ltl2tgba_fm.cc 46.2 KB
Newer Older
1
2
3
// Copyright (C) 2008, 2009, 2010 Laboratoire de Recherche et
// Dveloppement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire
4
5
// d'Informatique de Paris 6 (LIP6), dpartement Systmes Rpartis
// Coopratifs (SRC), Universit Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

24
#include "misc/hash.hh"
25
#include "misc/bddalloc.hh"
26
#include "misc/bddlt.hh"
27
#include "misc/minato.hh"
28
29
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
30
31
32
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/tostring.hh"
33
#include "ltlvisit/postfix.hh"
34
#include "ltlvisit/apcollect.hh"
35
36
#include "ltlvisit/mark.hh"
#include "ltlvisit/tostring.hh"
37
#include <cassert>
38
#include <memory>
39
#include "ltl2tgba_fm.hh"
40
#include "ltlvisit/contain.hh"
41
42
#include "ltlvisit/consterm.hh"
#include "tgba/bddprint.hh"
43
44
45
46
47
48
49
50

namespace spot
{
  using namespace ltl;

  namespace
  {

51
52
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
53
54
55
56
57
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
58
    class translate_dict
59
60
61
    {
    public:

62
63
      translate_dict(bdd_dict* dict)
	: dict(dict),
64
65
66
67
68
69
70
71
72
73
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
74
	  i->first->destroy();
75
	dict->unregister_all_my_variables(this);
76
77
      }

78
79
      bdd_dict* dict;

80
81
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
82
83
84
85
86
87
88
89
90

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
91
      register_proposition(const formula* f)
92
      {
93
	int num = dict->register_proposition(f, this);
94
95
96
97
98
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
99
      register_a_variable(const formula* f)
100
      {
101
	int num = dict->register_acceptance_variable(f, this);
102
103
104
105
106
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
107
      register_next_variable(const formula* f)
108
109
110
111
112
113
114
115
116
117
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
118
	    f = f->clone();
119
	    num = dict->register_anonymous_variables(1, this);
120
121
122
123
124
125
126
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
	return os;
      }

142
      formula*
143
144
145
146
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
147
	  return isi->second->clone();
148
149
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
150
	  return isi->second->clone();
151
152
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
153
	  return isi->second->clone();
154
	assert(0);
155
156
157
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
158
159
      }

160
      formula*
161
      conj_bdd_to_formula(bdd b, multop::type op = multop::And) const
162
163
      {
	if (b == bddfalse)
164
165
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
166
167
168
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
169
	    formula* res = var_to_formula(var);
170
171
172
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
173
		res = unop::instance(unop::Not, res);
174
175
176
177
		b = bdd_low(b);
	      }
	    else
	      {
178
		assert(bdd_low(b) == bddfalse);
179
180
181
182
183
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
184
	return multop::instance(op, v);
185
186
      }

187
      formula*
188
      bdd_to_formula(bdd f)
189
      {
190
	if (f == bddfalse)
191
	  return constant::false_instance();
192

193
194
195
196
197
198
199
200
201
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
202
203

      void
204
      conj_bdd_to_acc(tgba_explicit_formula* a, bdd b,
Pierre PARUTTO's avatar
Pierre PARUTTO committed
205
		      state_explicit_formula::transition* t)
206
207
208
209
210
211
212
213
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
214
		// Simply ignore negated acceptance variables.
215
216
217
218
		b = bdd_low(b);
	      }
	    else
	      {
219
		formula* ac = var_to_formula(var);
220

221
		if (!a->has_acceptance_condition(ac))
222
		  a->declare_acceptance_condition(ac->clone());
223
		a->add_acceptance_condition(t, ac);
224
225
226
227
228
229
230
231
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


232
233
234
235
    // Debugging function.
    std::ostream&
    trace_ltl_bdd(const translate_dict& d, bdd f)
    {
236
237
238
      std::cerr << "Displaying BDD ";
      bdd_print_set(std::cerr, d.dict, f) << ":" << std::endl;

239
240
241
242
243
244
245
      minato_isop isop(f);
      bdd cube;
      while ((cube = isop.next()) != bddfalse)
	{
	  bdd label = bdd_exist(cube, d.next_set);
	  bdd dest_bdd = bdd_existcomp(cube, d.next_set);
	  const formula* dest = d.conj_bdd_to_formula(dest_bdd);
246
247
248
249
	  bdd_print_set(std::cerr, d.dict, label) << " => ";
	  bdd_print_set(std::cerr, d.dict, dest_bdd) << " = "
						     << to_string(dest)
						     << std::endl;
250
251
252
253
254
255
	  dest->destroy();
	}
      return std::cerr;
    }


