minimize.cc 18.3 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
3
// Copyright (C) 2010, 2011, 2012, 2013, 2014 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19

20
21
22
23
24
25
26
27
28

//#define TRACE

#ifdef TRACE
#  define trace std::cerr
#else
#  define trace while (0) std::cerr
#endif

29
#include <queue>
30
31
32
#include <deque>
#include <set>
#include <list>
33
#include <vector>
34
#include <sstream>
35
36
37
#include "minimize.hh"
#include "ltlast/allnodes.hh"
#include "misc/hash.hh"
38
#include "misc/bddlt.hh"
39
40
#include "tgba/tgbaproduct.hh"
#include "tgba/tgbatba.hh"
41
#include "tgba/wdbacomp.hh"
42
#include "tgbaalgos/powerset.hh"
43
44
45
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/sccfilter.hh"
46
#include "tgbaalgos/scc.hh"
47
#include "tgbaalgos/ltl2tgba_fm.hh"
48
#include "tgbaalgos/bfssteps.hh"
49
#include "tgbaalgos/isdet.hh"
50
#include "tgbaalgos/dtgbacomp.hh"
51
#include "priv/countstates.hh"
52
53
54

namespace spot
{
55
56
  // FIXME: do we really want to use unordered_set instead of set here?
  // This calls for benchmarking.
57
58
59
60
  typedef std::unordered_set<const state*,
			     state_ptr_hash, state_ptr_equal> hash_set;
  typedef std::unordered_map<const state*, unsigned,
			     state_ptr_hash, state_ptr_equal> hash_map;
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
  namespace
  {
    static std::ostream&
    dump_hash_set(const hash_set* hs, const tgba* aut, std::ostream& out)
    {
      out << "{";
      const char* sep = "";
      for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
	{
	  out << sep << aut->format_state(*i);
	  sep = ", ";
	}
      out << "}";
      return out;
    }

    static std::string
    format_hash_set(const hash_set* hs, const tgba* aut)
    {
      std::ostringstream s;
      dump_hash_set(hs, aut, s);
      return s.str();
    }
  }

87
  // Find all states of an automaton.
88
  void build_state_set(const tgba* a, hash_set* seen)
89
  {
Felix Abecassis's avatar
Felix Abecassis committed
90
    std::queue<const state*> tovisit;
91
    // Perform breadth-first traversal.
Felix Abecassis's avatar
Felix Abecassis committed
92
    const state* init = a->get_init_state();
93
    tovisit.push(init);
94
    seen->insert(init);
95
96
    while (!tovisit.empty())
      {
97
98
99
100
	const state* src = tovisit.front();
	tovisit.pop();

	for (auto sit: a->succ(src))
101
	  {
102
103
104
105
106
107
108
109
110
111
	    const state* dst = sit->current_state();
	    // Is it a new state ?
	    if (seen->find(dst) == seen->end())
	      {
		// Register the successor for later processing.
		tovisit.push(dst);
		seen->insert(dst);
	      }
	    else
	      dst->destroy();
112
	  }
113
114
115
116
117
      }
  }

  // From the base automaton and the list of sets, build the minimal
  // resulting automaton
118
  sba_explicit_number* build_result(const tgba* a,
119
120
121
122
123
124
125
126
127
128
                                     std::list<hash_set*>& sets,
                                     hash_set* final)
  {
    // For each set, create a state in the resulting automaton.
    // For a state s, state_num[s] is the number of the state in the minimal
    // automaton.
    hash_map state_num;
    std::list<hash_set*>::iterator sit;
    unsigned num = 0;
    for (sit = sets.begin(); sit != sets.end(); ++sit)
129
130
131
132
133
134
135
      {
	hash_set::iterator hit;
	hash_set* h = *sit;
	for (hit = h->begin(); hit != h->end(); ++hit)
	  state_num[*hit] = num;
	++num;
      }
Pierre PARUTTO's avatar
Pierre PARUTTO committed
136
    typedef state_explicit_number::transition trs;
137
    sba_explicit_number* res = new sba_explicit_number(a->get_dict());
138
139
    // For each transition in the initial automaton, add the corresponding
    // transition in res.
140
141
    if (!final->empty())
      res->declare_acceptance_condition(ltl::constant::true_instance());
142
    for (sit = sets.begin(); sit != sets.end(); ++sit)
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
      {
	hash_set::iterator hit;
	hash_set* h = *sit;

