ltl2tgba_fm.cc 38.6 KB
Newer Older
1
2
3
// Copyright (C) 2008, 2009, 2010 Laboratoire de Recherche et
// Dveloppement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire
4
5
// d'Informatique de Paris 6 (LIP6), dpartement Systmes Rpartis
// Coopratifs (SRC), Universit Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

24
#include "misc/hash.hh"
25
#include "misc/bddalloc.hh"
26
#include "misc/bddlt.hh"
27
#include "misc/minato.hh"
28
29
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
30
31
32
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/tostring.hh"
33
#include "ltlvisit/postfix.hh"
34
#include "ltlvisit/apcollect.hh"
35
36
#include "ltlvisit/mark.hh"
#include "ltlvisit/tostring.hh"
37
#include <cassert>
38
#include <memory>
39
#include "ltl2tgba_fm.hh"
40
#include "ltlvisit/contain.hh"
41
42
#include "ltlvisit/consterm.hh"
#include "tgba/bddprint.hh"
43
44
45
46
47
48
49
50

namespace spot
{
  using namespace ltl;

  namespace
  {

51
52
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
53
54
55
56
57
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
58
    class translate_dict
59
60
61
    {
    public:

62
63
      translate_dict(bdd_dict* dict)
	: dict(dict),
64
65
66
67
68
69
70
71
72
73
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
74
	  i->first->destroy();
75
	dict->unregister_all_my_variables(this);
76
77
      }

78
79
      bdd_dict* dict;

80
81
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
82
83
84
85
86
87
88
89
90

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
91
      register_proposition(const formula* f)
92
      {
93
	int num = dict->register_proposition(f, this);
94
95
96
97
98
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
99
      register_a_variable(const formula* f)
100
      {
101
	int num = dict->register_acceptance_variable(f, this);
102
103
104
105
106
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
107
      register_next_variable(const formula* f)
108
109
110
111
112
113
114
115
116
117
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
118
	    f = f->clone();
119
	    num = dict->register_anonymous_variables(1, this);
120
121
122
123
124
125
126
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
	return os;
      }

142
      formula*
143
144
145
146
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
147
	  return isi->second->clone();
148
149
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
150
	  return isi->second->clone();
151
152
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
153
	  return isi->second->clone();
154
	assert(0);
155
156
157
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
158
159
      }

160
      formula*
161
      conj_bdd_to_formula(bdd b) const
162
163
      {
	if (b == bddfalse)
164
165
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
166
167
168
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
169
	    formula* res = var_to_formula(var);
170
171
172
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
173
		res = unop::instance(unop::Not, res);
174
175
176
177
		b = bdd_low(b);
	      }
	    else
	      {
178
		assert(bdd_low(b) == bddfalse);
179
180
181
182
183
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
184
	return multop::instance(multop::And, v);
185
186
      }

187
      formula*
188
      bdd_to_formula(bdd f)
189
      {
190
	if (f == bddfalse)
191
	  return constant::false_instance();
192

193
194
195
196
197
198
199
200
201
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
202
203

      void
204
      conj_bdd_to_acc(tgba_explicit_formula* a, bdd b,
Pierre PARUTTO's avatar
Pierre PARUTTO committed
205
		      state_explicit_formula::transition* t)
206
207
208
209
210
211
212
213
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
214
		// Simply ignore negated acceptance variables.
215
216
217
218
		b = bdd_low(b);
	      }
	    else
	      {
219
		formula* ac = var_to_formula(var);
220

221
		if (!a->has_acceptance_condition(ac))
222
		  a->declare_acceptance_condition(ac->clone());
223
		a->add_acceptance_condition(t, ac);
224
225
226
227
228
229
230
231
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    // Debugging function.
    std::ostream&
    trace_ltl_bdd(const translate_dict& d, bdd f)
    {
      minato_isop isop(f);
      bdd cube;
      while ((cube = isop.next()) != bddfalse)
	{
	  bdd label = bdd_exist(cube, d.next_set);
	  bdd dest_bdd = bdd_existcomp(cube, d.next_set);
	  const formula* dest = d.conj_bdd_to_formula(dest_bdd);
	  bdd_print_set(std::cerr, d.dict, label) << " => "
						  << to_string(dest)
						  << std::endl;
	  dest->destroy();
	}
      return std::cerr;
    }