256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };

299
300
301
302
    // Rewrite rule for rational operators.
    class ratexp_trad_visitor: public const_visitor
    {
    public:
303
304
305
306
307
      // negated should only be set for constants or atomic properties
      ratexp_trad_visitor(translate_dict& dict,
			  formula* to_concat = 0,
			  bool negated = false)
	: dict_(dict), to_concat_(to_concat), negated_(negated)
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
      {
      }

      virtual
      ~ratexp_trad_visitor()
      {
	if (to_concat_)
	  to_concat_->destroy();
      }

      bdd
      result() const
      {
	return res_;
      }

      bdd next_to_concat()
      {
	if (!to_concat_)
327
	  to_concat_ = constant::empty_word_instance();
328
329
330
331
332
333
	int x = dict_.register_next_variable(to_concat_);
	return bdd_ithvar(x);
      }

      bdd now_to_concat()
      {
334
335
336
	if (to_concat_ && to_concat_ != constant::empty_word_instance())
	  return recurse(to_concat_);

337
	return bddfalse;
338
339
340
341
342
      }

      void
      visit(const atomic_prop* node)
      {
343
344
345
346
347
	if (negated_)
	  res_ = bdd_nithvar(dict_.register_proposition(node));
	else
	  res_ = bdd_ithvar(dict_.register_proposition(node));
	res_ &= next_to_concat();
348
349
350
351
352
      }

      void
      visit(const constant* node)
      {
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

	if (negated_)
	  {
	    switch (node->val())
	      {
	      case constant::True:
		res_ = bddfalse;
		return;
	      case constant::False:
		res_ = next_to_concat();
		return;
	      case constant::EmptyWord:
		assert(!"EmptyWord should not be negated");
		return;
	      }
	  }

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
	switch (node->val())
	  {
	  case constant::True:
	    res_ = next_to_concat();
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  case constant::EmptyWord:
	    res_ = now_to_concat();
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	  case unop::G:
	  case unop::X:
	  case unop::Finish:
395
396
	  case unop::Closure:
	  case unop::NegClosure:
397
398
	    assert(!"not a rational operator");
	    return;
399
400
401
402
403
404
405
	  case unop::Not:
	    {
	      // Not can only appear in front of constants or atomic
	      // propositions.
	      const formula* f = node->child();
	      assert(dynamic_cast<const atomic_prop*>(f)
		     || dynamic_cast<const constant*>(f));
406
	      res_ = recurse_and_concat(f, true);
407
408
	      return;
	    }
409
410
411
412
	  }
	/* Unreachable code.  */
	assert(0);
      }
413

414
415
416
417
418
419
      void
      visit(const bunop* bo)
      {
	formula* f;
	unsigned min = bo->min();
	unsigned max = bo->max();
420
421
422

	assert(max > 0);

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
	unsigned min2 = (min == 0) ? 0 : (min - 1);
	unsigned max2 =
	  (max == bunop::unbounded) ? bunop::unbounded : (max - 1);

	bunop::type op = bo->op();
	switch (op)
	  {
	  case bunop::Star:
	    f = bunop::instance(op, bo->child()->clone(), min2, max2);

	    if (to_concat_)
	      f = multop::instance(multop::Concat, f, to_concat_->clone());

	    res_ = recurse(bo->child(), f);
	    if (min == 0)
	      res_ |= now_to_concat();
439

440
	    return;
441
	  case bunop::Equal:
442
	  case bunop::Goto:
443
444
445
446
447
448
	    {
	      // b[=min..max] == (!b;b[=min..max]) | (b;b[=min-1..max-1])
	      // b[=0..max]   == [*0] | (!b;b[=0..max]) | (b;b[=0..max-1])
	      // Note: b[=0] == (!b)[*] is a trivial identity, so it will
	      // never occur here.