	// Pick one state.
	const state* src = *h->begin();
	unsigned src_num = state_num[src];
	bool accepting = (final->find(src) != final->end());

	// Connect it to all destinations.
	for (auto succit: a->succ(src))
	  {
	    const state* dst = succit->current_state();
	    hash_map::const_iterator i = state_num.find(dst);
	    dst->destroy();
	    if (i == state_num.end()) // Ignore useless destinations.
	      continue;
	    trs* t = res->create_transition(src_num, i->second);
	    res->add_conditions(t, succit->current_condition());
	    if (accepting)
	      res->add_acceptance_condition(t, ltl::constant::true_instance());
	  }
      }
166
167
168
    res->merge_transitions();
    const state* init_state = a->get_init_state();
    unsigned init_num = state_num[init_state];
169
    init_state->destroy();
170
171
172
173
    res->set_init_state(init_num);
    return res;
  }

174
175
176
177
178
179
180
181
182
183
184

  namespace
  {

    struct wdba_search_acc_loop : public bfs_steps
    {
      wdba_search_acc_loop(const tgba* det_a,
			   unsigned scc_n, scc_map& sm,
			   power_map& pm, const state* dest)
	: bfs_steps(det_a), scc_n(scc_n), sm(sm), pm(pm), dest(dest)
      {
185
	seen(dest);
186
187
188
189
190
      }

      virtual const state*
      filter(const state* s)
      {
191
	s = seen(s);
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
	if (sm.scc_of_state(s) != scc_n)
	  return 0;
	return s;
      }

      virtual bool
      match(tgba_run::step&, const state* to)
      {
	return to == dest;
      }

      unsigned scc_n;
      scc_map& sm;
      power_map& pm;
      const state* dest;
207
      state_unicity_table seen;
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    };


    bool
    wdba_scc_is_accepting(const tgba_explicit_number* det_a, unsigned scc_n,
			  const tgba* orig_a, scc_map& sm, power_map& pm)
    {
      // Get some state from the SCC #n.
      const state* start = sm.one_state_of(scc_n)->clone();

      // Find a loop around START in SCC #n.
      wdba_search_acc_loop wsal(det_a, scc_n, sm, pm, start);
      tgba_run::steps loop;
      const state* reached = wsal.search(start, loop);
      assert(reached == start);
      (void)reached;

      // Build an automaton representing this loop.
      tgba_explicit_number loop_a(det_a->get_dict());
      tgba_run::steps::const_iterator i;
      int loop_size = loop.size();
      int n;
      for (n = 1, i = loop.begin(); n < loop_size; ++n, ++i)
	{
	  loop_a.create_transition(n - 1, n)->condition = i->label;
233
	  i->s->destroy();
234
235
236
	}
      assert(i != loop.end());
      loop_a.create_transition(n - 1, 0)->condition = i->label;
237
      i->s->destroy();
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
      assert(++i == loop.end());

      const state* loop_a_init = loop_a.get_init_state();
      assert(loop_a.get_label(loop_a_init) == 0);

      // Check if the loop is accepting in the original automaton.
      bool accepting = false;

      // Iterate on each original state corresponding to start.
      const power_map::power_state& ps = pm.states_of(det_a->get_label(start));
      for (power_map::power_state::const_iterator it = ps.begin();
	   it != ps.end() && !accepting; ++it)
	{
	  // Contrustruct a product between
	  // LOOP_A, and ORIG_A starting in *IT.

	  tgba* p = new tgba_product_init(&loop_a, orig_a,
					  loop_a_init, *it);

	  emptiness_check* ec = couvreur99(p);
	  emptiness_check_result* res = ec->check();

	  if (res)
	    accepting = true;
	  delete res;
	  delete ec;
	  delete p;
	}

267
      loop_a_init->destroy();
268
269
270
271
272
      return accepting;
    }

  }

273
274
  sba_explicit_number* minimize_dfa(const tgba_explicit_number* det_a,
				    hash_set* final, hash_set* non_final)
275
  {
276
277
278
    typedef std::list<hash_set*> partition_t;
    partition_t cur_run;
    partition_t next_run;
279

