ltl2tgba_fm.cc 25.5 KB
Newer Older
1
2
3
// Copyright (C) 2008, 2009, 2010 Laboratoire de Recherche et
// Dveloppement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire
4
5
// d'Informatique de Paris 6 (LIP6), dpartement Systmes Rpartis
// Coopratifs (SRC), Universit Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

24
#include "misc/hash.hh"
25
#include "misc/bddalloc.hh"
26
#include "misc/bddlt.hh"
27
#include "misc/minato.hh"
28
29
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
30
31
32
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/tostring.hh"
33
#include "ltlvisit/postfix.hh"
34
#include "ltlvisit/apcollect.hh"
35
#include <cassert>
36
#include <memory>
37
#include "ltl2tgba_fm.hh"
38
#include "ltlvisit/contain.hh"
39
40
41
42
43
44
45
46

namespace spot
{
  using namespace ltl;

  namespace
  {

47
48
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
49
50
51
52
53
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
54
    class translate_dict
55
56
57
    {
    public:

58
59
      translate_dict(bdd_dict* dict)
	: dict(dict),
60
61
62
63
64
65
66
67
68
69
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
70
	  i->first->destroy();
71
	dict->unregister_all_my_variables(this);
72
73
      }

74
75
      bdd_dict* dict;

76
77
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
78
79
80
81
82
83
84
85
86

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
87
      register_proposition(const formula* f)
88
      {
89
	int num = dict->register_proposition(f, this);
90
91
92
93
94
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
95
      register_a_variable(const formula* f)
96
      {
97
	int num = dict->register_acceptance_variable(f, this);
98
99
100
101
102
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
103
      register_next_variable(const formula* f)
104
105
106
107
108
109
110
111
112
113
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
114
	    f = f->clone();
115
	    num = dict->register_anonymous_variables(1, this);
116
117
118
119
120
121
122
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
	return os;
      }

138
      formula*
139
140
141
142
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
143
	  return isi->second->clone();
144
145
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
146
	  return isi->second->clone();
147
148
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
149
	  return isi->second->clone();
150
	assert(0);
151
152
153
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
154
155
      }

156
      formula*
157
158
159
      conj_bdd_to_formula(bdd b)
      {
	if (b == bddfalse)
160
161
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
162
163
164
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
165
	    formula* res = var_to_formula(var);
166
167
168
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
169
		res = unop::instance(unop::Not, res);
170
171
172
173
		b = bdd_low(b);
	      }
	    else
	      {
174
		assert(bdd_low(b) == bddfalse);
175
176
177
178
179
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
180
	return multop::instance(multop::And, v);
181
182
      }

183
184
      const formula*
      bdd_to_formula(bdd f)
185
      {
186
	if (f == bddfalse)
187
	  return constant::false_instance();
188

189
190
191
192
193
194
195
196
197
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
198
199

      void
200
      conj_bdd_to_acc(tgba_explicit_formula* a, bdd b,
Pierre PARUTTO's avatar
Pierre PARUTTO committed
201
		      state_explicit_formula::transition* t)
202
203
204
205
206
207
208
209
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
210
		// Simply ignore negated acceptance variables.
211
212
213
214
		b = bdd_low(b);
	      }
	    else
	      {
215
		formula* ac = var_to_formula(var);
216

217
		if (!a->has_acceptance_condition(ac))
218
		  a->declare_acceptance_condition(ac->clone());
219
		a->add_acceptance_condition(t, ac);
220
221
222
223
224
225
226
227
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };


272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    // The rewrite rules used here are adapted from Jean-Michel
    // Couvreur's FM paper.
    class ltl_trad_visitor: public const_visitor
    {
    public:
      ltl_trad_visitor(translate_dict& dict)
	: dict_(dict)
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

