acc.hh 30 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
// Copyright (C) 2014, 2015, 2016, 2017 Laboratoire de Recherche et
3
// Développement de l'Epita.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

20
#pragma once
21

22
23
24
25
#include <functional>
#include <unordered_map>
#include <sstream>
#include <vector>
26
#include <spot/tl/defaultenv.hh>
27
#include <iostream>
28
29
30

namespace spot
{
31
  class SPOT_API acc_cond
32
33
34
35
36
37
38
39
40
  {
  public:
    struct mark_t
    {
      typedef unsigned value_t;
      value_t id;

      mark_t() = default;

41
      mark_t(value_t id) noexcept
42
        : id(id)
43
44
45
      {
      }

46
      template<class iterator>
47
      mark_t(const iterator& begin, const iterator& end) noexcept
48
      {
49
50
51
        id = 0U;
        for (iterator i = begin; i != end; ++i)
          set(*i);
52
53
      }

54
      mark_t(std::initializer_list<unsigned> vals) noexcept
55
        : mark_t(vals.begin(), vals.end())
56
57
58
      {
      }

59
60
      bool operator==(unsigned o) const
      {
61
        SPOT_ASSERT(o == 0U);
62
        return id == o;
63
64
65
66
      }

      bool operator!=(unsigned o) const
      {
67
        SPOT_ASSERT(o == 0U);
68
        return id != o;
69
70
71
72
      }

      bool operator==(mark_t o) const
      {
73
        return id == o.id;
74
75
76
77
      }

      bool operator!=(mark_t o) const
      {
78
        return id != o.id;
79
80
81
82
      }

      bool operator<(mark_t o) const
      {
83
        return id < o.id;
84
85
86
87
      }

      bool operator<=(mark_t o) const
      {
88
        return id <= o.id;
89
90
91
92
      }

      bool operator>(mark_t o) const
      {
93
        return id > o.id;
94
95
96
97
      }

      bool operator>=(mark_t o) const
      {
98
        return id >= o.id;
99
100
101
102
      }

      operator bool() const
      {
103
        return id != 0;
104
105
106
107
      }

      bool has(unsigned u) const
      {
108
        return id & (1U << u);
109
110
111
112
      }

      void set(unsigned u)
      {
113
        id |= (1U << u);
114
115
      }

116
117
      void clear(unsigned u)
      {
118
        id &= ~(1U << u);
119
120
      }

121
122
      mark_t& operator&=(mark_t r)
      {
123
124
        id &= r.id;
        return *this;
125
126
127
128
      }

      mark_t& operator|=(mark_t r)
      {
129
130
        id |= r.id;
        return *this;
131
132
133
134
      }

      mark_t& operator-=(mark_t r)
      {
135
136
        id &= ~r.id;
        return *this;
137
138
      }

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
139
140
      mark_t& operator^=(mark_t r)
      {
141
142
        id ^= r.id;
        return *this;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
143
144
      }

145
146
      mark_t operator&(mark_t r) const
      {
147
        return id & r.id;
148
149
150
151
      }

      mark_t operator|(mark_t r) const
      {
152
        return id | r.id;
153
154
155
156
      }

      mark_t operator-(mark_t r) const
      {
157
        return id & ~r.id;
158
159
      }

160
161
      mark_t operator~() const
      {
162
        return ~id;
163
164
      }

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
165
166
      mark_t operator^(mark_t r) const
      {
167
        return id ^ r.id;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
168
169
      }

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
170
      mark_t operator<<(unsigned i) const
171
      {
172
        return id << i;
173
174
      }

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
175
      mark_t& operator<<=(unsigned i)
176
      {
177
178
        id <<= i;
        return *this;
179
180
      }

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
181
      mark_t operator>>(unsigned i) const
182
      {
183
        return id >> i;
184
185
      }

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
186
      mark_t& operator>>=(unsigned i)
187
      {
188
189
        id >>= i;
        return *this;
190
191
      }

192
193
      mark_t strip(mark_t y) const
      {
194
195
196
197
198
        // strip every bit of id that is marked in y
        //       100101110100.strip(
        //       001011001000)
        //   ==  10 1  11 100
        //   ==      10111100
199

