ltl2tgba_fm.cc 25 KB
Newer Older
1
2
3
// Copyright (C) 2003, 2004, 2005, 2006, 2008 Laboratoire
// d'Informatique de Paris 6 (LIP6), dpartement Systmes Rpartis
// Coopratifs (SRC), Universit Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

22
#include "misc/hash.hh"
23
#include "misc/bddalloc.hh"
24
#include "misc/bddlt.hh"
25
#include "misc/minato.hh"
26
27
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
28
29
30
31
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/destroy.hh"
#include "ltlvisit/tostring.hh"
32
#include "ltlvisit/postfix.hh"
33
#include "ltlvisit/apcollect.hh"
34
#include <cassert>
35
#include <memory>
36
#include "ltl2tgba_fm.hh"
37
#include "ltlvisit/contain.hh"
38
39
40
41
42
43
44
45

namespace spot
{
  using namespace ltl;

  namespace
  {

46
47
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
48
49
50
51
52
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
53
    class translate_dict
54
55
56
    {
    public:

57
58
      translate_dict(bdd_dict* dict)
	: dict(dict),
59
60
61
62
63
64
65
66
67
68
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
69
	  destroy(i->first);
70
	dict->unregister_all_my_variables(this);
71
72
      }

73
74
      bdd_dict* dict;

75
76
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
77
78
79
80
81
82
83
84
85

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
86
      register_proposition(const formula* f)
87
      {
88
	int num = dict->register_proposition(f, this);
89
90
91
92
93
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
94
      register_a_variable(const formula* f)
95
      {
96
	int num = dict->register_acceptance_variable(f, this);
97
98
99
100
101
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
102
      register_next_variable(const formula* f)
103
104
105
106
107
108
109
110
111
112
113
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
114
	    num = dict->register_anonymous_variables(1, this);
115
116
117
118
119
120
121
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
	return os;
      }

137
      formula*
138
139
140
141
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
142
	  return clone(isi->second);
143
144
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
145
	  return clone(isi->second);
146
147
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
148
	  return clone(isi->second);
149
	assert(0);
150
151
152
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
153
154
      }

155
      formula*
156
157
158
      conj_bdd_to_formula(bdd b)
      {
	if (b == bddfalse)
159
160
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
161
162
163
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
164
	    formula* res = var_to_formula(var);
165
166
167
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
168
		res = unop::instance(unop::Not, res);
169
170
171
172
		b = bdd_low(b);
	      }
	    else
	      {
173
		assert(bdd_low(b) == bddfalse);
174
175
176
177
178
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
179
	return multop::instance(multop::And, v);
180
181
      }

182
183
      const formula*
      bdd_to_formula(bdd f)
184
      {
185
	if (f == bddfalse)
186
	  return constant::false_instance();
187

188
189
190
191
192
193
194
195
196
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
197
198
199
200
201
202
203
204
205
206
207

      void
      conj_bdd_to_acc(tgba_explicit* a, bdd b, tgba_explicit::transition* t)
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
208
		// Simply ignore negated acceptance variables.
209
210
211
212
		b = bdd_low(b);
	      }
	    else
	      {
213
		formula* ac = var_to_formula(var);
214

215
		if (!a->has_acceptance_condition(ac))
216
217
		  a->declare_acceptance_condition(clone(ac));
		a->add_acceptance_condition(t, ac);
218
219
220
221
222
223
224
225
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    // The rewrite rules used here are adapted from Jean-Michel
    // Couvreur's FM paper.
    class ltl_trad_visitor: public const_visitor
    {
    public:
      ltl_trad_visitor(translate_dict& dict)
	: dict_(dict)
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