280
281
    // The list of equivalent states.
    partition_t done;
282

283
    hash_map state_set_map;
284

285
286
    // Size of det_a
    unsigned size = final->size() + non_final->size();
287
288
    // Use bdd variables to number sets.  set_num is the first variable
    // available.
289
290
    unsigned set_num =
      det_a->get_dict()->register_anonymous_variables(size, det_a);
291
292
293
294
295
296

    std::set<int> free_var;
    for (unsigned i = set_num; i < set_num + size; ++i)
      free_var.insert(i);
    std::map<int, int> used_var;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
297
298
    hash_set* final_copy;

299
300
301
302
303
304
    if (!final->empty())
      {
	unsigned s = final->size();
	used_var[set_num] = s;
	free_var.erase(set_num);
	if (s > 1)
305
	  cur_run.push_back(final);
306
307
308
309
310
	else
	  done.push_back(final);
	for (hash_set::const_iterator i = final->begin();
	     i != final->end(); ++i)
	  state_set_map[*i] = set_num;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
311
312

	final_copy = new hash_set(*final);
313
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
314
315
316
317
318
    else
      {
	final_copy = final;
      }

319
320
321
322
323
324
325
    if (!non_final->empty())
      {
	unsigned s = non_final->size();
	unsigned num = set_num + 1;
	used_var[num] = s;
	free_var.erase(num);
	if (s > 1)
326
	  cur_run.push_back(non_final);
327
328
329
330
331
332
	else
	  done.push_back(non_final);
	for (hash_set::const_iterator i = non_final->begin();
	     i != non_final->end(); ++i)
	  state_set_map[*i] = num;
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
333
334
335
336
    else
      {
	delete non_final;
      }
337

338
339
    // A bdd_states_map is a list of formulae (in a BDD form) associated with a
    // destination set of states.
340
341
342
343
344
    typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;

    bool did_split = true;

    while (did_split)
345
      {
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
	did_split = false;
	while (!cur_run.empty())
	  {
	    // Get a set to process.
	    hash_set* cur = cur_run.front();
	    cur_run.pop_front();

	    trace << "processing " << format_hash_set(cur, det_a) << std::endl;

	    hash_set::iterator hi;
	    bdd_states_map bdd_map;
	    for (hi = cur->begin(); hi != cur->end(); ++hi)
	      {
		const state* src = *hi;
		bdd f = bddfalse;
361
		for (auto si: det_a->succ(src))
362
363
		  {
		    const state* dst = si->current_state();
364
		    hash_map::const_iterator i = state_set_map.find(dst);
365
		    dst->destroy();
366
367
368
369
370
371
372
373
374
		    if (i == state_set_map.end())
		      // The destination state is not in our
		      // partition.  This can happen if the initial
		      // FINAL and NON_FINAL supplied to the algorithm
		      // do not cover the whole automaton (because we
		      // want to ignore some useless states).  Simply
		      // ignore these states here.
		      continue;
		    f |= (bdd_ithvar(i->second) & si->current_condition());
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
		  }

		// Have we already seen this formula ?
		bdd_states_map::iterator bsi = bdd_map.find(f);
		if (bsi == bdd_map.end())
		  {
		    // No, create a new set.
		    hash_set* new_set = new hash_set;
		    new_set->insert(src);
		    bdd_map[f] = new_set;
		  }
		else
		  {
		    // Yes, add the current state to the set.
		    bsi->second->insert(src);
		  }
	      }

	    bdd_states_map::iterator bsi = bdd_map.begin();
	    if (bdd_map.size() == 1)
	      {
		// The set was not split.
		trace << "set " << format_hash_set(bsi->second, det_a)
		      << " was not split" << std::endl;
		next_run.push_back(bsi->second);
	      }
	    else
	      {
403
		did_split = true;
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
		for (; bsi != bdd_map.end(); ++bsi)
		  {
		    hash_set* set = bsi->second;
		    // Free the number associated to these states.
		    unsigned num = state_set_map[*set->begin()];
		    assert(used_var.find(num) != used_var.end());
		    unsigned left = (used_var[num] -= set->size());
		    // Make sure LEFT does not become negative (hence bigger
		    // than SIZE when read as unsigned)
		    assert(left < size);
		    if (left == 0)
		      {
			used_var.erase(num);
			free_var.insert(num);
		      }
		    // Pick a free number
		    assert(!free_var.empty());
		    num = *free_var.begin();
		    free_var.erase(free_var.begin());
		    used_var[num] = set->size();
		    for (hash_set::iterator hit = set->begin();
			 hit != set->end(); ++hit)
		      state_set_map[*hit] = num;
		    // Trivial sets can't be splitted any further.
		    if (set->size() == 1)
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " is minimal" << std::endl;
			done.push_back(set);
		      }
		    else
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " should be processed further" << std::endl;
			next_run.push_back(set);
		      }
		  }
	      }
	    delete cur;
	  }
	if (did_split)
	  trace << "splitting did occur during this pass." << std::endl;
	else
	  trace << "splitting did not occur during this pass." << std::endl;
	std::swap(cur_run, next_run);
449
      }
450
451
452
453
454
455
456
457
458