200
201
        auto xv = id;                // 100101110100
        auto yv = y.id;                // 001011001000
202

203
204
205
206
207
208
209
210
211
212
        while (yv && xv)
          {
            // Mask for everything after the last 1 in y
            auto rm = (~yv) & (yv - 1);        // 000000000111
            // Mask for everything before the last 1 in y
            auto lm = ~(yv ^ (yv - 1));        // 111111110000
            xv = ((xv & lm) >> 1) | (xv & rm);
            yv = (yv & lm) >> 1;
          }
        return xv;
213
214
      }

215
216
217
218
      // Number of bits sets.
      unsigned count() const
      {
#ifdef __GNUC__
219
        return __builtin_popcount(id);
220
#else
221
222
223
224
225
226
227
228
        unsigned c = 0U;
        auto v = id;
        while (v)
          {
            ++c;
            v &= v - 1;
          }
        return c;
229
230
231
#endif
      }

232
233
234
235
236
      // Return the number of the highest set used plus one.
      // So if no set is used, this returns 0,
      // but if the sets {1,3,8} are used, this returns 9.
      unsigned max_set() const
      {
237
238
239
240
241
242
243
244
        auto i = id;
        int res = 0;
        while (i)
          {
            ++res;
            i >>= 1;
          }
        return res;
245
246
      }

247
248
249
      // Return the lowest acceptance mark
      mark_t lowest() const
      {
250
        return id & -id;
251
252
      }

253
254
255
      // Remove n bits that where set
      mark_t& remove_some(unsigned n)
      {
256
257
258
        while (n--)
          id &= id - 1;
        return *this;
259
260
      }

261
262
      template<class iterator>
      void fill(iterator here) const
263
      {
264
265
266
267
268
269
270
271
272
        auto a = id;
        unsigned level = 0;
        while (a)
          {
            if (a & 1)
              *here++ = level;
            ++level;
            a >>= 1;
          }
273
274
275
276
277
      }

      // FIXME: Return some iterable object without building a vector.
      std::vector<unsigned> sets() const
      {
278
279
280
        std::vector<unsigned> res;
        fill(std::back_inserter(res));
        return res;
281
282
283
284
285
286
287
      }

      SPOT_API
      friend std::ostream& operator<<(std::ostream& os, mark_t m);
    };

    // This encodes either an operator or set of acceptance sets.
288
    enum class acc_op : unsigned short
289
290
291
292
293
    { Inf, Fin, InfNeg, FinNeg, And, Or };
    union acc_word
    {
      mark_t mark;
      struct {
294
295
296
        acc_op op;             // Operator
        unsigned short size; // Size of the subtree (number of acc_word),
                             // not counting this node.
297
      } sub;
298
299
    };

300
    struct SPOT_API acc_code: public std::vector<acc_word>
301
    {
302
      bool operator==(const acc_code& other) const
303
      {
304
305
306
307
308
        unsigned pos = size();
        if (other.size() != pos)
          return false;
        while (pos > 0)
          {
309
310
311
312
            auto op = (*this)[pos - 1].sub.op;
            auto sz = (*this)[pos - 1].sub.size;
            if (other[pos - 1].sub.op != op ||
                other[pos - 1].sub.size != sz)
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
              return false;
            switch (op)
              {
              case acc_cond::acc_op::And:
              case acc_cond::acc_op::Or:
                --pos;
                break;
              case acc_cond::acc_op::Inf:
              case acc_cond::acc_op::InfNeg:
              case acc_cond::acc_op::Fin:
              case acc_cond::acc_op::FinNeg:
                pos -= 2;
                if (other[pos].mark != (*this)[pos].mark)
                  return false;
                break;
              }
          }
        return true;
331
332
      };

