tgba.hh 24.5 KB
Newer Older
1
// -*- coding: utf-8 -*-
2 3
// Copyright (C) 2009, 2011, 2013, 2014, 2015 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
Guillaume Sadegh's avatar
Guillaume Sadegh committed
4
// Copyright (C) 2003, 2004, 2005 Laboratoire d'Informatique de
5 6
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
7 8 9 10 11
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
12
// the Free Software Foundation; either version 3 of the License, or
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
13 14 15 16 17 18 19 20
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
21
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
22

23
#pragma once
24

25
#include "fwd.hh"
26
#include "acc.hh"
27
#include "bdddict.hh"
28 29
#include <cassert>
#include <memory>
30 31
#include <unordered_map>
#include <functional>
32
#include <array>
33 34
#include "misc/casts.hh"
#include "misc/hash.hh"
35 36 37

namespace spot
{
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  /// \ingroup tgba_essentials
  /// \brief Abstract class for states.
  class SPOT_API state
  {
  public:
    /// \brief Compares two states (that come from the same automaton).
    ///
    /// This method returns an integer less than, equal to, or greater
    /// than zero if \a this is found, respectively, to be less than, equal
    /// to, or greater than \a other according to some implicit total order.
    ///
    /// This method should not be called to compare states from
    /// different automata.
    ///
    /// \sa spot::state_ptr_less_than
    virtual int compare(const state* other) const = 0;

    /// \brief Hash a state.
    ///
    /// This method returns an integer that can be used as a
    /// hash value for this state.
    ///
    /// Note that the hash value is guaranteed to be unique for all
    /// equal states (in compare()'s sense) for only has long has one
    /// of these states exists.  So it's OK to use a spot::state as a
    /// key in a \c hash_map because the mere use of the state as a
    /// key in the hash will ensure the state continues to exist.
    ///
    /// However if you create the state, get its hash key, delete the
    /// state, recreate the same state, and get its hash key, you may
    /// obtain two different hash keys if the same state were not
    /// already used elsewhere.  In practice this weird situation can
    /// occur only when the state is BDD-encoded, because BDD numbers
    /// (used to build the hash value) can be reused for other
    /// formulas.  That probably doesn't matter, since the hash value
    /// is meant to be used in a \c hash_map, but it had to be noted.
    virtual size_t hash() const = 0;

    /// Duplicate a state.
    virtual state* clone() const = 0;

    /// \brief Release a state.
    ///
81
    /// Methods from the tgba or twa_succ_iterator always return a
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    /// new state that you should deallocate with this function.
    /// Before Spot 0.7, you had to "delete" your state directly.
    /// Starting with Spot 0.7, you should update your code to use
    /// this function instead. destroy() usually call delete, except
    /// in subclasses that destroy() to allow better memory management
    /// (e.g., no memory allocation for explicit automata).
    virtual void destroy() const
    {
      delete this;
    }

  protected:
    /// \brief Destructor.
    ///
    /// Note that client code should call
    /// <code>s->destroy();</code> instead of <code>delete s;</code>.
    virtual ~state()
    {
    }
  };

  /// \ingroup tgba_essentials
  /// \brief Strict Weak Ordering for \c state*.
  ///
  /// This is meant to be used as a comparison functor for
  /// STL \c map whose key are of type \c state*.
  ///
  /// For instance here is how one could declare
  /// a map of \c state*.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::map<spot::state*, int, spot::state_ptr_less_than> seen;
  /// \endcode
  struct state_ptr_less_than
  {
    bool
    operator()(const state* left, const state* right) const
    {
      assert(left);
      return left->compare(right) < 0;
    }
  };

  /// \ingroup tgba_essentials
  /// \brief An Equivalence Relation for \c state*.
  ///
  /// This is meant to be used as a comparison functor for
  /// an \c unordered_map whose key are of type \c state*.
  ///
  /// For instance here is how one could declare
  /// a map of \c state*.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<spot::state*, int, spot::state_ptr_hash,
  ///                                    spot::state_ptr_equal> seen;
  /// \endcode
  struct state_ptr_equal
  {
    bool
    operator()(const state* left, const state* right) const
    {
      assert(left);
      return 0 == left->compare(right);
    }
  };