449
450
451
452
453
454
	      // b[->min..max] == (!b;b[->min..max]) | (b;b[->min-1..max-1])
	      // b[->0..max]   == [*0] | (!b;b[->0..max]) | (b;b[->0..max-1])
	      // Note: b[->0] == [*0] is a trivial identity, so it will
	      // never occur here.

	      formula* f1 = // !b;b[=min..max]  or  !b;b[->min..max]
455
456
457
458
459
		multop::instance(multop::Concat,
				 unop::instance(unop::Not,
						bo->child()->clone()),
				 bo->clone());

460
	      formula* f2 = // b;b[=min-1..max-1]  or  b;b[->min-1..max-1]
461
462
		multop::instance(multop::Concat,
				 bo->child()->clone(),
463
				 bunop::instance(op,
464
465
466
467
468
469
470
471
472
						 bo->child()->clone(),
						 min2, max2));
	      f = multop::instance(multop::Or, f1, f2);
	      res_ = recurse_and_concat(f);
	      f->destroy();
	      if (min == 0)
		res_ |= now_to_concat();
	      return;
	    }
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const automatop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const multop* node)
      {
493
494
	multop::type op = node->op();
	switch (op)
495
	  {
496
	  case multop::AndNLM:
497
498
499
	  case multop::And:
	    {
	      unsigned s = node->size();
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

	      if (op == multop::AndNLM)
		{
		  multop::vec* final = new multop::vec;
		  multop::vec* non_final = new multop::vec;

		  for (unsigned n = 0; n < s; ++n)
		    {
		      const formula* f = node->nth(n);
		      if (constant_term_as_bool(f))
			final->push_back(f->clone());
		      else
			non_final->push_back(f->clone());
		    }

		  if (non_final->empty())
		    {
		      delete non_final;
		      // (a* & b*);c = (a*|b*);c
		      formula* f = multop::instance(multop::Or, final);
		      res_ = recurse_and_concat(f);
		      f->destroy();
		      break;
		    }
		  if (!final->empty())
		    {
		      // let F_i be final formulae
		      //     N_i be non final formula
		      // (F_1 & ... & F_n & N_1 & ... & N_m)
		      // =   (F_1 | ... | F_n);[*] && (N_1 & ... & N_m)
		      //   | (F_1 | ... | F_n) && (N_1 & ... & N_m);[*]
		      formula* f = multop::instance(multop::Or, final);
		      formula* n = multop::instance(multop::AndNLM, non_final);
533
534
		      formula* t = bunop::instance(bunop::Star,
						   constant::true_instance());
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
		      formula* ft = multop::instance(multop::Concat,
						     f->clone(), t->clone());
		      formula* nt = multop::instance(multop::Concat,
						     n->clone(), t);
		      formula* ftn = multop::instance(multop::And, ft, n);
		      formula* fnt = multop::instance(multop::And, f, nt);
		      formula* all = multop::instance(multop::Or, ftn, fnt);
		      res_ = recurse_and_concat(all);
		      all->destroy();
		      break;
		    }
		  // No final formula.
		  // Apply same rule as &&, until we reach a point where
		  // we have final formulae.
		  delete final;
		  for (unsigned n = 0; n < s; ++n)
		    (*non_final)[n]->destroy();
		  delete non_final;
		}

	      res_ = bddtrue;
556
	      for (unsigned n = 0; n < s; ++n)
557
558
559
560
561
		{
		  bdd res = recurse(node->nth(n));
		  // trace_ltl_bdd(dict_, res);
		  res_ &= res;
		}
562
563
564
565
566
567

	      //std::cerr << "Pre-Concat:" << std::endl;
	      //trace_ltl_bdd(dict_, res_);

	      if (to_concat_)
		{
568
		  // If we have translated (a* && b*) in (a* && b*);c, we
569
570
571
572
573
574
575
576
577
		  // have to append ";c" to all destinations.

		  minato_isop isop(res_);
		  bdd cube;
		  res_ = bddfalse;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
578
579
		      formula* dest =
			dict_.conj_bdd_to_formula(dest_bdd, op);
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
		      formula* dest2;
		      int x;
		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & next_to_concat();
			}
		      else
			{
			  dest2 = multop::instance(multop::Concat, dest,
						   to_concat_->clone());
			  if (dest2 != constant::false_instance())
			    {
			      x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(node))
			    res_ |= label & next_to_concat();
			}
		    }
		}
601
602
	      if (constant_term_as_bool(node))
		res_ |= now_to_concat();
603
604
605
606
607
608
609

	      break;
	    }
	  case multop::Or:
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
610
611
	      for (unsigned n = 0; n < s; ++n)
		res_ |= recurse_and_concat(node->nth(n));
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
	      break;
	    }
	  case multop::Concat:
	    {
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      if (to_concat_)
		v->push_back(to_concat_->clone());
	      res_ = recurse(node->nth(0),
			     multop::instance(multop::Concat, v));
	      break;
	    }
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
	  case multop::Fusion:
	    {
	      assert(node->size() >= 2);