333
334
      bool operator<(const acc_code& other) const
      {
335
336
337
338
339
340
341
342
        unsigned pos = size();
        auto osize = other.size();
        if (pos < osize)
          return true;
        if (pos > osize)
          return false;
        while (pos > 0)
          {
343
344
            auto op = (*this)[pos - 1].sub.op;
            auto oop = other[pos - 1].sub.op;
345
346
347
348
            if (op < oop)
              return true;
            if (op > oop)
              return false;
349
350
            auto sz = (*this)[pos - 1].sub.size;
            auto osz = other[pos - 1].sub.size;
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            if (sz < osz)
              return true;
            if (sz > osz)
              return false;
            switch (op)
              {
              case acc_cond::acc_op::And:
              case acc_cond::acc_op::Or:
                --pos;
                break;
              case acc_cond::acc_op::Inf:
              case acc_cond::acc_op::InfNeg:
              case acc_cond::acc_op::Fin:
              case acc_cond::acc_op::FinNeg:
                pos -= 2;
                auto m = (*this)[pos].mark;
                auto om = other[pos].mark;
                if (m < om)
                  return true;
                if (m > om)
                  return false;
                break;
              }
          }
        return false;
376
377
378
379
      }

      bool operator>(const acc_code& other) const
      {
380
        return other < *this;
381
382
383
384
      }

      bool operator<=(const acc_code& other) const
      {
385
        return !(other < *this);
386
387
388
389
      }

      bool operator>=(const acc_code& other) const
      {
390
        return !(*this < other);
391
392
393
      }

      bool operator!=(const acc_code& other) const
394
      {
395
        return !(*this == other);
396
397
      }

398
      bool is_t() const
399
      {
400
        unsigned s = size();
401
402
        return s == 0 || ((*this)[s - 1].sub.op == acc_op::Inf
                          && (*this)[s - 2].mark == 0U);
403
404
      }

405
      bool is_f() const
406
      {
407
408
        unsigned s = size();
        return s > 1
409
          && (*this)[s - 1].sub.op == acc_op::Fin && (*this)[s - 2].mark == 0U;
410
411
      }

412
413
      static acc_code f()
      {
414
415
416
        acc_code res;
        res.resize(2);
        res[0].mark = 0U;
417
418
        res[1].sub.op = acc_op::Fin;
        res[1].sub.size = 1;
419
        return res;
420
421
422
423
      }

      static acc_code t()
      {
424
        return {};
425
426
427
428
      }

      static acc_code fin(mark_t m)
      {
429
430
431
        acc_code res;
        res.resize(2);
        res[0].mark = m;
432
433
        res[1].sub.op = acc_op::Fin;
        res[1].sub.size = 1;
434
        return res;
435
436
      }

437
438
      static acc_code fin(std::initializer_list<unsigned> vals)
      {
439
        return fin(mark_t(vals));
440
441
      }

442
443
      static acc_code fin_neg(mark_t m)
      {
444
445
446
        acc_code res;
        res.resize(2);
        res[0].mark = m;
447
448
        res[1].sub.op = acc_op::FinNeg;
        res[1].sub.size = 1;
449
        return res;
450
451
      }

452
453
      static acc_code fin_neg(std::initializer_list<unsigned> vals)
      {
454
        return fin_neg(mark_t(vals));
455
456
      }

457
458
      static acc_code inf(mark_t m)
      {
459
460
461
        acc_code res;
        res.resize(2);
        res[0].mark = m;
462
463
        res[1].sub.op = acc_op::Inf;
        res[1].sub.size = 1;
464
        return res;
465
466
      }

467
468
      static acc_code inf(std::initializer_list<unsigned> vals)
      {
469
        return inf(mark_t(vals));
470
471
      }

472
473
      static acc_code inf_neg(mark_t m)
      {
474
475
476
        acc_code res;
        res.resize(2);
        res[0].mark = m;
477
478
        res[1].sub.op = acc_op::InfNeg;
        res[1].sub.size = 1;
479
        return res;
480
481
      }

482
483
      static acc_code inf_neg(std::initializer_list<unsigned> vals)
      {
484
        return inf_neg(mark_t(vals));
485
486
      }

487
488
      static acc_code buchi()
      {
489
        return inf({0});
490
491
492
493
      }

      static acc_code cobuchi()
      {
494
        return fin({0});
495
496
497
498
      }

      static acc_code generalized_buchi(unsigned n)
      {
499
500
501
502
        acc_cond::mark_t m = (1U << n) - 1;
        if (n == 8 * sizeof(mark_t::value_t))
          m = mark_t(-1U);
        return inf(m);
503
504
505
506
      }

      static acc_code generalized_co_buchi(unsigned n)
      {
507
508
509
510
        acc_cond::mark_t m = (1U << n) - 1;
        if (n == 8 * sizeof(mark_t::value_t))
          m = mark_t(-1U);
        return fin(m);
511
512
513
514
515
      }