285
286
      bdd
      result() const
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
      {
	return res_;
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
321
322
323
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
324
325
326
327
328
329
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
	      return;
	    }
	  case unop::G:
	    {
330
331
332
333
334
335
336
337
338
339
340
341
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
342
	      const formula* child = node->child();
343
	      int x = dict_.register_next_variable(node);
344
345
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
346
347
348
349
	      return;
	    }
	  case unop::Not:
	    {
350
	      // r(!y) = !r(y)
351
352
353
354
355
	      res_ = bdd_not(recurse(node->child()));
	      return;
	    }
	  case unop::X:
	    {
356
	      // r(Xy) = Next[y]
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop* node)
      {
	bdd f1 = recurse(node->first());
	bdd f2 = recurse(node->second());

	switch (node->op())
	  {
374
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
	  case binop::Xor:
	    res_ = bdd_apply(f1, f2, bddop_xor);
	    return;
	  case binop::Implies:
	    res_ = bdd_apply(f1, f2, bddop_imp);
	    return;
	  case binop::Equiv:
	    res_ = bdd_apply(f1, f2, bddop_biimp);
	    return;
	  case binop::U:
	    {
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
	      return;
	    }
	  case binop::R:
	    {
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

404
405
406
407
408
409
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
      void
      visit(const multop* node)
      {
	int op = -1;
	switch (node->op())
	  {
	  case multop::And:
	    op = bddop_and;
	    res_ = bddtrue;
	    break;
	  case multop::Or:
	    op = bddop_or;
	    res_ = bddfalse;
	    break;
	  }
	assert(op != -1);
	unsigned s = node->size();
	for (unsigned n = 0; n < s; ++n)
	  {
	    res_ = bdd_apply(res_, recurse(node->nth(n)), op);
	  }
      }

      bdd
      recurse(const formula* f)
      {
	ltl_trad_visitor v(dict_);
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
    };

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

    // Check whether a formula has a R or G operator at its top-level
    // (preceding logical operators do not count).
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
	    return;
	  case binop::R:
	    res_ = true;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

509
510
511
512
513
514
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
537
538
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
539
540
541
542
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
543
	pfl_[f] = rel;
544
545
546
547
	return rel;
      }

    private:
548
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
549
      pfl_map pfl_;
550
551
    };

552
553
554
    class formula_canonizer
    {
    public:
555
      formula_canonizer(translate_dict& d,
556
557
			bool fair_loop_approx, bdd all_promises,
			language_containment_checker* lcc)
558
559
	: v_(d),
	  fair_loop_approx_(fair_loop_approx),
560
561
	  all_promises_(all_promises),
	  lcc_(lcc)
562
563
564
565
566
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
567

568
569
      ~formula_canonizer()
      {
570
	while (!f2b_.empty())
571
	  {
572
573
574
575
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
	    destroy(f);
576
	  }
577
578
579
      }

      bdd
580
      translate(const formula* f, bool* new_flag = 0)
581
582
583
584
585
586
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

587
588
589
	if (new_flag)
	  *new_flag = true;

590
591
592
	// Perform the actual translation.
	f->accept(v_);
	bdd res = v_.result();
593
594
595
596
597
598
599
600
601
602
603
604

	// Apply the fair-loop approximation if requested.
	if (fair_loop_approx_)
	  {
	    // If the source cannot possibly be part of a fair
	    // loop, make all possible promises.
	    if (fair_loop_approx_
		&& f != constant::true_instance()
		&& !pflc_.check(f))
	      res &= all_promises_;
	  }

605
606
607
608
609
610
611
612
613
614
615
	f2b_[clone(f)] = res;

	// Register the reverse mapping if it is not already done.
	if (b2f_.find(res) == b2f_.end())
	  b2f_[res] = f;
	return res;
      }

      const formula*
      canonize(const formula* f)
      {
616
617
	bool new_variable = false;
	bdd b = translate(f, &new_variable);
618
619

	bdd_to_formula_map::iterator i = b2f_.find(b);
620
621
	// Since we have just translated the formula, it is
	// necessarily in b2f_.
622
623
624
	assert(i != b2f_.end());

	if (i->second != f)
625
	  {
626
	    // The translated bdd maps to an already seen formula.
627
628
	    destroy(f);
	    f = clone(i->second);
629
	  }
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
	else if (new_variable && lcc_)
	  {
	    // It's a new bdd for a new formula.  Let's see if we can
	    // find an equivalent formula with language containment
	    // checks.
	    for (formula_to_bdd_map::const_iterator j = f2b_.begin();
		 j != f2b_.end(); ++j)
	      if (f != j->first && lcc_->equal(f, j->first))
		{
		  f2b_[f] = j->second;
		  i->second = j->first;
		  destroy(f);
		  f = clone(i->second);
		  break;
		}
	  }
646
	return f;
647
648
      }