	      // the head
	      bdd res = recurse(node->nth(0));

	      // the tail
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s - 1);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      formula* tail = multop::instance(multop::Fusion, v);
	      bdd tail_bdd;
	      bool tail_computed = false;

	      //trace_ltl_bdd(dict_, res);

	      minato_isop isop(res);
	      bdd cube;
	      res_ = bddfalse;
	      while ((cube = isop.next()) != bddfalse)
		{
		  bdd label = bdd_exist(cube, dict_.next_set);
		  bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		  formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		  if (constant_term_as_bool(dest))
		    {
		      // The destination is a final state.  Make sure we
		      // can also exit if tail is satisfied.
		      if (!tail_computed)
			{
661
			  tail_bdd = recurse_and_concat(tail);
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
			  tail_computed = true;
			}
		      res_ |= label & tail_bdd;
		    }

		  if (dynamic_cast<constant*>(dest) == 0)
		    {
		      // If the destination is not a constant, it
		      // means it can have successors.  Fusion the
		      // tail and append anything to concatenate.
		      formula* dest2 = multop::instance(multop::Fusion, dest,
							tail->clone());
		      if (to_concat_)
			 dest2 = multop::instance(multop::Concat, dest2,
						 to_concat_->clone());
		      if (dest2 != constant::false_instance())
			{
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}

	      tail->destroy();
	      break;
	    }
689
690
691
692
	  }
      }

      bdd
693
      recurse(const formula* f, formula* to_concat = 0, bool negated = false)
694
      {
695
	ratexp_trad_visitor v(dict_, to_concat, negated);
696
697
698
699
	f->accept(v);
	return v.result();
      }

700
      bdd
701
      recurse_and_concat(const formula* f, bool negated = false)
702
      {
703
	return recurse(f, to_concat_ ? to_concat_->clone() : 0, negated);
704
      }
705
706
707
708
709

    private:
      translate_dict& dict_;
      bdd res_;
      formula* to_concat_;
710
      bool negated_;
711
712
    };

713

714
    // The rewrite rules used here are adapted from Jean-Michel
715
    // Couvreur's FM paper, augmented to support rational operators.
716
717
718
    class ltl_trad_visitor: public const_visitor
    {
    public:
719
720
721
722
      ltl_trad_visitor(translate_dict& dict, bool mark_all = false,
		       bool exprop = false)
	: dict_(dict), rat_seen_(false), has_marked_(false),
	  mark_all_(mark_all), exprop_(exprop)
723
724
725
726
727
728
729
730
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

731
732
733
734
735
736
737
738
      void
      reset(bool mark_all)
      {
	rat_seen_ = false;
	has_marked_ = false;
	mark_all_ = mark_all;
      }

739
740
      bdd
      result() const
741
742
743
744
      {
	return res_;
      }

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
      const translate_dict&
      get_dict() const
      {
	return dict_;
      }

      bool
      has_rational() const
      {
	return rat_seen_;
      }

      bool
      has_marked() const
      {
	return has_marked_;
      }

763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
780
	  case constant::EmptyWord:
781
782
	    assert(!"Not an LTL operator");
	    return;
783
784
785
786
787
788
789
790
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
791
792
793
	unop::type op = node->op();

	switch (op)
794
795
796
797
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
798
799
800
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
801
802
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
803
	      break;
804
805
806
	    }
	  case unop::G:
	    {
807
808
809
810
811
812
813
814
815
816
817
818
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
819
	      const formula* child = node->child();
820
	      int x = dict_.register_next_variable(node);
821
822
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
823
	      break;
824
825
826
	    }
	  case unop::Not:
	    {
827
	      // r(!y) = !r(y)
828
	      res_ = bdd_not(recurse(node->child()));
829
	      break;
830
831
832
	    }
	  case unop::X:
	    {
833
	      // r(Xy) = Next[y]
834
835
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
836
	      break;
837
	    }
838
839
840
	  case unop::Closure:
	    {
	      rat_seen_ = true;
841
842
843
844
845
846
847
	      if (constant_term_as_bool(node->child()))
		{
		  res_ = bddtrue;
		  return;
		}

	      ratexp_trad_visitor v(dict_);
848
849
850
851
	      node->child()->accept(v);
	      bdd f1 = v.result();
	      res_ = bddfalse;

