ltl2tgba_fm.cc 23.7 KB
Newer Older
1
// Copyright (C) 2003, 2004, 2005  Laboratoire d'Informatique de Paris 6 (LIP6),
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// dpartement Systmes Rpartis Coopratifs (SRC), Universit Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

22
#include "misc/hash.hh"
23
#include "misc/bddalloc.hh"
24
#include "misc/bddlt.hh"
25
#include "misc/minato.hh"
26
27
28
29
30
31
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/destroy.hh"
#include "ltlvisit/tostring.hh"
32
#include "ltlvisit/postfix.hh"
33
#include "ltlvisit/apcollect.hh"
34
#include <cassert>
35
#include <memory>
36
37
38
39
40
41
42
43
44
45
#include "tgba/tgbabddconcretefactory.hh"
#include "ltl2tgba_fm.hh"

namespace spot
{
  using namespace ltl;

  namespace
  {

46
47
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
48
49
50
51
52
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
53
    class translate_dict
54
55
56
    {
    public:

57
58
      translate_dict(bdd_dict* dict)
	: dict(dict),
59
60
61
62
63
64
65
66
67
68
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
69
	  destroy(i->first);
70
	dict->unregister_all_my_variables(this);
71
72
      }

73
74
      bdd_dict* dict;

75
76
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
77
78
79
80
81
82
83
84
85

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
86
      register_proposition(const formula* f)
87
      {
88
	int num = dict->register_proposition(f, this);
89
90
91
92
93
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
94
      register_a_variable(const formula* f)
95
      {
96
	int num = dict->register_acceptance_variable(f, this);
97
98
99
100
101
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
102
      register_next_variable(const formula* f)
103
104
105
106
107
108
109
110
111
112
113
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
114
	    num = dict->register_anonymous_variables(1, this);
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
132
133
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
134
135
136
	return os;
      }

137
      formula*
138
139
140
141
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
142
	  return clone(isi->second);
143
144
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
145
	  return clone(isi->second);
146
147
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
148
	  return clone(isi->second);
149
	assert(0);
150
151
152
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
153
154
      }

155
      formula*
156
157
158
      conj_bdd_to_formula(bdd b)
      {
	if (b == bddfalse)
159
160
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
161
162
163
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
164
	    formula* res = var_to_formula(var);
165
166
167
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
168
		res = unop::instance(unop::Not, res);
169
170
171
172
		b = bdd_low(b);
	      }
	    else
	      {
173
		assert(bdd_low(b) == bddfalse);
174
175
176
177
178
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
179
	return multop::instance(multop::And, v);
180
181
      }

182
183
      const formula*
      bdd_to_formula(bdd f)
184
      {
185
	if (f == bddfalse)
186
	  return constant::false_instance();
187

188
189
190
191
192
193
194
195
196
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
197
198
199
200
201
202
203
204
205
206
207

      void
      conj_bdd_to_acc(tgba_explicit* a, bdd b, tgba_explicit::transition* t)
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
208
		// Simply ignore negated acceptance variables.
209
210
211
212
		b = bdd_low(b);
	      }
	    else
	      {
213
		formula* ac = var_to_formula(var);
214

215
		if (!a->has_acceptance_condition(ac))
216
217
		  a->declare_acceptance_condition(clone(ac));
		a->add_acceptance_condition(t, ac);
218
219
220
221
222
223
224
225
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    // The rewrite rules used here are adapted from Jean-Michel
    // Couvreur's FM paper.
    class ltl_trad_visitor: public const_visitor
    {
    public:
      ltl_trad_visitor(translate_dict& dict)
	: dict_(dict)
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

285
286
      bdd
      result() const
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
      {
	return res_;
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
321
322
323
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
324
325
326
327
328
329
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
	      return;
	    }
	  case unop::G:
	    {
330
331
332
333
334
335
336
337
338
339
340
341
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
342
	      const formula* child = node->child();
343
	      int x = dict_.register_next_variable(node);
344
345
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
346
347
348
349
	      return;
	    }
	  case unop::Not:
	    {
350
	      // r(!y) = !r(y)
351
352
353
354
355
	      res_ = bdd_not(recurse(node->child()));
	      return;
	    }
	  case unop::X:
	    {
356
	      // r(Xy) = Next[y]
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop* node)
      {
	bdd f1 = recurse(node->first());
	bdd f2 = recurse(node->second());