287
288
      bdd
      result() const
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
      {
	return res_;
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
323
324
325
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
326
327
328
329
330
331
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
	      return;
	    }
	  case unop::G:
	    {
332
333
334
335
336
337
338
339
340
341
342
343
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
344
	      const formula* child = node->child();
345
	      int x = dict_.register_next_variable(node);
346
347
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
348
349
350
351
	      return;
	    }
	  case unop::Not:
	    {
352
	      // r(!y) = !r(y)
353
354
355
356
357
	      res_ = bdd_not(recurse(node->child()));
	      return;
	    }
	  case unop::X:
	    {
358
	      // r(Xy) = Next[y]
359
360
361
362
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
	      return;
	    }
363
364
	  case unop::Finish:
	    assert(!"unsupported operator");
365
366
367
368
369
370
371
372
373
374
375
376
377
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop* node)
      {
	bdd f1 = recurse(node->first());
	bdd f2 = recurse(node->second());

	switch (node->op())
	  {
378
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
	  case binop::Xor:
	    res_ = bdd_apply(f1, f2, bddop_xor);
	    return;
	  case binop::Implies:
	    res_ = bdd_apply(f1, f2, bddop_imp);
	    return;
	  case binop::Equiv:
	    res_ = bdd_apply(f1, f2, bddop_biimp);
	    return;
	  case binop::U:
	    {
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
	      return;
	    }
396
397
398
399
400
401
402
	  case binop::W:
	    {
	      // r(f1 W f2) = r(f2) + r(f1)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (f1 & bdd_ithvar(x));
	      return;
	    }
403
404
405
406
407
408
409
	  case binop::R:
	    {
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
	      return;
	    }
410
411
412
413
414
415
416
417
	  case binop::M:
	    {
	      // r(f1 M f2) = r(f1)r(f2) + a(f1)r(f2)r(X(f1 M f2))
	      int a = dict_.register_a_variable(node->first());
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (bdd_ithvar(a) & f2 & bdd_ithvar(x));
	      return;
	    }
418
419
420
421
422
	  }
	/* Unreachable code.  */
	assert(0);
      }

423
424
425
426
427
428
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
      void
      visit(const multop* node)
      {
	int op = -1;
	switch (node->op())
	  {
	  case multop::And:
	    op = bddop_and;
	    res_ = bddtrue;
	    break;
	  case multop::Or:
	    op = bddop_or;
	    res_ = bddfalse;
	    break;
	  }
	assert(op != -1);
	unsigned s = node->size();
	for (unsigned n = 0; n < s; ++n)
	  {
	    res_ = bdd_apply(res_, recurse(node->nth(n)), op);
	  }
      }

      bdd
      recurse(const formula* f)
      {
	ltl_trad_visitor v(dict_);
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
    };

466

467
468
    // Check whether a formula has a R, W, or G operator at its
    // top-level (preceding logical operators do not count).
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
519
	  case binop::M:
520
521
	    return;
	  case binop::R:
522
	  case binop::W:
523
524
525
526
527
528
529
	    res_ = true;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

530
531
532
533
534
535
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
558
559
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
560
561
562
563
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
564
	pfl_[f] = rel;
565
566
567
568
	return rel;
      }

    private:
569
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
570
      pfl_map pfl_;
571
572
    };

573
574
575
    class formula_canonizer
    {
    public:
576
      formula_canonizer(translate_dict& d,
577
			bool fair_loop_approx, bdd all_promises)
578
579
	: v_(d),
	  fair_loop_approx_(fair_loop_approx),
580
	  all_promises_(all_promises)
581
582
583
584
585
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
586

587
588
      ~formula_canonizer()
      {
589
	while (!f2b_.empty())
590
	  {
591
592
593
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
594
	    f->destroy();
595
	  }
596
597
598
      }

      bdd
599
      translate(const formula* f, bool* new_flag = 0)
600
601
602
603
604
605
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

606
607
608
	if (new_flag)
	  *new_flag = true;

609
610
611
	// Perform the actual translation.
	f->accept(v_);
	bdd res = v_.result();
612
613
614
615
616
617
618
619
620
621
622
623

	// Apply the fair-loop approximation if requested.
	if (fair_loop_approx_)
	  {
	    // If the source cannot possibly be part of a fair
	    // loop, make all possible promises.
	    if (fair_loop_approx_
		&& f != constant::true_instance()
		&& !pflc_.check(f))
	      res &= all_promises_;
	  }