852

853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
	      if (exprop_)
		{
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
		    {
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		      all_props -= label;

		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));

		      const formula* dest2;
		      if (constant_term_as_bool(dest))
			{
			  dest->destroy();
			  res_ |= label;
			}
		      else
			{
			  dest2 = unop::instance(op, dest);
			  if (dest2 == constant::false_instance())
			    continue;
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		      const formula* dest2;
		      if (constant_term_as_bool(dest))
			{
			  dest->destroy();
			  res_ |= label;
			}
		      else
			{
			  dest2 = unop::instance(op, dest);
			  if (dest2 == constant::false_instance())
			    continue;
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}
	    }
	    break;

	  case unop::NegClosure:
	    {
	      rat_seen_ = true;
	      has_marked_ = true;
917
918
919
920
921
922
923
924

	      if (constant_term_as_bool(node->child()))
		{
		  res_ = bddfalse;
		  return;
		}

	      ratexp_trad_visitor v(dict_);
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
	      node->child()->accept(v);
	      bdd f1 = v.result();

	      // trace_ltl_bdd(dict_, f1);

	      bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
	      bdd all_props = bdd_existcomp(f1, dict_.var_set);

	      res_ = !all_props &
		// stick X(1) to preserve determinism.
		bdd_ithvar(dict_.register_next_variable
			   (constant::true_instance()));

	      while (all_props != bddfalse)
		{
		  bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		  all_props -= label;

		  formula* dest =
		    dict_.bdd_to_formula(bdd_exist(f1 & label,
						   dict_.var_set));

		  // !{ Exp } is false if Exp accepts the empty word.
		  if (constant_term_as_bool(dest))
		    {
		      dest->destroy();
		      continue;
		    }

		  const formula* dest2 = unop::instance(op, dest);

		  if (dest == constant::false_instance())
		    continue;

		  int x = dict_.register_next_variable(dest2);
		  dest2->destroy();
		  res_ |= label & bdd_ithvar(x);
		}
	    }
	    break;

966
967
	  case unop::Finish:
	    assert(!"unsupported operator");
968
	    break;
969
970
971
	  }
      }

972
973
974
975
976
977
      void
      visit(const bunop*)
      {
	assert(!"Not an LTL operator");
      }

978
979
980
      void
      visit(const binop* node)
      {
981
	binop::type op = node->op();
982

983
	switch (op)
984
	  {
985
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
986
	  case binop::Xor:
987
988
989
990
991
992
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_xor);
	      return;
	    }
993
	  case binop::Implies:
994
995
996
997
998
999
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_imp);
	      return;
	    }
1000
	  case binop::Equiv:
1001
1002
1003
1004
1005
1006
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_biimp);
	      return;
	    }
1007
1008
	  case binop::U:
	    {
1009
1010
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
1011
1012
1013
1014
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
1015
	      break;
1016
	    }
1017
1018
	  case binop::W:
	    {
1019
1020
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
1021
1022
1023
	      // r(f1 W f2) = r(f2) + r(f1)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (f1 & bdd_ithvar(x));
1024
	      break;
1025
	    }
1026
1027
	  case binop::R:
	    {
1028
1029
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
1030
1031
1032
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
1033
	      break;
1034
	    }
1035
1036
	  case binop::M:
	    {
1037
1038
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
1039
1040
1041
1042
	      // r(f1 M f2) = r(f1)r(f2) + a(f1)r(f2)r(X(f1 M f2))
	      int a = dict_.register_a_variable(node->first());
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (bdd_ithvar(a) & f2 & bdd_ithvar(x));
1043
	      break;
1044
	    }
1045
1046
1047
	  case binop::EConcatMarked:
	    has_marked_ = true;
	    /* fall through */
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1048
	  case binop::EConcat:
1049
1050
	    rat_seen_ = true;
	    {
1051
1052
	      // Recognize f2 on transitions going to destinations
	      // that accept the empty word.
1053
	      bdd f2 = recurse(node->second());
1054
	      ratexp_trad_visitor v(dict_);
1055
1056
	      node->first()->accept(v);
	      bdd f1 = v.result();
1057
	      res_ = bddfalse;
1058
1059
1060
1061
1062
1063
1064

	      if (mark_all_)
		{
		  op = binop::EConcatMarked;
		  has_marked_ = true;
		}

1065
	      if (exprop_)
1066
		{
1067
1068
1069
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
1070
		    {
1071
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
1072
1073
1074
1075
1076
1077
1078
1079
1080
		      all_props -= label;