  /// \ingroup tgba_essentials
  /// \ingroup hash_funcs
  /// \brief Hash Function for \c state*.
  ///
  /// This is meant to be used as a hash functor for
  /// an \c unordered_map whose key are of type \c state*.
  ///
  /// For instance here is how one could declare
  /// a map of \c state*.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<spot::state*, int, spot::state_ptr_hash,
  ///                                    spot::state_ptr_equal> seen;
  /// \endcode
  struct state_ptr_hash
  {
    size_t
    operator()(const state* that) const
    {
      assert(that);
      return that->hash();
    }
  };

  typedef std::unordered_set<const state*,
			     state_ptr_hash, state_ptr_equal> state_set;


  /// \ingroup tgba_essentials
  /// \brief Render state pointers unique via a hash table.
  class SPOT_API state_unicity_table
  {
    state_set m;
  public:

    /// \brief Canonicalize state pointer.
    ///
    /// If this is the first time a state is seen, this return the
    /// state pointer as-is, otherwise it frees the state and returns
    /// a point to the previously seen copy.
    ///
    /// States are owned by the table and will be freed on
    /// destruction.
    const state* operator()(const state* s)
    {
      auto p = m.insert(s);
      if (!p.second)
	s->destroy();
      return *p.first;
    }

    /// \brief Canonicalize state pointer.
    ///
    /// Same as operator(), except that a nullptr
    /// is returned if the state is not new.
    const state* is_new(const state* s)
    {
      auto p = m.insert(s);
      if (!p.second)
	{
	  s->destroy();
	  return nullptr;
	}
      return *p.first;
    }

    ~state_unicity_table()
    {
      for (state_set::iterator i = m.begin(); i != m.end();)
	{
	  // Advance the iterator before destroying its key.  This
	  // avoid issues with old g++ implementations.
	  state_set::iterator old = i++;
	  (*old)->destroy();
	}
    }

    size_t
    size()
    {
      return m.size();
    }
  };



  // Functions related to shared_ptr.
  //////////////////////////////////////////////////

  typedef std::shared_ptr<const state> shared_state;

  inline void shared_state_deleter(state* s) { s->destroy(); }

  /// \ingroup tgba_essentials
  /// \brief Strict Weak Ordering for \c shared_state
  /// (shared_ptr<const state*>).
  ///
  /// This is meant to be used as a comparison functor for
  /// STL \c map whose key are of type \c shared_state.
  ///
  /// For instance here is how one could declare
  /// a map of \c shared_state.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::map<shared_state, int, spot::state_shared_ptr_less_than> seen;
  /// \endcode
  struct state_shared_ptr_less_than
  {
    bool
    operator()(shared_state left,
               shared_state right) const
    {
      assert(left);
      return left->compare(right.get()) < 0;
    }
  };

  /// \ingroup tgba_essentials
  /// \brief An Equivalence Relation for \c shared_state
  /// (shared_ptr<const state*>).
  ///
  /// This is meant to be used as a comparison functor for
  /// un \c unordered_map whose key are of type \c shared_state.
  ///
  /// For instance here is how one could declare
  /// a map of \c shared_state
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<shared_state, int,
  ///                      state_shared_ptr_hash,
  ///                      state_shared_ptr_equal> seen;
  /// \endcode
  struct state_shared_ptr_equal
  {
    bool
    operator()(shared_state left,
               shared_state right) const
    {
      assert(left);
      return 0 == left->compare(right.get());
    }
  };

  /// \ingroup tgba_essentials
  /// \ingroup hash_funcs
  /// \brief Hash Function for \c shared_state (shared_ptr<const state*>).
  ///
  /// This is meant to be used as a hash functor for
  /// an \c unordered_map whose key are of type
  /// \c shared_state.
  ///
  /// For instance here is how one could declare
  /// a map of \c shared_state.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<shared_state, int,
  ///                      state_shared_ptr_hash,
  ///                      state_shared_ptr_equal> seen;
  /// \endcode
  struct state_shared_ptr_hash
  {
    size_t
    operator()(shared_state that) const
    {
      assert(that);
      return that->hash();
    }
  };

  typedef std::unordered_set<shared_state,
			     state_shared_ptr_hash,
			     state_shared_ptr_equal> shared_state_set;