649
650
651
652
653
654
655
656
657
658
659
660
661
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;
      bdd_to_formula_map b2f_;
      // Map a representation of successors to a canonical formula.
      // We do this because many formulae (such as `aR(bRc)' and
      // `aR(bRc).(bRc)') are equivalent, and are trivially identified
      // by looking at the set of successors.
      typedef std::map<const formula*, bdd> formula_to_bdd_map;
      formula_to_bdd_map f2b_;
662
663
664
665

      possible_fair_loop_checker pflc_;
      bool fair_loop_approx_;
      bdd all_promises_;
666
      language_containment_checker* lcc_;
667
668
669
670
671
    };

  }

  typedef std::map<bdd, bdd, bdd_less_than> prom_map;
672
  typedef Sgi::hash_map<const formula*, prom_map, formula_ptr_hash> dest_map;
673
674
675
676

  static void
  fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
  {
677
    bdd conds = bdd_existcomp(label, d.var_set);
678
679
    bdd promises = bdd_existcomp(label, d.a_set);

680
681
682
683
684
685
686
687
688
689
690
691
692
    dest_map::iterator i = dests.find(dest);
    if (i == dests.end())
      {
	dests[dest][promises] = conds;
      }
    else
      {
	i->second[promises] |= conds;
	destroy(dest);
      }
  }


693
  tgba_explicit*
694
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
695
		 bool exprop, bool symb_merge, bool branching_postponement,
696
		 bool fair_loop_approx, const atomic_prop_set* unobs,
697
		 int reduce_ltl, bool containment_checks)
698
  {
699
700
    symb_merge |= containment_checks;

701
702
703
704
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
705
706
707
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
    destroy(f1);
708

709
710
711
712
713
714
715
716
    // Simplify the formula, if requested.
    if (reduce_ltl)
      {
	formula* tmp = reduce(f2, reduce_ltl);
	destroy(f2);
	f2 = tmp;
      }

717
718
719
    typedef std::set<const formula*, formula_ptr_less_than> set_type;
    set_type formulae_seen;
    set_type formulae_to_translate;
720

721
    translate_dict d(dict);
722

723
724
    // Compute the set of all promises that can possibly occurre
    // inside the formula.
725
    bdd all_promises = bddtrue;
726
    if (fair_loop_approx || unobs)
727
728
729
730
731
732
      {
	ltl_promise_visitor pv(d);
	f2->accept(pv);
	all_promises = pv.result();
      }

733
734
735
736
737
738
    language_containment_checker lcc(dict, exprop, symb_merge,
				     branching_postponement,
				     fair_loop_approx);

    formula_canonizer fc(d, fair_loop_approx, all_promises,
			 containment_checks ? &lcc : 0);
739

740
741
742
743
744
745
746
747
748
749
    // These are used when atomic propositions are interpreted as
    // events.  There are two kinds of events: observable events are
    // those used in the formula, and unobservable events or other
    // events that can occur at anytime.  All events exclude each
    // other.
    bdd observable_events = bddfalse;
    bdd unobservable_events = bddfalse;
    if (unobs)
      {
	bdd neg_events = bddtrue;
750
751
	std::auto_ptr<atomic_prop_set> aps(atomic_prop_collect(f));
	for (atomic_prop_set::const_iterator i = aps->begin();
752
753
754
755
756
757
758
759
	     i != aps->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    observable_events = (observable_events & neg) | (neg_events & pos);
	    neg_events &= neg;
	  }
760
	for (atomic_prop_set::const_iterator i = unobs->begin();
761
762
763
764
765
766
767
768
769
770
771
772
773
	     i != unobs->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    unobservable_events = ((unobservable_events & neg)
				   | (neg_events & pos));
	    observable_events &= neg;
	    neg_events &= neg;
	  }
      }
    bdd all_events = observable_events | unobservable_events;