      // n is a number of pairs.
      static acc_code rabin(unsigned n)
      {
516
517
518
519
520
521
522
        acc_cond::acc_code res = f();
        while (n > 0)
          {
            res |= inf({2*n - 1}) & fin({2*n - 2});
            --n;
          }
        return res;
523
524
525
526
527
      }

       // n is a number of pairs.
      static acc_code streett(unsigned n)
      {
528
529
530
531
532
533
534
        acc_cond::acc_code res = t();
        while (n > 0)
          {
            res &= inf({2*n - 1}) | fin({2*n - 2});
            --n;
          }
        return res;
535
536
      }

537
538
      template<class Iterator>
      static acc_code generalized_rabin(Iterator begin, Iterator end)
539
      {
540
541
542
543
544
545
546
547
548
549
550
551
552
        acc_cond::acc_code res = f();
        unsigned n = 0;
        for (Iterator i = begin; i != end; ++i)
          {
            acc_cond::acc_code pair = fin({n++});
            acc_cond::mark_t m = 0U;
            for (unsigned ni = *i; ni > 0; --ni)
              m.set(n++);
            pair &= inf(m);
            std::swap(pair, res);
            res |= std::move(pair);
          }
        return res;
553
554
      }

555
556
      static acc_code parity(bool max, bool odd, unsigned sets);

557
558
559
560
561
      // Number of acceptance sets to use, and probability to reuse
      // each set another time after it has been used in the
      // acceptance formula.
      static acc_code random(unsigned n, double reuse = 0.0);

562
      acc_code& operator&=(acc_code&& r)
563
      {
564
565
566
567
568
569
570
571
572
573
574
        if (is_t() || r.is_f())
          {
            *this = std::move(r);
            return *this;
          }
        if (is_f() || r.is_t())
          return *this;
        unsigned s = size() - 1;
        unsigned rs = r.size() - 1;
        // We want to group all Inf(x) operators:
        //   Inf(a) & Inf(b) = Inf(a & b)
575
576
577
578
        if (((*this)[s].sub.op == acc_op::Inf
             && r[rs].sub.op == acc_op::Inf)
            || ((*this)[s].sub.op == acc_op::InfNeg
                && r[rs].sub.op == acc_op::InfNeg))
579
580
581
582
583
584
585
586
587
588
589
          {
            (*this)[s - 1].mark |= r[rs - 1].mark;
            return *this;
          }

        // In the more complex scenarios, left and right may both
        // be conjunctions, and Inf(x) might be a member of each
        // side.  Find it if it exists.
        // left_inf points to the left Inf mark if any.
        // right_inf points to the right Inf mark if any.
        acc_word* left_inf = nullptr;
590
        if ((*this)[s].sub.op == acc_op::And)
591
          {
592
            auto start = &(*this)[s] - (*this)[s].sub.size;
593
594
595
596
            auto pos = &(*this)[s] - 1;
            pop_back();
            while (pos > start)
              {
597
                if (pos->sub.op == acc_op::Inf)
598
599
600
601
                  {
                    left_inf = pos - 1;
                    break;
                  }
602
                pos -= pos->sub.size + 1;
603
604
              }
          }
605
        else if ((*this)[s].sub.op == acc_op::Inf)
606
607
608
609
610
611
          {
            left_inf = &(*this)[s - 1];
          }

        acc_word* right_inf = nullptr;
        auto right_end = &r.back();
612
        if (right_end->sub.op == acc_op::And)
613
614
615
616
617
          {
            auto start = &r[0];
            auto pos = --right_end;
            while (pos > start)
            {
618
              if (pos->sub.op == acc_op::Inf)
619
620
621
622
                {
                  right_inf = pos - 1;
                  break;
                }
623
              pos -= pos->sub.size + 1;
624
625
            }
          }
626
        else if (right_end->sub.op == acc_op::Inf)
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
          {
            right_inf = right_end - 1;
          }