624
	f2b_[f->clone()] = res;
625
626
627
628
629
630
631
632
633
634

	// Register the reverse mapping if it is not already done.
	if (b2f_.find(res) == b2f_.end())
	  b2f_[res] = f;
	return res;
      }

      const formula*
      canonize(const formula* f)
      {
635
636
	bool new_variable = false;
	bdd b = translate(f, &new_variable);
637
638

	bdd_to_formula_map::iterator i = b2f_.find(b);
639
640
	// Since we have just translated the formula, it is
	// necessarily in b2f_.
641
642
643
	assert(i != b2f_.end());

	if (i->second != f)
644
	  {
645
	    // The translated bdd maps to an already seen formula.
646
	    f->destroy();
647
	    f = i->second->clone();
648
	  }
649
	return f;
650
651
      }

652
653
654
655
656
657
658
659
660
661
662
663
664
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;
      bdd_to_formula_map b2f_;
      // Map a representation of successors to a canonical formula.
      // We do this because many formulae (such as `aR(bRc)' and
      // `aR(bRc).(bRc)') are equivalent, and are trivially identified
      // by looking at the set of successors.
      typedef std::map<const formula*, bdd> formula_to_bdd_map;
      formula_to_bdd_map f2b_;
665
666
667
668

      possible_fair_loop_checker pflc_;
      bool fair_loop_approx_;
      bdd all_promises_;
669
670
671
672
673
    };

  }

  typedef std::map<bdd, bdd, bdd_less_than> prom_map;
674
  typedef Sgi::hash_map<const formula*, prom_map, formula_ptr_hash> dest_map;
675
676
677
678

  static void
  fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
  {
679
    bdd conds = bdd_existcomp(label, d.var_set);
680
681
    bdd promises = bdd_existcomp(label, d.a_set);

682
683
684
685
686
687
688
689
    dest_map::iterator i = dests.find(dest);
    if (i == dests.end())
      {
	dests[dest][promises] = conds;
      }
    else
      {
	i->second[promises] |= conds;
690
	dest->destroy();
691
692
693
694
      }
  }


Pierre PARUTTO's avatar
Pierre PARUTTO committed
695
  tgba_explicit_formula*
696
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
697
		 bool exprop, bool symb_merge, bool branching_postponement,
698
		 bool fair_loop_approx, const atomic_prop_set* unobs,
699
		 int reduce_ltl)
700
701
702
703
704
  {
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
705
706
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
707
    f1->destroy();
708

709
710
711
712
    // Simplify the formula, if requested.
    if (reduce_ltl)
      {
	formula* tmp = reduce(f2, reduce_ltl);
713
	f2->destroy();
714
715
716
	f2 = tmp;
      }

717
718
    typedef std::set<const formula*, formula_ptr_less_than> set_type;
    set_type formulae_to_translate;
719

720
    translate_dict d(dict);
721

722
723
    // Compute the set of all promises that can possibly occurre
    // inside the formula.
724
    bdd all_promises = bddtrue;
725
    if (fair_loop_approx || unobs)
726
727
728
729
730
731
      {
	ltl_promise_visitor pv(d);
	f2->accept(pv);
	all_promises = pv.result();
      }

732
    formula_canonizer fc(d, fair_loop_approx, all_promises);
733

734
735
736
737
738
739
740
741
742
743
    // These are used when atomic propositions are interpreted as
    // events.  There are two kinds of events: observable events are
    // those used in the formula, and unobservable events or other
    // events that can occur at anytime.  All events exclude each
    // other.
    bdd observable_events = bddfalse;
    bdd unobservable_events = bddfalse;
    if (unobs)
      {
	bdd neg_events = bddtrue;
744
745
	std::auto_ptr<atomic_prop_set> aps(atomic_prop_collect(f));
	for (atomic_prop_set::const_iterator i = aps->begin();
746
747
748
749
750
751
752
753
	     i != aps->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    observable_events = (observable_events & neg) | (neg_events & pos);
	    neg_events &= neg;
	  }
754
	for (atomic_prop_set::const_iterator i = unobs->begin();
755
756
757
758
759
760
761
762
763
764
765
766
767
	     i != unobs->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    unobservable_events = ((unobservable_events & neg)
				   | (neg_events & pos));
	    observable_events &= neg;
	    neg_events &= neg;
	  }
      }
    bdd all_events = observable_events | unobservable_events;

768

769
    tgba_explicit_formula* a = new tgba_explicit_formula(dict);
770

771
772
    formulae_to_translate.insert(f2);
    a->set_init_state(f2);
773
774
775
776

