless SCCs.
	const tgba* tmp = scc_filter(aut_neg_f, true);
	delete aut_neg_f;
	to_free = aut_neg_f = tmp;
      }

    // If the negation is a safety automaton, then the
    // minimization is correct.
    if (is_safety_automaton(aut_neg_f))
      {
	delete to_free;
	return min_aut_f;
      }

    bool ok = false;

    tgba* p = new tgba_product(min_aut_f, aut_neg_f);
    emptiness_check* ec = couvreur99(p);
    emptiness_check_result* res = ec->check();
    if (!res)
      {
	delete ec;
	delete p;
640

641
	// Complement the minimized WDBA.
642
643
644
	tgba* neg_min_aut_f = wdba_complement(min_aut_f);

	tgba* p = new tgba_product(aut_f, neg_min_aut_f);
645
646
647
648
	emptiness_check* ec = couvreur99(p);
	res = ec->check();

	if (!res)
649
650
651
652
653
	  {
	    // Finally, we are now sure that it was safe
	    // to minimize the automaton.
	    ok = true;
	  }
654
655
656
657

	delete res;
	delete ec;
	delete p;
658
	delete neg_min_aut_f;
659
660
661
662
663
664
665
666
667
668
669
670
671
672
      }
    else
      {
	delete res;
	delete ec;
	delete p;
      }
    delete to_free;

    if (ok)
      return min_aut_f;
    delete min_aut_f;
    return aut_f;
  }
673
}