        if (left_inf && right_inf)
          {
            left_inf->mark |= right_inf->mark;
            insert(this->end(), &r[0], right_inf);
            insert(this->end(), right_inf + 2, right_end + 1);
          }
        else if (right_inf)
          {
            // Always insert Inf() at the very first entry.
            insert(this->begin(), right_inf, right_inf + 2);
            insert(this->end(), &r[0], right_inf);
            insert(this->end(), right_inf + 2, right_end + 1);
          }
        else
          {
            insert(this->end(), &r[0], right_end + 1);
          }

        acc_word w;
650
651
        w.sub.op = acc_op::And;
        w.sub.size = size();
652
        emplace_back(w);
653
        return *this;
654
655
      }

656
      acc_code& operator&=(const acc_code& r)
657
      {
658
659
660
661
662
663
664
665
666
667
        if (is_t() || r.is_f())
          {
            *this = r;
            return *this;
          }
        if (is_f() || r.is_t())
          return *this;
        unsigned s = size() - 1;
        unsigned rs = r.size() - 1;
        // Inf(a) & Inf(b) = Inf(a & b)
668
669
670
671
        if (((*this)[s].sub.op == acc_op::Inf
             && r[rs].sub.op == acc_op::Inf)
            || ((*this)[s].sub.op == acc_op::InfNeg
                && r[rs].sub.op == acc_op::InfNeg))
672
673
674
675
676
677
678
679
680
681
682
          {
            (*this)[s - 1].mark |= r[rs - 1].mark;
            return *this;
          }

        // In the more complex scenarios, left and right may both
        // be conjunctions, and Inf(x) might be a member of each
        // side.  Find it if it exists.
        // left_inf points to the left Inf mark if any.
        // right_inf points to the right Inf mark if any.
        acc_word* left_inf = nullptr;
683
        if ((*this)[s].sub.op == acc_op::And)
684
          {
685
            auto start = &(*this)[s] - (*this)[s].sub.size;
686
687
688
689
            auto pos = &(*this)[s] - 1;
            pop_back();
            while (pos > start)
              {
690
                if (pos->sub.op == acc_op::Inf)
691
692
693
694
                  {
                    left_inf = pos - 1;
                    break;
                  }
695
                pos -= pos->sub.size + 1;
696
697
              }
          }
698
        else if ((*this)[s].sub.op == acc_op::Inf)
699
700
701
702
703
704
          {
            left_inf = &(*this)[s - 1];
          }

        const acc_word* right_inf = nullptr;
        auto right_end = &r.back();
705
        if (right_end->sub.op == acc_op::And)
706
707
708
709
710
          {
            auto start = &r[0];
            auto pos = --right_end;
            while (pos > start)
            {
711
              if (pos->sub.op == acc_op::Inf)
712
713
714
715
                {
                  right_inf = pos - 1;
                  break;
                }
716
              pos -= pos->sub.size + 1;
717
718
            }
          }
719
        else if (right_end->sub.op == acc_op::Inf)
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
          {
            right_inf = right_end - 1;
          }

        if (left_inf && right_inf)
          {
            left_inf->mark |= right_inf->mark;
            insert(this->end(), &r[0], right_inf);
            insert(this->end(), right_inf + 2, right_end + 1);
          }
        else if (right_inf)
          {
            // Always insert Inf() at the very first entry.
            insert(this->begin(), right_inf, right_inf + 2);
            insert(this->end(), &r[0], right_inf);
            insert(this->end(), right_inf + 2, right_end + 1);
          }
        else
          {
            insert(this->end(), &r[0], right_end + 1);
          }

        acc_word w;
743
744
        w.sub.op = acc_op::And;
        w.sub.size = size();
745
        emplace_back(w);
746
        return *this;
747
748
749
750
      }

      acc_code operator&(acc_code&& r)
      {
751
752
753
        acc_code res = *this;
        res &= r;
        return res;
754
755
      }