		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));

		      const formula* dest2 =
			binop::instance(op, dest, node->second()->clone());

1081
1082
		      if (dest2 != constant::false_instance())
			{
1083
			  int x = dict_.register_next_variable(dest2);
1084
1085
1086
1087
1088
1089
1090
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		      if (constant_term_as_bool(dest))
			res_ |= label & f2;
		    }
		}
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & f2;
			}
		      else
			{
			  formula* dest2 = binop::instance(op, dest,
						  node->second()->clone());
			  if (dest2 != constant::false_instance())
			    {
			      int x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(dest))
			    res_ |= label & f2;
			}
		    }
		}
1120
1121
1122
1123
1124
	    }
	    break;

	  case binop::UConcat:
	    {
1125
1126
1127
	      // Transitions going to destinations accepting the empty
	      // word should recognize f2, and the automaton for f1
	      // should be understood as universal.
1128
	      bdd f2 = recurse(node->second());
1129
	      ratexp_trad_visitor v(dict_);
1130
1131
1132
	      node->first()->accept(v);
	      bdd f1 = v.result();
	      res_ = bddtrue;
1133

1134
1135
1136
	      bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
	      bdd all_props = bdd_existcomp(f1, dict_.var_set);
	      while (all_props != bddfalse)
1137
1138
		{

1139
1140
1141
1142
		  bdd one_prop_set = bddtrue;
		  if (exprop_)
		    one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
		  all_props -= one_prop_set;
1143

1144
		  minato_isop isop(f1 & one_prop_set);
1145
1146
1147
1148
1149
1150
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
1151
1152
		      formula* dest2 =
			binop::instance(op, dest, node->second()->clone());
1153

1154
1155
		      bdd udest =
			bdd_ithvar(dict_.register_next_variable(dest2));
1156
1157
1158
1159
1160
1161

		      if (constant_term_as_bool(dest))
			udest &= f2;

		      dest2->destroy();

1162
		      res_ &= bdd_apply(label, udest, bddop_imp);
1163
		    }
1164
1165
		}
	    }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1166
	    break;
1167
1168
1169
	  }
      }

1170
1171
1172
1173
1174
1175
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

1176
1177
1178
1179
1180
1181
      void
      visit(const multop* node)
      {
	switch (node->op())
	  {
	  case multop::And:
1182
1183
1184
1185
1186
1187
	    {
	      res_ = bddtrue;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		{
		  bdd res = recurse(node->nth(n));
1188
1189
1190
		  //std::cerr << "== in And (" << to_string(node->nth(n))
		  // << ")" << std::endl;
		  // trace_ltl_bdd(dict_, res);
1191
1192
		  res_ &= res;
		}
1193
1194
	      //std::cerr << "=== And final" << std::endl;
	      // trace_ltl_bdd(dict_, res_);
1195
1196
	      break;
	    }
1197
	  case multop::Or:
1198
1199
1200
1201
1202
1203
1204
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		res_ |= recurse(node->nth(n));
	      break;
	    }
1205
	  case multop::Concat:
1206
	  case multop::Fusion:
1207
	  case multop::AndNLM:
1208
1209
	    assert(!"Not an LTL operator");
	    break;
1210
	  }
1211

1212
1213
1214
1215
1216
      }

      bdd
      recurse(const formula* f)
      {
1217
	ltl_trad_visitor v(dict_, mark_all_, exprop_);
1218
	f->accept(v);
1219
1220
	rat_seen_ |= v.has_rational();
	has_marked_ |= v.has_marked();
1221
1222
1223
1224
1225
1226
1227
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
1228
1229
1230
      bool rat_seen_;
      bool has_marked_;
      bool mark_all_;
1231
      bool exprop_;
1232
1233
    };

1234

1235
1236
    // Check whether a formula has a R, W, or G operator at its
    // top-level (preceding logical operators do not count).
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
1287
	  case binop::M:
1288
1289
	    return;
	  case binop::R:
1290
	  case binop::W:
1291
1292
	    res_ = true;
	    return;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1293
1294
	  case binop::UConcat:
	  case binop::EConcat:
1295
	  case binop::EConcatMarked:
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1296
	    node->second()->accept(*this);
1297
	    // FIXME: we might need to add Acc[1]
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1298
	    return;
1299
1300
1301
1302
1303
	  }
	/* Unreachable code.  */
	assert(0);
      }