	switch (node->op())
	  {
374
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
	  case binop::Xor:
	    res_ = bdd_apply(f1, f2, bddop_xor);
	    return;
	  case binop::Implies:
	    res_ = bdd_apply(f1, f2, bddop_imp);
	    return;
	  case binop::Equiv:
	    res_ = bdd_apply(f1, f2, bddop_biimp);
	    return;
	  case binop::U:
	    {
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
	      return;
	    }
	  case binop::R:
	    {
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const multop* node)
      {
	int op = -1;
	switch (node->op())
	  {
	  case multop::And:
	    op = bddop_and;
	    res_ = bddtrue;
	    break;
	  case multop::Or:
	    op = bddop_or;
	    res_ = bddfalse;
	    break;
	  }
	assert(op != -1);
	unsigned s = node->size();
	for (unsigned n = 0; n < s; ++n)
	  {
	    res_ = bdd_apply(res_, recurse(node->nth(n)), op);
	  }
      }

      bdd
      recurse(const formula* f)
      {
	ltl_trad_visitor v(dict_);
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
    };

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

    // Check whether a formula has a R or G operator at its top-level
    // (preceding logical operators do not count).
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
	    return;
	  case binop::R:
	    res_ = true;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
525
526
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
527
528
529
530
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
531
	pfl_[f] = rel;
532
533
534
535
	return rel;
      }

    private:
536
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
537
      pfl_map pfl_;
538
539
    };

540
541
542
543
544
545
546
547
548
549
    class formula_canonizer
    {
    public:
      formula_canonizer(translate_dict& d)
	: v_(d)
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
550

551
552
      ~formula_canonizer()
      {
553
	while (!f2b_.empty())
554
	  {
555
556
557
558
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
	    destroy(f);
559
	  }
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
      }

      bdd
      translate(const formula* f)
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

	// Perform the actual translation.
	f->accept(v_);
	bdd res = v_.result();
	f2b_[clone(f)] = res;

	// Register the reverse mapping if it is not already done.
	if (b2f_.find(res) == b2f_.end())
	  b2f_[res] = f;
	return res;
      }

      const formula*
      canonize(const formula* f)
      {
	bdd b = translate(f);

	bdd_to_formula_map::iterator i = b2f_.find(b);
	// Since we have just translated the formula, it is necessary in b2f_.
	assert(i != b2f_.end());

	if (i->second != f)
591
	  {
592
593
	    destroy(f);
	    f = clone(i->second);
594
	  }
595
	return f;
596
597
      }

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;
      bdd_to_formula_map b2f_;
      // Map a representation of successors to a canonical formula.
      // We do this because many formulae (such as `aR(bRc)' and
      // `aR(bRc).(bRc)') are equivalent, and are trivially identified
      // by looking at the set of successors.
      typedef std::map<const formula*, bdd> formula_to_bdd_map;
      formula_to_bdd_map f2b_;
    };

  }

  typedef std::map<bdd, bdd, bdd_less_than> prom_map;
616
  typedef Sgi::hash_map<const formula*, prom_map, formula_ptr_hash> dest_map;
617
618
619
620

  static void
  fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
  {
621
    bdd conds = bdd_existcomp(label, d.var_set);
622
623
    bdd promises = bdd_existcomp(label, d.a_set);

624
625
626
627
628
629
630
631
632
633
634
635
636
    dest_map::iterator i = dests.find(dest);
    if (i == dests.end())
      {
	dests[dest][promises] = conds;
      }
    else
      {
	i->second[promises] |= conds;
	destroy(dest);
      }
  }


637
  tgba_explicit*
638
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
639
		 bool exprop, bool symb_merge, bool branching_postponement,
640
641
		 bool fair_loop_approx, const atomic_prop_set* unobs,
		 int reduce_ltl)
642
  {
643
644
    possible_fair_loop_checker pflc;

645
646
647
648
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
649
650
651
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
    destroy(f1);
652

653
654
655
656
657
658
659
660
    // Simplify the formula, if requested.
    if (reduce_ltl)
      {
	formula* tmp = reduce(f2, reduce_ltl);
	destroy(f2);
	f2 = tmp;
      }

661
662
663
    typedef std::set<const formula*, formula_ptr_less_than> set_type;
    set_type formulae_seen;
    set_type formulae_to_translate;
664

665
    translate_dict d(dict);
666
    formula_canonizer fc(d);
667

668
669
    // Compute the set of all promises occurring inside the formula.
    bdd all_promises = bddtrue;
670
    if (fair_loop_approx || unobs)
671
672
673
674
675
676
      {
	ltl_promise_visitor pv(d);
	f2->accept(pv);
	all_promises = pv.result();
      }