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
777
	const formula* now = *formulae_to_translate.begin();
778
779
780
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
781
	bdd res = fc.translate(now);
782

783
784
785
786
	// Handle exclusive events.
	if (unobs)
	  {
	    res &= observable_events;
787
	    int n = d.register_next_variable(now);
788
789
790
	    res |= unobservable_events & bdd_ithvar(n) & all_promises;
	  }

791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
	// We used to factor only Next and A variables while computing
	// prime implicants, with
	//    minato_isop isop(res, d.next_set & d.a_set);
	// in order to obtain transitions with formulae of atomic
	// proposition directly, but unfortunately this led to strange
	// factorizations.  For instance f U g was translated as
	//     r(f U g) = g + a(g).r(X(f U g)).(f + g)
	// instead of just
	//     r(f U g) = g + a(g).r(X(f U g)).f
	// Of course both formulae are logically equivalent, but the
	// latter is "more deterministic" than the former, so it should
	// be preferred.
	//
	// Therefore we now factor all variables.  This may lead to more
	// transitions than necessary (e.g.,  r(f + g) = f + g  will be
806
807
808
	// coded as two transitions), but we later merge all transitions
	// with same source/destination and acceptance conditions.  This
	// is the goal of the `dests' hash.
809
	//
810
	// Note that this is still not optimal.  For instance it is
811
	// better to encode `f U g' as
812
	//     r(f U g) = g + a(g).r(X(f U g)).f.!g
813
814
815
816
	// because that leads to a deterministic automaton.  In order
	// to handle this, we take the conditions of any transition
	// going to true (it's `g' here), and remove it from the other
	// transitions.
817
818
819
	//
	// In `exprop' mode, considering all possible combinations of
	// outgoing propositions generalizes the above trick.
820
	dest_map dests;
821

822
	// Compute all outgoing arcs.
823
824
825
826
827

	// If EXPROP is set, we will refine the symbolic
	// representation of the successors for all combinations of
	// the atomic properties involved in the formula.
	// VAR_SET is the set of these properties.
828
	bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
829
830
831
832
833
	// ALL_PROPS is the combinations we have yet to consider.
	// We used to start with `all_props = bddtrue', but it is
	// more efficient to start with the set of all satisfiable
	// variables combinations.
	bdd all_props = bdd_existcomp(res, d.var_set);
834
	while (all_props != bddfalse)
835
	  {
836
837
838
	    bdd one_prop_set = bddtrue;
	    if (exprop)
	      one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
839
	    all_props -= one_prop_set;
840

841
	    typedef std::map<bdd, const formula*, bdd_less_than> succ_map;
842
843
	    succ_map succs;

844
845
846
847
848
849
850
851
852
853
854
855
856
857
	    // Compute prime implicants.
	    // The reason we use prime implicants and not bdd_satone()
	    // is that we do not want to get any negation in front of Next
	    // or Acc variables.  We wouldn't know what to do with these.
	    // We never added negations in front of these variables when
	    // we built the BDD, so prime implicants will not "invent" them.
	    //
	    // FIXME: minato_isop is quite expensive, and I (=adl)
	    // don't think we really care that much about getting the
	    // smalled sum of products that minato_isop strives to
	    // compute.  Given that Next and Acc variables should
	    // always be positive, maybe there is a faster way to
	    // compute the successors?  E.g. using bdd_satone() and
	    // ignoring negated Next and Acc variables.
858
859
860
	    minato_isop isop(res & one_prop_set);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
861
	      {
862
		bdd label = bdd_exist(cube, d.next_set);
863
		bdd dest_bdd = bdd_existcomp(cube, d.next_set);
864
865
		const formula* dest = d.conj_bdd_to_formula(dest_bdd);

866
867
868
869
		// Simplify the formula, if requested.
		if (reduce_ltl)
		  {
		    formula* tmp = reduce(dest, reduce_ltl);
870
		    dest->destroy();
871
872
873
874
875
876
		    dest = tmp;
		    // Ignore the arc if the destination reduces to false.
		    if (dest == constant::false_instance())
		      continue;
		  }

877
878
879
880
		// If we already know a state with the same
		// successors, use it in lieu of the current one.
		if (symb_merge)
		  dest = fc.canonize(dest);
881