1304
1305
1306
1307
1308
1309
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

1310
1311
1312
1313
1314
1315
      void
      visit(const bunop*)
      {
	assert(!"unsupported operator");
      }

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
1338
1339
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
1340
1341
1342
1343
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
1344
	pfl_[f] = rel;
1345
1346
1347
1348
	return rel;
      }

    private:
1349
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
1350
      pfl_map pfl_;
1351
1352
    };

1353
1354
1355
    class formula_canonizer
    {
    public:
1356
      formula_canonizer(translate_dict& d,
1357
1358
			bool fair_loop_approx, bdd all_promises, bool exprop)
	: v_(d, false, exprop),
1359
	  fair_loop_approx_(fair_loop_approx),
1360
1361
	  all_promises_(all_promises),
	  d_(d)
1362
1363
1364
1365
1366
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
1367

1368
1369
      ~formula_canonizer()
      {
1370
	while (!f2b_.empty())
1371
	  {
1372
1373
1374
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
1375
	    f->destroy();
1376
	  }
1377
1378
      }

1379
1380
1381
1382
1383
1384
1385
1386
      struct translated
      {
	bdd symbolic;
	bool has_rational:1;
	bool has_marked:1;
      };

      const translated&
1387
      translate(const formula* f, bool* new_flag = 0)
1388
1389
1390
1391
1392
1393
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

1394
1395
1396
	if (new_flag)
	  *new_flag = true;

1397
	// Perform the actual translation.
1398
	v_.reset(!has_mark(f));
1399
	f->accept(v_);
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
	translated t;
	t.symbolic = v_.result();
	t.has_rational = v_.has_rational();
	t.has_marked = v_.has_marked();

//	std::cerr << "-----" << std::endl;
//	std::cerr << "Formula: " << to_string(f) << std::endl;
//	std::cerr << "Rational: " << t.has_rational << std::endl;
//	std::cerr << "Marked: " << t.has_marked << std::endl;
//	std::cerr << "Mark all: " << !has_mark(f) << std::endl;
//	std::cerr << "Transitions:" << std::endl;
//	trace_ltl_bdd(v_.get_dict(), t.symbolic);

	if (t.has_rational)
	  {
	    bdd res = bddfalse;

	    minato_isop isop(t.symbolic);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
	      {
		bdd label = bdd_exist(cube, d_.next_set);
		bdd dest_bdd = bdd_existcomp(cube, d_.next_set);
		formula* dest =
		  d_.conj_bdd_to_formula(dest_bdd);

		// Handle a Miyano-Hayashi style unrolling for
		// rational operators.  Marked nodes correspond to
		// subformulae in the Miyano-Hayashi set.
		if (simplify_mark(dest))
		  {
		    // Make the promise that we will exit marked sets.
		    int a =
		      d_.register_a_variable(constant::true_instance());
		    label &= bdd_ithvar(a);
		  }
		else
		  {
		    // We have left marked operators, but still
		    // have other rational operator to check.
		    // Start a new marked cycle.
		    formula* dest2 = mark_concat_ops(dest);
		    dest->destroy();
		    dest = dest2;
		  }
		// Note that simplify_mark may have changed dest.
		dest_bdd = bdd_ithvar(d_.register_next_variable(dest));
		dest->destroy();
		res |= label & dest_bdd;
	      }
	    t.symbolic = res;
//	    std::cerr << "Marking rewriting:" << std::endl;
//	    trace_ltl_bdd(v_.get_dict(), t.symbolic);
	  }
1454
1455
1456
1457
1458
1459
1460
1461
1462

	// Apply the fair-loop approximation if requested.
	if (fair_loop_approx_)
	  {
	    // If the source cannot possibly be part of a fair
	    // loop, make all possible promises.
	    if (fair_loop_approx_
		&& f != constant::true_instance()
		&& !pflc_.check(f))
1463
	      t.symbolic &= all_promises_;
1464
1465
	  }

1466
	// Register the reverse mapping if it is not already done.
1467
1468
1469
1470
	if (b2f_.find(t.symbolic) == b2f_.end())
	  b2f_[t.symbolic] = f;

	return f2b_[f->clone()] = t;