677
678
679
680
681
682
683
684
685
686
    // These are used when atomic propositions are interpreted as
    // events.  There are two kinds of events: observable events are
    // those used in the formula, and unobservable events or other
    // events that can occur at anytime.  All events exclude each
    // other.
    bdd observable_events = bddfalse;
    bdd unobservable_events = bddfalse;
    if (unobs)
      {
	bdd neg_events = bddtrue;
687
688
	std::auto_ptr<atomic_prop_set> aps(atomic_prop_collect(f));
	for (atomic_prop_set::const_iterator i = aps->begin();
689
690
691
692
693
694
695
696
	     i != aps->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    observable_events = (observable_events & neg) | (neg_events & pos);
	    neg_events &= neg;
	  }
697
	for (atomic_prop_set::const_iterator i = unobs->begin();
698
699
700
701
702
703
704
705
706
707
708
709
710
	     i != unobs->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    unobservable_events = ((unobservable_events & neg)
				   | (neg_events & pos));
	    observable_events &= neg;
	    neg_events &= neg;
	  }
      }
    bdd all_events = observable_events | unobservable_events;

711
712
713
714
715
716
717
718
719
720
    formulae_seen.insert(f2);
    formulae_to_translate.insert(f2);

    tgba_explicit* a = new tgba_explicit(dict);

    a->set_init_state(to_string(f2));

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
721
	const formula* f = *formulae_to_translate.begin();
722
723
724
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
725
	bdd res = fc.translate(f);
726

727
728
729
730
731
732
733
734
	// Handle exclusive events.
	if (unobs)
	  {
	    res &= observable_events;
	    int n = d.register_next_variable(f);
	    res |= unobservable_events & bdd_ithvar(n) & all_promises;
	  }

735
736
	std::string now = to_string(f);

737
738
739
740
741
	// When branching_postponement is used, we must assume that
	// the source state is in a fair loop.
	bool pflc_from =
	  (fair_loop_approx && !branching_postponement) ? pflc.check(f) : true;

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
	// We used to factor only Next and A variables while computing
	// prime implicants, with
	//    minato_isop isop(res, d.next_set & d.a_set);
	// in order to obtain transitions with formulae of atomic
	// proposition directly, but unfortunately this led to strange
	// factorizations.  For instance f U g was translated as
	//     r(f U g) = g + a(g).r(X(f U g)).(f + g)
	// instead of just
	//     r(f U g) = g + a(g).r(X(f U g)).f
	// Of course both formulae are logically equivalent, but the
	// latter is "more deterministic" than the former, so it should
	// be preferred.
	//
	// Therefore we now factor all variables.  This may lead to more
	// transitions than necessary (e.g.,  r(f + g) = f + g  will be
757
758
759
	// coded as two transitions), but we later merge all transitions
	// with same source/destination and acceptance conditions.  This
	// is the goal of the `dests' hash.
760
	//
761
	// Note that this is still not optimal.  For instance it is
762
	// better to encode `f U g' as
763
	//     r(f U g) = g + a(g).r(X(f U g)).f.!g
764
765
766
767
	// because that leads to a deterministic automaton.  In order
	// to handle this, we take the conditions of any transition
	// going to true (it's `g' here), and remove it from the other
	// transitions.
768
769
770
	//
	// In `exprop' mode, considering all possible combinations of
	// outgoing propositions generalizes the above trick.
771
	dest_map dests;
772

773
	// Compute all outgoing arcs.
774
775
776
777
778

	// If EXPROP is set, we will refine the symbolic
	// representation of the successors for all combinations of
	// the atomic properties involved in the formula.
	// VAR_SET is the set of these properties.
779
	bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
780
781
782
783
784
	// ALL_PROPS is the combinations we have yet to consider.
	// We used to start with `all_props = bddtrue', but it is
	// more efficient to start with the set of all satisfiable
	// variables combinations.
	bdd all_props = bdd_existcomp(res, d.var_set);
785
	while (all_props != bddfalse)
786
	  {
787
788
789
	    bdd one_prop_set =
	      exprop ? bdd_satoneset(all_props, var_set, bddtrue) : bddtrue;
	    all_props -= one_prop_set;
790

791
	    typedef std::map<bdd, const formula*, bdd_less_than> succ_map;
792
793
	    succ_map succs;

794
795
796
	    minato_isop isop(res & one_prop_set);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
797
	      {
798
		bdd label = bdd_exist(cube, d.next_set);
799
		bdd dest_bdd = bdd_existcomp(cube, d.next_set);
800
801
		const formula* dest = d.conj_bdd_to_formula(dest_bdd);

802
803
804
805
806
807
808
809
810
811
812
		// Simplify the formula, if requested.
		if (reduce_ltl)
		  {
		    formula* tmp = reduce(dest, reduce_ltl);
		    destroy(dest);
		    dest = tmp;
		    // Ignore the arc if the destination reduces to false.
		    if (dest == constant::false_instance())
		      continue;
		  }