252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    // Rewrite rule for rational operators.
    class ratexp_trad_visitor: public const_visitor
    {
    public:
      ratexp_trad_visitor(translate_dict& dict,
			  formula* to_concat = 0)
	: dict_(dict), to_concat_(to_concat)
      {
      }

      virtual
      ~ratexp_trad_visitor()
      {
	if (to_concat_)
	  to_concat_->destroy();
      }

      bdd
      result() const
      {
	return res_;
      }

      bdd next_to_concat()
      {
	if (!to_concat_)
	  to_concat_ = constant::empty_word_instance();
	int x = dict_.register_next_variable(to_concat_);
	return bdd_ithvar(x);
      }

      bdd now_to_concat()
      {
	if (to_concat_)
	  {
	    if (to_concat_ == constant::empty_word_instance())
	      return bddfalse;
	    bdd n = recurse(to_concat_);
	    return n;
	  }
	else
	  {
	    return bddfalse;
	  }
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = (bdd_ithvar(dict_.register_proposition(node))
		& next_to_concat());
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = next_to_concat();
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  case constant::EmptyWord:
	    res_ = now_to_concat();
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	  case unop::G:
	  case unop::Not:
	  case unop::X:
	  case unop::Finish:
	    assert(!"not a rational operator");
	    return;
	  case unop::Star:
	    {
	      formula* f;
	      if (to_concat_)
		f = multop::instance(multop::Concat, node->clone(),
				     to_concat_->clone());
	      else
		f = node->clone();

	      res_ = recurse(node->child(), f) | now_to_concat();
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const automatop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const multop* node)
      {
	switch (node->op())
	  {
	  case multop::And:
	    {
	      res_ = bddtrue;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
	      {
		bdd res = recurse(node->nth(n));
		// trace_ltl_bdd(dict_, res);
		res_ &= res;
	      }

	      //std::cerr << "Pre-Concat:" << std::endl;
	      //trace_ltl_bdd(dict_, res_);

	      if (to_concat_)
		{
		  // If we have translated (a* & b*) in (a* & b*);c, we
		  // have to append ";c" to all destinations.

		  minato_isop isop(res_);
		  bdd cube;
		  res_ = bddfalse;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
		      formula* dest2;
		      int x;
		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & next_to_concat();
			}
		      else
			{
			  dest2 = multop::instance(multop::Concat, dest,
						   to_concat_->clone());
			  if (dest2 != constant::false_instance())
			    {
			      x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(node))
			    res_ |= label & next_to_concat();
			}
		    }
		}

	      break;
	    }
	  case multop::Or:
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
	      if (to_concat_)
		for (unsigned n = 0; n < s; ++n)
		  res_ |= recurse(node->nth(n), to_concat_->clone());
	      else
		for (unsigned n = 0; n < s; ++n)
		  res_ |= recurse(node->nth(n));
	      break;
	    }
	  case multop::Concat:
	    {
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      if (to_concat_)
		v->push_back(to_concat_->clone());
	      res_ = recurse(node->nth(0),
			     multop::instance(multop::Concat, v));
	      break;
	    }
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
	  case multop::Fusion:
	    {
	      assert(node->size() >= 2);

	      // the head
	      bdd res = recurse(node->nth(0));

	      // the tail
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s - 1);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      formula* tail = multop::instance(multop::Fusion, v);
	      bdd tail_bdd;
	      bool tail_computed = false;