756
757
      acc_code operator&(const acc_code& r)
      {
758
759
760
        acc_code res = *this;
        res &= r;
        return res;
761
762
763
      }

      acc_code& operator|=(acc_code&& r)
764
      {
765
766
767
768
769
770
771
772
773
774
        if (is_t() || r.is_f())
          return *this;
        if (is_f() || r.is_t())
          {
            *this = std::move(r);
            return *this;
          }
        unsigned s = size() - 1;
        unsigned rs = r.size() - 1;
        // Fin(a) | Fin(b) = Fin(a | b)
775
776
777
778
        if (((*this)[s].sub.op == acc_op::Fin
             && r[rs].sub.op == acc_op::Fin)
            || ((*this)[s].sub.op == acc_op::FinNeg
                && r[rs].sub.op == acc_op::FinNeg))
779
780
781
782
          {
            (*this)[s - 1].mark |= r[rs - 1].mark;
            return *this;
          }
783
        if ((*this)[s].sub.op == acc_op::Or)
784
          pop_back();
785
        if (r.back().sub.op == acc_op::Or)
786
787
788
          r.pop_back();
        insert(this->end(), r.begin(), r.end());
        acc_word w;
789
790
        w.sub.op = acc_op::Or;
        w.sub.size = size();
791
        emplace_back(w);
792
        return *this;
793
794
795
796
      }

      acc_code& operator|=(const acc_code& r)
      {
797
        return *this |= acc_code(r);
798
799
800
801
      }

      acc_code operator|(acc_code&& r)
      {
802
803
804
        acc_code res = *this;
        res |= r;
        return res;
805
806
      }

807
808
      acc_code operator|(const acc_code& r)
      {
809
810
811
        acc_code res = *this;
        res |= r;
        return res;
812
813
814
      }

      acc_code& operator<<=(unsigned sets)
815
      {
816
817
818
819
820
        if (empty())
          return *this;
        unsigned pos = size();
        do
          {
821
            switch ((*this)[pos - 1].sub.op)
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
              {
              case acc_cond::acc_op::And:
              case acc_cond::acc_op::Or:
                --pos;
                break;
              case acc_cond::acc_op::Inf:
              case acc_cond::acc_op::InfNeg:
              case acc_cond::acc_op::Fin:
              case acc_cond::acc_op::FinNeg:
                pos -= 2;
                (*this)[pos].mark.id <<= sets;
                break;
              }
          }
        while (pos > 0);
        return *this;
838
839
840
841
      }

      acc_code operator<<(unsigned sets) const
      {
842
843
844
        acc_code res = *this;
        res <<= sets;
        return res;
845
      }
846

847
      bool is_dnf() const;
848
      bool is_cnf() const;
849

850
      acc_code to_dnf() const;
851
      acc_code to_cnf() const;
852

853
854
      acc_code complement() const;

855
856
857
858
859
860
      // Return a list of acceptance marks needed to close a cycle
      // that already visit INF infinitely often, so that the cycle is
      // accepting (ACCEPTING=true) or rejecting (ACCEPTING=false).
      // Positive values describe positive set.
      // A negative value x means the set -x-1 must be absent.
      std::vector<std::vector<int>>
861
        missing(mark_t inf, bool accepting) const;
862
863
864
865
866

      bool accepting(mark_t inf) const;

      bool inf_satisfiable(mark_t inf) const;

867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
      // Remove all the acceptance sets in rem.
      //
      // If MISSING is set, the acceptance sets are assumed to be
      // missing from the automaton, and the acceptance is updated to
      // reflect this.  For instance (Inf(1)&Inf(2))|Fin(3) will
      // become Fin(3) if we remove 2 because it is missing from this
      // automaton, because there is no way to fulfill Inf(1)&Inf(2)
      // in this case.  So essentially MISSING causes Inf(rem) to
      // become f, and Fin(rem) to become t.
      //
      // If MISSING is unset, Inf(rem) become t while Fin(rem) become
      // f.  Removing 2 from (Inf(1)&Inf(2))|Fin(3) would then give
      // Inf(1)|Fin(3).
      acc_code strip(acc_cond::mark_t rem, bool missing) const;

      // Return the set of sets appearing in the condition.
      acc_cond::mark_t used_sets() const;

885
886
887
888
889
890
891
      // Return the sets used as Inf or Fin in the acceptance condition
      std::pair<acc_cond::mark_t, acc_cond::mark_t> used_inf_fin_sets() const;