    done.splice(done.end(), cur_run);

#ifdef TRACE
    trace << "Final partition: ";
    for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
      trace << format_hash_set(*i, det_a) << " ";
    trace << std::endl;
#endif
Felix Abecassis's avatar
Felix Abecassis committed
459
460

    // Build the result.
461
    sba_explicit_number* res = build_result(det_a, done, final_copy);
Felix Abecassis's avatar
Felix Abecassis committed
462
463
464
465

    // Free all the allocated memory.
    delete final_copy;
    hash_map::iterator hit;
466
467
468
    for (hit = state_set_map.begin(); hit != state_set_map.end();)
      {
	hash_map::iterator old = hit++;
469
	old->first->destroy();
470
      }
Felix Abecassis's avatar
Felix Abecassis committed
471
472
473
474
475
    std::list<hash_set*>::iterator it;
    for (it = done.begin(); it != done.end(); ++it)
      delete *it;
    delete det_a;

476
477
    return res;
  }
478

479

480
  sba_explicit_number* minimize_monitor(const tgba* a)
481
482
  {
    hash_set* final = new hash_set;
483
    hash_set* non_final = new hash_set;
484
485
486
487
488
489
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);
    }
490
491

    // non_final contain all states.
492
    // final is empty: there is no acceptance condition
493
    build_state_set(det_a, non_final);
494
495

    return minimize_dfa(det_a, final, non_final);
496
497
  }

498
  sba_explicit_number* minimize_wdba(const tgba* a)
499
500
  {
    hash_set* final = new hash_set;
501
502
    hash_set* non_final = new hash_set;

503
504
505
506
507
508
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);

509
510
511
512
513
      // For each SCC of the deterministic automaton, determine if it
      // is accepting or not.

      // This corresponds to the algorithm in Fig. 1 of "Efficient
      // minimization of deterministic weak omega-automata" written by
514
      // Christof Löding and published in Information Processing
515
516
517
518
519
      // Letters 79 (2001) pp 105--109.

      // We also keep track of whether an SCC is useless
      // (i.e., it is not the start of any accepting word).

520
521
522
      scc_map sm(det_a);
      sm.build_map();
      unsigned scc_count = sm.scc_count();
523
524
      // SCC that have been marked as useless.
      std::vector<bool> useless(scc_count);
525
526
527
528
529
530
531
      // The "color".  Even number correspond to
      // accepting SCCs.
      std::vector<unsigned> d(scc_count);

      // An even number larger than scc_count.
      unsigned k = (scc_count | 1) + 1;

532
      // SCC are numbered in topological order
533
      // (but in the reverse order as Löding's)
534
      for (unsigned m = 0; m < scc_count; ++m)
535
	{
536
	  bool is_useless = true;
537
538
	  bool transient = sm.trivial(m);
	  const scc_map::succ_type& succ = sm.succ(m);
539

540
	  if (transient && succ.empty())
541
	    {
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
	      // A trivial SCC without successor is useless.
	      useless[m] = true;
	      d[m] = k - 1;
	      continue;
	    }

	  // Compute the minimum color l of the successors.
	  // Also SCCs are useless if all their successor are
	  // useless.
	  unsigned l = k;
	  for (scc_map::succ_type::const_iterator j = succ.begin();
	       j != succ.end(); ++j)
	    {
	      is_useless &= useless[j->first];
	      unsigned dj = d[j->first];
	      if (dj < l)
		l = dj;
	    }

	  if (transient)
	    {
	      d[m] = l;
564
565
566
567
	    }
	  else
	    {
	      // Regular SCCs are accepting if any of their loop
568
569
	      // corresponds to an accepted word in the original
	      // automaton.
570
	      if (wdba_scc_is_accepting(det_a, m, a, sm, pm))
571
572
		{
		  is_useless = false;
573
		  d[m] = l & ~1; // largest even number inferior or equal
574
575
576
		}
	      else
		{
577
		  d[m] = (l - 1) | 1; // largest odd number inferior or equal
578
		}
579
	    }
580