	      //trace_ltl_bdd(dict_, res);

	      minato_isop isop(res);
	      bdd cube;
	      res_ = bddfalse;
	      while ((cube = isop.next()) != bddfalse)
		{
		  bdd label = bdd_exist(cube, dict_.next_set);
		  bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		  formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		  if (constant_term_as_bool(dest))
		    {
		      // The destination is a final state.  Make sure we
		      // can also exit if tail is satisfied.
		      if (!tail_computed)
			{
			  tail_bdd = recurse(tail,
					     to_concat_ ?
					     to_concat_->clone() : 0);
			  tail_computed = true;
			}
		      res_ |= label & tail_bdd;
		    }

		  if (dynamic_cast<constant*>(dest) == 0)
		    {
		      // If the destination is not a constant, it
		      // means it can have successors.  Fusion the
		      // tail and append anything to concatenate.
		      formula* dest2 = multop::instance(multop::Fusion, dest,
							tail->clone());
		      if (to_concat_)
			 dest2 = multop::instance(multop::Concat, dest2,
						 to_concat_->clone());
		      if (dest2 != constant::false_instance())
			{
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}

	      tail->destroy();
	      break;
	    }
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
	  }
      }

      bdd
      recurse(const formula* f, formula* to_concat = 0)
      {
	ratexp_trad_visitor v(dict_, to_concat);
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
      formula* to_concat_;
    };

571

572
    // The rewrite rules used here are adapted from Jean-Michel
573
    // Couvreur's FM paper, augmented to support rational operators.
574
575
576
    class ltl_trad_visitor: public const_visitor
    {
    public:
577
578
579
580
      ltl_trad_visitor(translate_dict& dict, bool mark_all = false,
		       bool exprop = false)
	: dict_(dict), rat_seen_(false), has_marked_(false),
	  mark_all_(mark_all), exprop_(exprop)
581
582
583
584
585
586
587
588
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

589
590
591
592
593
594
595
596
      void
      reset(bool mark_all)
      {
	rat_seen_ = false;
	has_marked_ = false;
	mark_all_ = mark_all;
      }

597
598
      bdd
      result() const
599
600
601
602
      {
	return res_;
      }

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
      const translate_dict&
      get_dict() const
      {
	return dict_;
      }

      bool
      has_rational() const
      {
	return rat_seen_;
      }

      bool
      has_marked() const
      {
	return has_marked_;
      }

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
638
	  case constant::EmptyWord:
639
640
	    assert(!"Not an LTL operator");
	    return;
641
642
643
644
645
646
647
648
649
650
651
652
653
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
654
655
656
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
657
658
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
659
	      break;
660
661
662
	    }
	  case unop::G:
	    {
663
664
665
666
667
668
669
670
671
672
673
674
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
675
	      const formula* child = node->child();
676
	      int x = dict_.register_next_variable(node);
677
678
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
679
	      break;
680
681
682
	    }
	  case unop::Not:
	    {
683
	      // r(!y) = !r(y)
684
	      res_ = bdd_not(recurse(node->child()));
685
	      break;
686
687
688
	    }
	  case unop::X:
	    {
689
	      // r(Xy) = Next[y]
690
691
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
692
	      break;
693
	    }
694
695
	  case unop::Finish:
	    assert(!"unsupported operator");
696
697
698
699
	    break;
	  case unop::Star:
	    assert(!"Not an LTL operator");
	    break;
700
701
702
703
704
705
	  }
      }

      void
      visit(const binop* node)
      {
706
	binop::type op = node->op();
707

708
	switch (op)
709
	  {
710
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
711
	  case binop::Xor:
712
713
714
715
716
717
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_xor);
	      return;
	    }
718
	  case binop::Implies:
719
720
721
722
723
724
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_imp);
	      return;
	    }
725
	  case binop::Equiv:
726
727
728
729
730
731
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_biimp);
	      return;
	    }
732
733
	  case binop::U:
	    {
734
735
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
736
737
738
739
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
740
	      break;
741
	    }
742
743
	  case binop::W:
	    {
744
745
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
746
747
748
	      // r(f1 W f2) = r(f2) + r(f1)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (f1 & bdd_ithvar(x));
749
	      break;
750
	    }
751
752
	  case binop::R:
	    {
753
754
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
755
756
757
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
758
	      break;
759
	    }
760
761
	  case binop::M:
	    {
762
763
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
764
765
766
767
	      // r(f1 M f2) = r(f1)r(f2) + a(f1)r(f2)r(X(f1 M f2))
	      int a = dict_.register_a_variable(node->first());
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (bdd_ithvar(a) & f2 & bdd_ithvar(x));
768
	      break;
769
	    }
770
771
772
	  case binop::EConcatMarked:
	    has_marked_ = true;
	    /* fall through */
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
773
	  case binop::EConcat:
774
775
776
777
778
779
	    rat_seen_ = true;
	    {
	      bdd f2 = recurse(node->second());
	      ratexp_trad_visitor v(dict_);
	      node->first()->accept(v);
	      bdd f1 = v.result();
780
	      res_ = bddfalse;
781
782
783
784
785
786
787