  /// \ingroup tgba_essentials
  /// \brief Iterate over the successors of a state.
  ///
  /// This class provides the basic functionalities required to
  /// iterate over the successors of a state, as well as querying
  /// transition labels.  Because transitions are never explicitely
  /// encoded, labels (conditions and acceptance conditions) can only
  /// be queried while iterating over the successors.
329
  class SPOT_API twa_succ_iterator
330 331 332
  {
  public:
    virtual
333
    ~twa_succ_iterator()
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    {
    }

    /// \name Iteration
    //@{

    /// \brief Position the iterator on the first successor (if any).
    ///
    /// This method can be called several times to make multiple
    /// passes over successors.
    ///
    /// \warning One should always call \c done() (or better: check
    /// the return value of first()) to ensure there is a successor,
    /// even after \c first().  A common trap is to assume that there
    /// is at least one successor: this is wrong.
    ///
    /// \return whether there is actually a successor
    virtual bool first() = 0;

    /// \brief Jump to the next successor (if any).
    ///
    /// \warning Again, one should always call \c done() (or better:
    /// check the return value of next()) ensure there is a successor.
    ///
    /// \return whether there is actually a successor
    virtual bool next() = 0;

    /// \brief Check whether the iteration is finished.
    ///
    /// This function should be called after any call to \c first()
    /// or \c next() and before any enquiry about the current state.
    ///
    /// The usual way to do this is with a \c for loop.
    ///
    ///     for (s->first(); !s->done(); s->next())
    ///       ...
    virtual bool done() const = 0;

    //@}

    /// \name Inspection
    //@{

    /// \brief Get the state of the current successor.
    ///
    /// Note that the same state may occur at different points
    /// in the iteration.  These actually correspond to the same
    /// destination.  It just means there were several transitions,
    /// with different conditions, leading to the same state.
    ///
    /// The returned state should be destroyed (see state::destroy)
    /// by the caller after it is no longer used.
    virtual state* current_state() const = 0;
    /// \brief Get the condition on the transition leading to this successor.
    ///
    /// This is a boolean function of atomic propositions.
    virtual bdd current_condition() const = 0;
    /// \brief Get the acceptance conditions on the transition leading
    /// to this successor.
393
    virtual acc_cond::mark_t current_acceptance_conditions() const = 0;
394 395 396 397 398 399 400 401 402

    //@}
  };

  namespace internal
  {
    struct SPOT_API succ_iterator
    {
    protected:
403
      twa_succ_iterator* it_;
404 405
    public:

406
      succ_iterator(twa_succ_iterator* it):
407 408 409 410 411 412 413 414 415 416 417 418 419 420
	it_(it)
      {
      }

      bool operator==(succ_iterator o) const
      {
	return it_ == o.it_;
      }

      bool operator!=(succ_iterator o) const
      {
	return it_ != o.it_;
      }

421
      const twa_succ_iterator* operator*() const
422 423 424 425 426 427 428 429 430 431 432
      {
	return it_;
      }

      void operator++()
      {
	if (!it_->next())
	  it_ = nullptr;
      }
    };
  }
433

434
  /// \defgroup twa TωA (Transition-based ω-Automata)
435
  ///
436
  /// Spot is centered around the spot::twa type.  This type and its
437 438 439 440
  /// cousins are listed \ref tgba_essentials "here".  This is an
  /// abstract interface.  Its implementations are either \ref
  /// tgba_representation "concrete representations", or \ref
  /// tgba_on_the_fly_algorithms "on-the-fly algorithms".  Other
441
  /// algorithms that work on spot::twa are \ref tgba_algorithms
442 443
  /// "listed separately".

444 445
  /// \addtogroup tgba_essentials Essential TωA types
  /// \ingroup twa
446 447