774
775
776
777
778
779
780
781
782
783
    formulae_seen.insert(f2);
    formulae_to_translate.insert(f2);

    tgba_explicit* a = new tgba_explicit(dict);

    a->set_init_state(to_string(f2));

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
784
	const formula* f = *formulae_to_translate.begin();
785
786
787
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
788
	bdd res = fc.translate(f);
789

790
791
792
793
794
795
796
797
	// Handle exclusive events.
	if (unobs)
	  {
	    res &= observable_events;
	    int n = d.register_next_variable(f);
	    res |= unobservable_events & bdd_ithvar(n) & all_promises;
	  }

798
799
	std::string now = to_string(f);

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
	// We used to factor only Next and A variables while computing
	// prime implicants, with
	//    minato_isop isop(res, d.next_set & d.a_set);
	// in order to obtain transitions with formulae of atomic
	// proposition directly, but unfortunately this led to strange
	// factorizations.  For instance f U g was translated as
	//     r(f U g) = g + a(g).r(X(f U g)).(f + g)
	// instead of just
	//     r(f U g) = g + a(g).r(X(f U g)).f
	// Of course both formulae are logically equivalent, but the
	// latter is "more deterministic" than the former, so it should
	// be preferred.
	//
	// Therefore we now factor all variables.  This may lead to more
	// transitions than necessary (e.g.,  r(f + g) = f + g  will be
815
816
817
	// coded as two transitions), but we later merge all transitions
	// with same source/destination and acceptance conditions.  This
	// is the goal of the `dests' hash.
818
	//
819
	// Note that this is still not optimal.  For instance it is
820
	// better to encode `f U g' as
821
	//     r(f U g) = g + a(g).r(X(f U g)).f.!g
822
823
824
825
	// because that leads to a deterministic automaton.  In order
	// to handle this, we take the conditions of any transition
	// going to true (it's `g' here), and remove it from the other
	// transitions.
826
827
828
	//
	// In `exprop' mode, considering all possible combinations of
	// outgoing propositions generalizes the above trick.
829
	dest_map dests;
830

831
	// Compute all outgoing arcs.
832
833
834
835
836

	// If EXPROP is set, we will refine the symbolic
	// representation of the successors for all combinations of
	// the atomic properties involved in the formula.
	// VAR_SET is the set of these properties.
837
	bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
838
839
840
841
842
	// ALL_PROPS is the combinations we have yet to consider.
	// We used to start with `all_props = bddtrue', but it is
	// more efficient to start with the set of all satisfiable
	// variables combinations.
	bdd all_props = bdd_existcomp(res, d.var_set);
843
	while (all_props != bddfalse)
844
	  {
845
846
847
	    bdd one_prop_set = bddtrue;
	    if (exprop)
	      one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
848
	    all_props -= one_prop_set;
849

850
	    typedef std::map<bdd, const formula*, bdd_less_than> succ_map;
851
852
	    succ_map succs;

853
854
855
	    minato_isop isop(res & one_prop_set);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
856
	      {
857
		bdd label = bdd_exist(cube, d.next_set);
858
		bdd dest_bdd = bdd_existcomp(cube, d.next_set);
859
860
		const formula* dest = d.conj_bdd_to_formula(dest_bdd);

861
862
863
864
865
866
867
868
869
870
871
		// Simplify the formula, if requested.
		if (reduce_ltl)
		  {
		    formula* tmp = reduce(dest, reduce_ltl);
		    destroy(dest);
		    dest = tmp;
		    // Ignore the arc if the destination reduces to false.
		    if (dest == constant::false_instance())
		      continue;
		  }

872
873
874
875
		// If we already know a state with the same
		// successors, use it in lieu of the current one.
		if (symb_merge)
		  dest = fc.canonize(dest);
876