	      if (mark_all_)
		{
		  op = binop::EConcatMarked;
		  has_marked_ = true;
		}

788
	      if (exprop_)
789
		{
790
791
792
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
793
		    {
794
795
796
797
798
799
800
801
802
803
804
		      bdd label = bdd_satoneset(all_props, var_set,
						bddtrue);
		      all_props -= label;

		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));

		      const formula* dest2 =
			binop::instance(op, dest, node->second()->clone());

805
806
		      if (dest2 != constant::false_instance())
			{
807
			  int x = dict_.register_next_variable(dest2);
808
809
810
811
812
813
814
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		      if (constant_term_as_bool(dest))
			res_ |= label & f2;
		    }
		}
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
	      else
		{
		  // Recognize f2 on transitions going to destinations
		  // that accept the empty word.
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & f2;
			}
		      else
			{
			  formula* dest2 = binop::instance(op, dest,
						  node->second()->clone());
			  if (dest2 != constant::false_instance())
			    {
			      int x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(dest))
			    res_ |= label & f2;
			}
		    }
		}
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
	    }
	    break;

	  case binop::UConcat:
	    {
	      bdd f2 = recurse(node->second());
	      ratexp_trad_visitor v(dict_);
	      node->first()->accept(v);
	      bdd f1 = v.result();

	      // Transitions going to destinations accepting the empty
	      // word should recognize f2, and the automaton should be
	      // understood as universal.
	      minato_isop isop(f1);
	      bdd cube;
	      res_ = bddtrue;
	      while ((cube = isop.next()) != bddfalse)
		{
		  bdd label = bdd_exist(cube, dict_.next_set);
		  bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		  formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
		  formula* dest2;
		  bdd udest;

		  dest2 = binop::instance(op, dest,
					  node->second()->clone());
		  udest = bdd_ithvar(dict_.register_next_variable(dest2));

		  if (constant_term_as_bool(dest))
		    udest &= f2;

		  dest2->destroy();
		  label = bdd_apply(label, udest, bddop_imp);

		  res_ &= label;
		}
	    }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
883
	    break;
884
885
886
	  }
      }

887
888
889
890
891
892
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

893
894
895
896
897
898
      void
      visit(const multop* node)
      {
	switch (node->op())
	  {
	  case multop::And:
899
900
901
902
903
904
905
906
907
908
909
910
	    {
	      res_ = bddtrue;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		{
		  bdd res = recurse(node->nth(n));
		  //std::cerr << "=== in And" << std::endl;
		  //trace_ltl_bdd(dict_, res);
		  res_ &= res;
		}
	      break;
	    }
911
	  case multop::Or:
912
913
914
915
916
917
918
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		res_ |= recurse(node->nth(n));
	      break;
	    }
919
	  case multop::Concat:
920
	  case multop::Fusion:
921
922
	    assert(!"Not an LTL operator");
	    break;
923
	  }
924

925
926
927
928
929
      }

      bdd
      recurse(const formula* f)
      {
930
	ltl_trad_visitor v(dict_, mark_all_, exprop_);
931
	f->accept(v);
932
933
	rat_seen_ |= v.has_rational();
	has_marked_ |= v.has_marked();
934
935
936
937
938
939
940
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
941
942
943
      bool rat_seen_;
      bool has_marked_;
      bool mark_all_;
944
      bool exprop_;
945
946
    };