813
814
815
816
		// If we already know a state with the same
		// successors, use it in lieu of the current one.
		if (symb_merge)
		  dest = fc.canonize(dest);
817
818
819
820

		// If the destination cannot possibly be part of a fair
		// loop, make all possible promises.
		if (fair_loop_approx
821
822
		    && !(dest == constant::true_instance()
			 || (pflc_from && pflc.check(dest))))
823
		  label &= all_promises;
824

825
826
827
828
829
830
		// If we are not postponing the branching, we can
		// declare the outgoing transitions immediately.
		// Otherwise, we merge transitions with identical
		// label, and declare the outgoing transitions in a
		// second loop.
		if (!branching_postponement)
831
		  {
832
		    fill_dests(d, dests, label, dest);
833
834
835
		  }
		else
		  {
836
837
838
839
		    succ_map::iterator si = succs.find(label);
		    if (si == succs.end())
		      succs[label] = dest;
		    else
840
841
842
843
		      si->second =
			multop::instance(multop::Or,
					 const_cast<formula*>(si->second),
					 const_cast<formula*>(dest));
844
845
		  }
	      }
846
847
848
	    if (branching_postponement)
	      for (succ_map::const_iterator si = succs.begin();
		   si != succs.end(); ++si)
849
		fill_dests(d, dests, si->first, si->second);
850
	  }
851

852
	// Check for an arc going to 1 (True).  Register it first, that
853
854
855
	// way it will be explored before the other during the model
	// checking.
	dest_map::const_iterator i = dests.find(constant::true_instance());
856
857
858
859
	// COND_FOR_TRUE is the conditions of the True arc, so when
	// can remove them from all other arcs.  It might sounds that
	// this is not needed when exprop is used, but in fact it is
	// complementary.
860
861
	//
	// Consider
862
	//   f = r(X(1) R p) = p.(1 + r(X(1) R p))
863
	// with exprop the two outgoing arcs would be
864
865
        //         p                  p
	//     f ----> 1       f ----------> 1
866
867
	//
	// where in fact we could output
868
869
        //         p
	//     f ----> 1
870
	//
871
	// because there is no point in looping on f if we can go to 1.
872
	bdd cond_for_true = bddfalse;
873
874
	if (i != dests.end())
	  {
875
	    // When translating LTL for an event-based logic with
876
877
	    // unobservable events, the 1 state should accept all events,
	    // even unobservable events.
878
879
	    if (unobs && f == constant::true_instance())
	      cond_for_true = all_events;
880
881
882
883
884
885
886
887
888
	    else
	      {
		// There should be only one transition going to 1 (true) ...
		assert(i->second.size() == 1);
		prom_map::const_iterator j = i->second.begin();
		// ... and it is not expected to make any promises.
		assert(j->first == bddtrue);
		cond_for_true = j->second;
	      }
889
890
	    tgba_explicit::transition* t =
	      a->create_transition(now, constant::true_instance()->val_name());
891
	    a->add_condition(t, d.bdd_to_formula(cond_for_true));
892
893
894
895
896
	  }
	// Register other transitions.
	for (i = dests.begin(); i != dests.end(); ++i)
	  {
	    const formula* dest = i->first;
897
898
899
900
	    // The cond_for_true optimization can cause some
	    // transitions to be removed.  So we have to remember
	    // whether a formula is actually reachable.
	    bool reachable = false;
901

902
903
904
905
906
907
	    if (dest != constant::true_instance())
	      {
		std::string next = to_string(dest);
		for (prom_map::const_iterator j = i->second.begin();
		     j != i->second.end(); ++j)
		  {
908
909
910
		    bdd cond = j->second - cond_for_true;
		    if (cond == bddfalse) // Skip false transitions.
		      continue;
911
912
		    tgba_explicit::transition* t =
		      a->create_transition(now, next);
913
		    a->add_condition(t, d.bdd_to_formula(cond));
914
		    d.conj_bdd_to_acc(a, j->first, t);
915
		    reachable = true;
916
917
		  }
	      }
918
919
920
921
922
923
924
	    else
	      {
		// "1" is reachable.
		reachable = true;
	      }
	    if (reachable
		&& formulae_seen.find(dest) == formulae_seen.end())
925
926
927
928
929
930
	      {
		formulae_seen.insert(dest);
		formulae_to_translate.insert(dest);
	      }
	    else
	      {
931
		destroy(dest);
932
933
934
935
936
	      }
	  }
      }

    // Free all formulae.
937
    for (std::set<const formula*>::iterator i = formulae_seen.begin();
938
	 i != formulae_seen.end(); ++i)
939
      destroy(*i);
940

941
942
    // Turn all promises into real acceptance conditions.
    a->complement_all_acceptance_conditions();
943
944
945
946
    return a;
  }

}