  /// \ingroup tgba_essentials
448
  /// \brief A Transition-based ω-Automaton.
449
  ///
450 451 452 453
  /// The acronym TωA stands for Transition-based ω-automaton.
  /// We may write it as TwA or twa, but never as TWA as the
  /// w is just a non-utf8 replacement for ω that should not be
  /// capitalized.
454
  ///
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
  /// TωAs are transition-based automata, meanings that not-only
  /// do they have labels on arcs, they also have an acceptance
  /// condition defined in term of sets of transitions.
  /// The acceptance condition can be anything supported by
  /// the HOA format (http://adl.github.io/hoaf/).  The only
  /// restriction w.r.t. the format is that this class does
  /// not support alternating automata
  ///
  /// Previous version of Spot supported a type of automata called
  /// TGBA, which are TωA in which the acceptance condition is a set
  /// of sets of transitions that must be intersected infinitely
  /// often.
  ///
  /// In this version, TGBAs are now represented by TωAs for which
  /// <code>aut->acc().is_generalized_buchi())</code> returns true.
470
  ///
Alexandre Duret-Lutz's avatar
typos  
Alexandre Duret-Lutz committed
471
  /// Browsing such automaton can be achieved using two functions:
472
  /// \c get_init_state, and \c succ.  The former returns
Alexandre Duret-Lutz's avatar
typos  
Alexandre Duret-Lutz committed
473
  /// the initial state while the latter lists the
474 475
  /// successor states of any state.
  ///
476 477 478 479 480
  /// Note that although this is a transition-based automata, we never
  /// represent transitions in the API!  Transition data are
  /// obtained by querying the iterator over the successors of a
  /// state.
  class SPOT_API twa: public std::enable_shared_from_this<twa>
481
  {
482
  protected:
483
    twa(const bdd_dict_ptr& d);
484
    // Any iterator returned via release_iter.
485
    mutable twa_succ_iterator* iter_cache_;
486
    bdd_dict_ptr dict_;
487
  public:
488 489 490 491 492

#ifndef SWIG
    class succ_iterable
    {
    protected:
493
      const twa* aut_;
494
      twa_succ_iterator* it_;
495
    public:
496
      succ_iterable(const twa* aut, twa_succ_iterator* it)
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	: aut_(aut), it_(it)
      {
      }

      succ_iterable(succ_iterable&& other)
	: aut_(other.aut_), it_(other.it_)
      {
	other.it_ = nullptr;
      }

      ~succ_iterable()
      {
	if (it_)
	  aut_->release_iter(it_);
      }

      internal::succ_iterator begin()
      {
515
	return it_->first() ? it_ : nullptr;
516 517 518 519 520 521 522 523 524
      }

      internal::succ_iterator end()
      {
	return nullptr;
      }
    };
#endif

525
    virtual ~twa();
526

527 528 529
    /// \brief Get the initial state of the automaton.
    ///
    /// The state has been allocated with \c new.  It is the
530
    /// responsability of the caller to \c destroy it when no
531 532
    /// longer needed.
    virtual state* get_init_state() const = 0;
533

534
    /// \brief Get an iterator over the successors of \a local_state.
535 536 537 538
    ///
    /// The iterator has been allocated with \c new.  It is the
    /// responsability of the caller to \c delete it when no
    /// longer needed.
539
    virtual twa_succ_iterator*
540
    succ_iter(const state* local_state) const = 0;
541

542
#ifndef SWIG
543 544 545
    /// \brief Build an iterable over the successors of \a s.
    ///
    /// This is meant to be used as
546
    /// <code>for (auto i: aut->succ(s)) { /* i->current_state() */ }</code>.
547
    succ_iterable
548 549 550 551
    succ(const state* s) const
    {
      return {this, succ_iter(s)};
    }
552 553 554 555 556 557
#endif

    /// \brief Release an iterator after usage.
    ///
    /// This iterator can then be reused by succ_iter() to avoid
    /// memory allocation.
558
    void release_iter(twa_succ_iterator* i) const
559 560 561 562 563 564
    {
      if (iter_cache_)
	delete i;
      else
	iter_cache_ = i;
    }
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

    /// \brief Get a formula that must hold whatever successor is taken.
    ///
    /// \return A formula which must be verified for all successors
    ///  of \a state.
    ///
    /// This can be as simple as \c bddtrue, or more completely
    /// the disjunction of the condition of all successors.  This
    /// is used as an hint by \c succ_iter() to reduce the number
    /// of successor to compute in a product.
    ///
    /// Sub classes should implement compute_support_conditions(),
    /// this function is just a wrapper that will cache the
    /// last return value for efficiency.
    bdd support_conditions(const state* state) const;