877
878
879
880
881
882
		// If we are not postponing the branching, we can
		// declare the outgoing transitions immediately.
		// Otherwise, we merge transitions with identical
		// label, and declare the outgoing transitions in a
		// second loop.
		if (!branching_postponement)
883
		  {
884
		    fill_dests(d, dests, label, dest);
885
886
887
		  }
		else
		  {
888
889
890
891
		    succ_map::iterator si = succs.find(label);
		    if (si == succs.end())
		      succs[label] = dest;
		    else
892
893
894
895
		      si->second =
			multop::instance(multop::Or,
					 const_cast<formula*>(si->second),
					 const_cast<formula*>(dest));
896
897
		  }
	      }
898
899
900
	    if (branching_postponement)
	      for (succ_map::const_iterator si = succs.begin();
		   si != succs.end(); ++si)
901
		fill_dests(d, dests, si->first, si->second);
902
	  }
903

904
	// Check for an arc going to 1 (True).  Register it first, that
905
906
907
	// way it will be explored before the other during the model
	// checking.
	dest_map::const_iterator i = dests.find(constant::true_instance());
908
909
910
911
	// COND_FOR_TRUE is the conditions of the True arc, so when
	// can remove them from all other arcs.  It might sounds that
	// this is not needed when exprop is used, but in fact it is
	// complementary.
912
913
	//
	// Consider
914
	//   f = r(X(1) R p) = p.(1 + r(X(1) R p))
915
	// with exprop the two outgoing arcs would be
916
917
        //         p                  p
	//     f ----> 1       f ----------> 1
918
919
	//
	// where in fact we could output
920
921
        //         p
	//     f ----> 1
922
	//
923
	// because there is no point in looping on f if we can go to 1.
924
	bdd cond_for_true = bddfalse;
925
926
	if (i != dests.end())
	  {
927
	    // When translating LTL for an event-based logic with
928
929
	    // unobservable events, the 1 state should accept all events,
	    // even unobservable events.
930
931
	    if (unobs && f == constant::true_instance())
	      cond_for_true = all_events;
932
933
934
935
936
	    else
	      {
		// There should be only one transition going to 1 (true) ...
		assert(i->second.size() == 1);
		prom_map::const_iterator j = i->second.begin();
937
938
939
		// ... and it is not expected to make any promises (unless
		// fair loop approximations are used).
		assert(fair_loop_approx || j->first == bddtrue);
940
941
		cond_for_true = j->second;
	      }
942
943
	    tgba_explicit::transition* t =
	      a->create_transition(now, constant::true_instance()->val_name());
944
	    a->add_condition(t, d.bdd_to_formula(cond_for_true));
945
946
947
948
949
	  }
	// Register other transitions.
	for (i = dests.begin(); i != dests.end(); ++i)
	  {
	    const formula* dest = i->first;
950
951
952
953
	    // The cond_for_true optimization can cause some
	    // transitions to be removed.  So we have to remember
	    // whether a formula is actually reachable.
	    bool reachable = false;
954

955
956
957
958
959
960
	    if (dest != constant::true_instance())
	      {
		std::string next = to_string(dest);
		for (prom_map::const_iterator j = i->second.begin();
		     j != i->second.end(); ++j)
		  {
961
962
963
		    bdd cond = j->second - cond_for_true;
		    if (cond == bddfalse) // Skip false transitions.
		      continue;
964
965
		    tgba_explicit::transition* t =
		      a->create_transition(now, next);
966
		    a->add_condition(t, d.bdd_to_formula(cond));
967
		    d.conj_bdd_to_acc(a, j->first, t);
968
		    reachable = true;
969
970
		  }
	      }
971
972
973
974
975
976
977
	    else
	      {
		// "1" is reachable.
		reachable = true;
	      }
	    if (reachable
		&& formulae_seen.find(dest) == formulae_seen.end())
978
979
980
981
982
983
	      {
		formulae_seen.insert(dest);
		formulae_to_translate.insert(dest);
	      }
	    else
	      {
984
		destroy(dest);
985
986
987
988
989
	      }
	  }
      }

    // Free all formulae.
990
    for (std::set<const formula*>::iterator i = formulae_seen.begin();
991
	 i != formulae_seen.end(); ++i)
992
      destroy(*i);
993

994
995
    // Turn all promises into real acceptance conditions.
    a->complement_all_acceptance_conditions();
996
997
998
999
    return a;
  }

}