882
883
884
885
886
887
		// If we are not postponing the branching, we can
		// declare the outgoing transitions immediately.
		// Otherwise, we merge transitions with identical
		// label, and declare the outgoing transitions in a
		// second loop.
		if (!branching_postponement)
888
		  {
889
		    fill_dests(d, dests, label, dest);
890
891
892
		  }
		else
		  {
893
894
895
896
		    succ_map::iterator si = succs.find(label);
		    if (si == succs.end())
		      succs[label] = dest;
		    else
897
898
899
900
		      si->second =
			multop::instance(multop::Or,
					 const_cast<formula*>(si->second),
					 const_cast<formula*>(dest));
901
902
		  }
	      }
903
904
905
	    if (branching_postponement)
	      for (succ_map::const_iterator si = succs.begin();
		   si != succs.end(); ++si)
906
		fill_dests(d, dests, si->first, si->second);
907
	  }
908

909
	// Check for an arc going to 1 (True).  Register it first, that
910
	// way it will be explored before others during model checking.
911
	dest_map::const_iterator i = dests.find(constant::true_instance());
912
	// COND_FOR_TRUE is the conditions of the True arc, so we
913
914
915
	// can remove them from all other arcs.  It might sounds that
	// this is not needed when exprop is used, but in fact it is
	// complementary.
916
917
	//
	// Consider
918
	//   f = r(X(1) R p) = p.(1 + r(X(1) R p))
919
	// with exprop the two outgoing arcs would be
920
921
        //         p               p
	//     f ----> 1       f ----> f
922
923
	//
	// where in fact we could output
924
925
        //         p
	//     f ----> 1
926
	//
927
	// because there is no point in looping on f if we can go to 1.
928
	bdd cond_for_true = bddfalse;
929
930
	if (i != dests.end())
	  {
931
	    // When translating LTL for an event-based logic with
932
933
	    // unobservable events, the 1 state should accept all events,
	    // even unobservable events.
934
	    if (unobs && now == constant::true_instance())
935
	      cond_for_true = all_events;
936
937
938
939
940
	    else
	      {
		// There should be only one transition going to 1 (true) ...
		assert(i->second.size() == 1);
		prom_map::const_iterator j = i->second.begin();
941
942
943
		// ... and it is not expected to make any promises (unless
		// fair loop approximations are used).
		assert(fair_loop_approx || j->first == bddtrue);
944
945
		cond_for_true = j->second;
	      }
946
947
	    if (!a->has_state(constant::true_instance()))
	      formulae_to_translate.insert(constant::true_instance());
Pierre PARUTTO's avatar
Pierre PARUTTO committed
948
	    state_explicit_formula::transition* t =
949
	      a->create_transition(now, constant::true_instance());
950
	    a->add_condition(t, d.bdd_to_formula(cond_for_true));
951
952
953
954
955
	  }
	// Register other transitions.
	for (i = dests.begin(); i != dests.end(); ++i)
	  {
	    const formula* dest = i->first;
956
957
958
959
	    // The cond_for_true optimization can cause some
	    // transitions to be removed.  So we have to remember
	    // whether a formula is actually reachable.
	    bool reachable = false;
960

961
962
963
	    // Will this be a new state?
	    bool seen = a->has_state(dest);

964
965
966
967
968
	    if (dest != constant::true_instance())
	      {
		for (prom_map::const_iterator j = i->second.begin();
		     j != i->second.end(); ++j)
		  {
969
970
971
		    bdd cond = j->second - cond_for_true;
		    if (cond == bddfalse) // Skip false transitions.
		      continue;
Pierre PARUTTO's avatar
Pierre PARUTTO committed
972
		    state_explicit_formula::transition* t =
973
		      a->create_transition(now, dest);
974
		    a->add_condition(t, d.bdd_to_formula(cond));
975
		    d.conj_bdd_to_acc(a, j->first, t);
976
		    reachable = true;
977
978
		  }
	      }
979
980
981
982
983
	    else
	      {
		// "1" is reachable.
		reachable = true;
	      }
984
985
	    if (reachable && !seen)
	      formulae_to_translate.insert(dest);
986
	    else
987
	      dest->destroy();
988
989
990
	  }
      }

991
992
    // Turn all promises into real acceptance conditions.
    a->complement_all_acceptance_conditions();
993
994
995
996
    return a;
  }

}