      // Print the acceptance as HTML.  The set_printer function can
      // be used to implement customized output for set numbers.
      std::ostream&
      to_html(std::ostream& os,
892
893
              std::function<void(std::ostream&, int)>
              set_printer = nullptr) const;
894
895
896
897
898

      // Print the acceptance as text.  The set_printer function can
      // be used to implement customized output for set numbers.
      std::ostream&
      to_text(std::ostream& os,
899
900
              std::function<void(std::ostream&, int)>
              set_printer = nullptr) const;
901

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933

      /// \brief Construct an acc_code from a string.
      ///
      /// The string can follow the following grammar:
      ///
      /// <pre>
      ///   acc ::= "t"
      ///         | "f"
      ///         | "Inf" "(" num ")"
      ///         | "Fin" "(" num ")"
      ///         | "(" acc ")"
      ///         | acc "&" acc
      ///         | acc "|" acc
      /// </pre>
      ///
      /// Where num is an integer and "&" has priority over "|".  Note that
      /// "Fin(!x)" and "Inf(!x)" are not supported by this parser.
      ///
      /// Or the string can be the name of an acceptance condition, as
      /// speficied in the HOA format.  (E.g. "Rabin 2", "parity max odd 3",
      /// "generalized-Rabin 4 2 1", etc.).
      ///
      /// A spot::parse_error is thrown on syntax error.
      acc_code(const char* input);

      /// \brief Build an empty acceptance condition.
      ///
      /// This is the same as t().
      acc_code()
      {
      }

934
      // Calls to_text
935
936
      SPOT_API
      friend std::ostream& operator<<(std::ostream& os, const acc_code& code);
937
938
    };

939
    acc_cond(unsigned n_sets = 0, const acc_code& code = {})
940
      : num_(0U), all_(0U), code_(code)
941
942
    {
      add_sets(n_sets);
943
944
945
946
947
948
949
950
      uses_fin_acceptance_ = check_fin_acceptance();
    }

    acc_cond(const acc_code& code)
      : num_(0U), all_(0U), code_(code)
    {
      add_sets(code.used_sets().max_set());
      uses_fin_acceptance_ = check_fin_acceptance();
951
952
953
    }

    acc_cond(const acc_cond& o)
954
955
      : num_(o.num_), all_(o.all_), code_(o.code_),
        uses_fin_acceptance_(o.uses_fin_acceptance_)
956
957
958
    {
    }

959
960
961
962
963
964
965
966
967
    acc_cond& operator=(const acc_cond& o)
    {
      num_ = o.num_;
      all_ = o.all_;
      code_ = o.code_;
      uses_fin_acceptance_ = o.uses_fin_acceptance_;
      return *this;
    }

968
969
970
971
    ~acc_cond()
    {
    }

972
973
974
975
976
977
    void set_acceptance(const acc_code& code)
    {
      code_ = code;
      uses_fin_acceptance_ = check_fin_acceptance();
    }

978
    const acc_code& get_acceptance() const
979
980
981
982
    {
      return code_;
    }

983
984
985
986
987
    acc_code& get_acceptance()
    {
      return code_;
    }

988
989
990
991
992
    bool uses_fin_acceptance() const
    {
      return uses_fin_acceptance_;
    }

993
    bool is_t() const
994
    {
995
      return code_.is_t();
996
997
    }

998
    bool is_all() const
999
    {
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
      return num_ == 0 && is_t();
    }

    bool is_f() const
    {
      return code_.is_f();
    }

    bool is_none() const
    {
      return num_ == 0 && is_f();
1011
1012
1013
1014
1015
1016
    }

    bool is_buchi() const
    {
      unsigned s = code_.size();
      return num_ == 1 &&
1017
        s == 2 && code_[1].sub.op == acc_op::Inf && code_[0].mark == all_sets();
1018
1019
1020
1021
1022
1023
1024
    }

    bool is_co_buchi() const
    {
      return num_ == 1 && is_generalized_co_buchi();
    }

1025
1026
1027
1028
1029
1030
1031
1032
    void set_generalized_buchi()
    {
      set_acceptance(inf(all_sets()));
    }

    bool is_generalized_buchi() const
    {
      unsigned s = code_.size();
1033
1034
      return (s == 0 && num_ == 0) || (s == 2 && code_[1].sub.op == acc_op::Inf
                                       && code_[0].mark == all_sets());
1035
1036
    }