581
	  useless[m] = is_useless;
582

583
584
	  if (!is_useless)
	    {
585
	      hash_set* dest_set = (d[m] & 1) ? non_final : final;
586
	      const std::list<const state*>& l = sm.states_of(m);
587
588
589
590
	      std::list<const state*>::const_iterator il;
	      for (il = l.begin(); il != l.end(); ++il)
		dest_set->insert((*il)->clone());
	    }
591
592
593
	}
    }

594
    return minimize_dfa(det_a, final, non_final);
595
596
  }

597
  tgba*
598
  minimize_obligation(const tgba* aut_f,
599
600
		      const ltl::formula* f, const tgba* aut_neg_f,
		      bool reject_bigger)
601
  {
602
    sba_explicit_number* min_aut_f = minimize_wdba(aut_f);
603

604
605
606
    if (reject_bigger)
      {
	// Abort if min_aut_f has more states than aut_f.
607
608
	unsigned orig_states = count_states(aut_f);
	if (orig_states < min_aut_f->num_states())
609
610
611
612
613
614
	  {
	    delete min_aut_f;
	    return const_cast<tgba*>(aut_f);
	  }
      }

615
616
617
618
619
    // if f is a syntactic obligation formula, the WDBA minimization
    // must be correct.
    if (f && f->is_syntactic_obligation())
      return min_aut_f;

620
    // If aut_f is a guarantee automaton, the WDBA minimization must be
621
    // correct.
622
    if (is_guarantee_automaton(aut_f))
623
      return min_aut_f;
624
625
626
627
628
629

    const tgba* to_free = 0;

    // Build negation automaton if not supplied.
    if (!aut_neg_f)
      {
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
	if (f)
	  {
	    // If we know the formula, simply build the automaton for
	    // its negation.
	    const ltl::formula* neg_f =
	      ltl::unop::instance(ltl::unop::Not, f->clone());
	    aut_neg_f = ltl_to_tgba_fm(neg_f, aut_f->get_dict());
	    neg_f->destroy();

	    // Remove useless SCCs.
	    const tgba* tmp = scc_filter(aut_neg_f, true);
	    delete aut_neg_f;
	    to_free = aut_neg_f = tmp;
	  }
	else if (is_deterministic(aut_f))
	  {
	    // If the automaton is deterministic, complementing is
	    // easy.
648
	    to_free = aut_neg_f = dtgba_complement(aut_f);
649
650
651
652
653
654
655
	  }
	else
	  {
	    // Otherwise, we cannot check if the minimization is safe.
	    delete min_aut_f;
	    return 0;
	  }
656
657
      }

658
    // If the negation is a guarantee automaton, then the
659
    // minimization is correct.
660
    if (is_guarantee_automaton(aut_neg_f))
661
662
663
664
665
666
667
668
669
670
671
672
673
674
      {
	delete to_free;
	return min_aut_f;
      }

    bool ok = false;

    tgba* p = new tgba_product(min_aut_f, aut_neg_f);
    emptiness_check* ec = couvreur99(p);
    emptiness_check_result* res = ec->check();
    if (!res)
      {
	delete ec;
	delete p;
675

676
	// Complement the minimized WDBA.
677
678
679
	tgba* neg_min_aut_f = wdba_complement(min_aut_f);

	tgba* p = new tgba_product(aut_f, neg_min_aut_f);
680
681
682
683
	emptiness_check* ec = couvreur99(p);
	res = ec->check();

	if (!res)
684
685
686
687
688
	  {
	    // Finally, we are now sure that it was safe
	    // to minimize the automaton.
	    ok = true;
	  }
689
690
691
692

	delete res;
	delete ec;
	delete p;
693
	delete neg_min_aut_f;
694
695
696
697
698
699
700
701
702
703
704
705
      }
    else
      {
	delete res;
	delete ec;
	delete p;
      }
    delete to_free;

    if (ok)
      return min_aut_f;
    delete min_aut_f;
706
    return const_cast<tgba*>(aut_f);
707
  }
708
}