581 582
    /// \brief Get the dictionary associated to the automaton.
    ///
583 584 585 586 587
    /// Atomic propositions and acceptance conditions are represented
    /// as BDDs.  The dictionary allows to map BDD variables back to
    /// formulae, and vice versa.  This is useful when dealing with
    /// several automata (which may use the same BDD variable for
    /// different formula), or simply when printing.
588 589
    bdd_dict_ptr get_dict() const
    {
590
      return dict_;
591
    }
592 593 594 595

    /// \brief Format the state as a string for printing.
    ///
    /// This formating is the responsability of the automata
596
    /// that owns the state.
597
    virtual std::string format_state(const state* state) const = 0;
598

599 600 601
    /// \brief Return a possible annotation for the transition
    /// pointed to by the iterator.
    ///
602 603 604 605 606
    /// You may decide to use annotations when building a tgba class
    /// that represents the state space of a model, for instance to
    /// indicate how the tgba transitions relate to the original model
    /// (e.g. the annotation could be the name of a PetriNet
    /// transition, or the line number of some textual formalism).
607
    ///
608 609 610 611 612 613
    /// Implementing this method is optional; the default annotation
    /// is the empty string.
    ///
    /// This method is used for instance in dotty_reachable(),
    /// and replay_tgba_run().
    ///
614
    /// \param t a non-done twa_succ_iterator for this automaton
615
    virtual std::string
616
    transition_annotation(const twa_succ_iterator* t) const;
617

618
    /// \brief Project a state on an automaton.
619 620 621 622 623 624 625 626 627 628 629
    ///
    /// This converts \a s, into that corresponding spot::state for \a
    /// t.  This is useful when you have the state of a product, and
    /// want restrict this state to a specific automata occuring in
    /// the product.
    ///
    /// It goes without saying that \a s and \a t should be compatible
    /// (i.e., \a s is a state of \a t).
    ///
    /// \return 0 if the projection fails (\a s is unrelated to \a t),
    ///    or a new \c state* (the projected state) that must be
630
    ///    destroyed by the caller.
631
    virtual state* project_state(const state* s,
632
				 const const_twa_ptr& t) const;
633

634

635 636 637 638
    const acc_cond& acc() const
    {
      return acc_;
    }
639

640 641 642 643
    acc_cond& acc()
    {
      return acc_;
    }
644

645 646
    virtual bool is_empty() const;

647
  protected:
648 649
    acc_cond acc_;

650 651 652 653 654 655 656 657 658 659
    void set_num_sets_(unsigned num)
    {
      if (num < acc_.num_sets())
	{
	  acc_.~acc_cond();
	  new (&acc_) acc_cond;
	}
      acc_.add_sets(num - acc_.num_sets());
    }

660
  public:
661
    const acc_cond::acc_code& get_acceptance() const
662 663 664
    {
      return acc_.get_acceptance();
    }
665 666 667

    void set_acceptance(unsigned num, const acc_cond::acc_code& c)
    {
668
      set_num_sets_(num);
669 670 671 672 673
      acc_.set_acceptance(c);
      if (num == 0)
	prop_state_based_acc();
    }

674
    /// \brief Copy the acceptance condition of another tgba.
675
    void copy_acceptance_of(const const_twa_ptr& a)
676 677 678 679 680 681 682
    {
      acc_ = a->acc();
      unsigned num = acc_.num_sets();
      if (num == 0)
	prop_state_based_acc();
    }

683
    void copy_ap_of(const const_twa_ptr& a)
684 685 686 687
    {
      get_dict()->register_all_propositions_of(a, this);
    }

688 689 690 691 692 693 694 695 696 697 698 699 700 701
    void set_generalized_buchi(unsigned num)
    {
      set_num_sets_(num);
      acc_.set_generalized_buchi();
      if (num == 0)
	prop_state_based_acc();
    }

    acc_cond::mark_t set_buchi()
    {
      set_generalized_buchi(1);
      return acc_.mark(0);
    }

702
  protected:
703 704 705
    /// Do the actual computation of tgba::support_conditions().
    virtual bdd compute_support_conditions(const state* state) const = 0;
    mutable const state* last_support_conditions_input_;
706 707
  private:
    mutable bdd last_support_conditions_output_;
708 709 710 711 712 713 714 715 716 717

  protected:

    // Boolean properties.  Beware: true means that the property
    // holds, but false means the property is unknown.
    struct bprop
    {
      bool state_based_acc:1;	// State-based acceptance.
      bool inherently_weak:1;	// Weak automaton.
      bool deterministic:1;	// Deterministic automaton.
718
      bool stutter_inv:1; 	// Stutter invariant
719 720 721 722 723 724 725
    };
    union
    {
      unsigned props;
      bprop is;
    };

726 727 728 729 730 731
#ifndef SWIG
    // Dynamic properties, are given with a name and a destructor function.
    std::unordered_map<std::string,
		       std::pair<void*,
				 std::function<void(void*)>>> named_prop_;
#endif
732 733
    void* get_named_prop_(std::string s) const;

734 735
  public:

736 737 738
#ifndef SWIG
    void set_named_prop(std::string s,
			void* val, std::function<void(void*)> destructor);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

    template<typename T>
    void set_named_prop(std::string s, T* val)
    {
      set_named_prop(s, val, [](void *p) { delete static_cast<T*>(p); });
    }

    template<typename T>
    T* get_named_prop(std::string s) const
    {
      void* p = get_named_prop_(s);
      if (!p)
	return nullptr;
      return static_cast<T*>(p);
    }
754 755
#endif

756 757 758 759 760 761 762 763
    void release_named_properties()
    {
      // Destroy all named properties.
      for (auto& np: named_prop_)
	np.second.second(np.second.first);
      named_prop_.clear();
    }

764 765 766 767 768 769 770 771 772 773 774 775
    bool has_state_based_acc() const
    {
      return is.state_based_acc;
    }

    void prop_state_based_acc(bool val = true)
    {
      is.state_based_acc = val;
    }

    bool is_sba() const
    {
776
      return has_state_based_acc() && acc().is_buchi();
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
    }

    bool is_inherently_weak() const
    {
      return is.inherently_weak;
    }

    void prop_inherently_weak(bool val = true)
    {
      is.inherently_weak = val;
    }

    bool is_deterministic() const
    {
      return is.deterministic;
    }

    void prop_deterministic(bool val = true)
    {
      is.deterministic = val;
    }

799 800 801 802 803 804 805 806 807 808
    bool is_stutter_invariant() const
    {
      return is.stutter_inv;
    }

    void prop_stutter_invariant(bool val = true)
    {
      is.stutter_inv = val;
    }

809
    struct prop_set
810
    {
811 812 813
      bool state_based;
      bool inherently_weak;
      bool deterministic;
814
      bool stutter_inv;
815 816 817

      static prop_set all()
      {
818
	return { true, true, true, true };
819 820 821 822 823
      }
    };

    // There is no default value here on purpose.  This way any time we
    // add a new property we have to update every call to prop_copy().
824
    void prop_copy(const const_twa_ptr& other, prop_set p)
825 826
    {
      if (p.state_based)
827
	prop_state_based_acc(other->has_state_based_acc());
828
      if (p.inherently_weak)
829
	prop_inherently_weak(other->is_inherently_weak());
830
      if (p.deterministic)
831
	prop_deterministic(other->is_deterministic());
832 833
      if (p.stutter_inv)
	prop_stutter_invariant(other->is_stutter_invariant());
834 835
    }

836 837 838 839 840 841 842 843 844 845
    void prop_keep(prop_set p)
    {
      if (!p.state_based)
	prop_state_based_acc(false);
      if (!p.inherently_weak)
	prop_inherently_weak(false);
      if (!p.deterministic)
	prop_deterministic(false);
    }

846
  };
847

848
  /// \addtogroup tgba_representation TGBA representations
849
  /// \ingroup twa
850 851

  /// \addtogroup tgba_algorithms TGBA algorithms
852
  /// \ingroup twa
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

  /// \addtogroup tgba_on_the_fly_algorithms TGBA on-the-fly algorithms
  /// \ingroup tgba_algorithms

  /// \addtogroup tgba_io Input/Output of TGBA
  /// \ingroup tgba_algorithms

  /// \addtogroup tgba_ltl Translating LTL formulae into TGBA
  /// \ingroup tgba_algorithms

  /// \addtogroup tgba_generic Algorithm patterns
  /// \ingroup tgba_algorithms

  /// \addtogroup tgba_reduction TGBA simplifications
  /// \ingroup tgba_algorithms

  /// \addtogroup tgba_misc Miscellaneous algorithms on TGBA
  /// \ingroup tgba_algorithms
871
}