1037
1038
1039
1040
    bool is_generalized_co_buchi() const
    {
      unsigned s = code_.size();
      return (s == 2 &&
1041
              code_[1].sub.op == acc_op::Fin && code_[0].mark == all_sets());
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
    }

    // Returns a number of pairs (>=0) if Rabin, or -1 else.
    int is_rabin() const;
    // Returns a number of pairs (>=0) if Streett, or -1 else.
    int is_streett() const;

    // Return the number of Inf in each pair.
    bool is_generalized_rabin(std::vector<unsigned>& pairs) const;

1052
1053
1054
1055
1056
1057
    // If EQUIV is false, this return true iff the acceptance
    // condition is a parity condition written in the canonical way
    // given in the HOA specifications.  If EQUIV is true, then we
    // check whether the condition is logically equivalent to some
    // parity acceptance condition.
    bool is_parity(bool& max, bool& odd, bool equiv = false) const;
1058
1059
1060
1061
1062
1063
    bool is_parity() const
    {
      bool max;
      bool min;
      return is_parity(max, min);
    }
1064

1065
1066
1067
1068
1069
    // Return (true, m) if there exist some acceptance mark m that
    // does not satisfy the acceptance condition.  Return (false, 0U)
    // otherwise.
    std::pair<bool, acc_cond::mark_t> unsat_mark() const;

1070
1071
1072
  protected:
    bool check_fin_acceptance() const;

1073
  public:
1074
    static acc_code inf(mark_t mark)
1075
    {
1076
      return acc_code::inf(mark);
1077
1078
    }

1079
    static acc_code inf(std::initializer_list<unsigned> vals)
1080
    {
1081
      return inf(mark_t(vals.begin(), vals.end()));
1082
1083
    }

1084
    static acc_code inf_neg(mark_t mark)
1085
    {
1086
      return acc_code::inf_neg(mark);
1087
1088
    }

1089
    static acc_code inf_neg(std::initializer_list<unsigned> vals)
1090
    {
1091
      return inf_neg(mark_t(vals.begin(), vals.end()));
1092
1093
    }

1094
    static acc_code fin(mark_t mark)
1095
    {
1096
      return acc_code::fin(mark);
1097
1098
    }

1099
    static acc_code fin(std::initializer_list<unsigned> vals)
1100
    {
1101
      return fin(mark_t(vals.begin(), vals.end()));
1102
1103
    }

1104
    static acc_code fin_neg(mark_t mark)
1105
    {
1106
      return acc_code::fin_neg(mark);
1107
1108
    }

1109
    static acc_code fin_neg(std::initializer_list<unsigned> vals)
1110
    {
1111
      return fin_neg(mark_t(vals.begin(), vals.end()));
1112
1113
    }

1114
1115
1116
    unsigned add_sets(unsigned num)
    {
      if (num == 0)
1117
        return -1U;
1118
1119
1120
      unsigned j = num_;
      num_ += num;
      if (num_ > 8 * sizeof(mark_t::id))
1121
        throw std::runtime_error("Too many acceptance sets used.");
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
      all_ = all_sets_();
      return j;
    }

    unsigned add_set()
    {
      return add_sets(1);
    }

    mark_t mark(unsigned u) const
    {
1133
      SPOT_ASSERT(u < num_sets());
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1134
      return 1U << u;
1135
1136
1137
1138
    }

    mark_t comp(mark_t l) const
    {
1139
      return all_ ^ l.id;
1140
1141
1142
1143
    }

    mark_t all_sets() const
    {
1144
      return all_;
1145
1146
    }

1147
1148
1149
1150
    bool accepting(mark_t inf) const
    {
      return code_.accepting(inf);
    }
1151

1152
1153
1154
1155
    bool inf_satisfiable(mark_t inf) const
    {
      return code_.inf_satisfiable(inf);
    }
1156

1157
    mark_t accepting_sets(mark_t inf) const;
1158
1159
1160

    std::ostream& format(std::ostream& os, mark_t m) const
    {
1161
      auto a = m;
1162
      if (a == 0U)
1163
        return os;
1164
1165
1166
1167
1168
1169