947

948
949
    // Check whether a formula has a R, W, or G operator at its
    // top-level (preceding logical operators do not count).
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
1000
	  case binop::M:
1001
1002
	    return;
	  case binop::R:
1003
	  case binop::W:
1004
1005
	    res_ = true;
	    return;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1006
1007
	  case binop::UConcat:
	  case binop::EConcat:
1008
	  case binop::EConcatMarked:
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1009
	    node->second()->accept(*this);
1010
	    // FIXME: we might need to add Acc[1]
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1011
	    return;
1012
1013
1014
1015
1016
	  }
	/* Unreachable code.  */
	assert(0);
      }

1017
1018
1019
1020
1021
1022
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
1045
1046
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
1047
1048
1049
1050
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
1051
	pfl_[f] = rel;
1052
1053
1054
1055
	return rel;
      }

    private:
1056
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
1057
      pfl_map pfl_;
1058
1059
    };

1060
1061
1062
    class formula_canonizer
    {
    public:
1063
      formula_canonizer(translate_dict& d,
1064
1065
			bool fair_loop_approx, bdd all_promises, bool exprop)
	: v_(d, false, exprop),
1066
	  fair_loop_approx_(fair_loop_approx),
1067
1068
	  all_promises_(all_promises),
	  d_(d)
1069
1070
1071
1072
1073
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
1074

1075
1076
      ~formula_canonizer()
      {
1077
	while (!f2b_.empty())
1078
	  {
1079
1080
1081
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
1082
	    f->destroy();
1083
	  }
1084
1085
      }

1086
1087
1088
1089
1090
1091
1092
1093
      struct translated
      {
	bdd symbolic;
	bool has_rational:1;
	bool has_marked:1;
      };

      const translated&
1094
      translate(const formula* f, bool* new_flag = 0)
1095
1096
1097
1098
1099
1100
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

1101
1102
1103
	if (new_flag)
	  *new_flag = true;

1104
	// Perform the actual translation.
1105
	v_.reset(!has_mark(f));
1106
	f->accept(v_);
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
	translated t;
	t.symbolic = v_.result();
	t.has_rational = v_.has_rational();
	t.has_marked = v_.has_marked();

//	std::cerr << "-----" << std::endl;
//	std::cerr << "Formula: " << to_string(f) << std::endl;
//	std::cerr << "Rational: " << t.has_rational << std::endl;
//	std::cerr << "Marked: " << t.has_marked << std::endl;
//	std::cerr << "Mark all: " << !has_mark(f) << std::endl;
//	std::cerr << "Transitions:" << std::endl;
//	trace_ltl_bdd(v_.get_dict(), t.symbolic);

	if (t.has_rational)
	  {
	    bdd res = bddfalse;

	    minato_isop isop(t.symbolic);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
	      {
		bdd label = bdd_exist(cube, d_.next_set);
		bdd dest_bdd = bdd_existcomp(cube, d_.next_set);
		formula* dest =
		  d_.conj_bdd_to_formula(dest_bdd);

		// Handle a Miyano-Hayashi style unrolling for
		// rational operators.  Marked nodes correspond to
		// subformulae in the Miyano-Hayashi set.
		if (simplify_mark(dest))
		  {
		    // Make the promise that we will exit marked sets.
		    int a =
		      d_.register_a_variable(constant::true_instance());
		    label &= bdd_ithvar(a);
		  }
		else
		  {
		    // We have left marked operators, but still
		    // have other rational operator to check.
		    // Start a new marked cycle.
		    formula* dest2 = mark_concat_ops(dest);
		    dest->destroy();
		    dest = dest2;
		  }
		// Note that simplify_mark may have changed dest.
		dest_bdd = bdd_ithvar(d_.register_next_variable(dest));
		dest->destroy();
		res |= label & dest_bdd;
	      }
	    t.symbolic = res;
//	    std::cerr << "Marking rewriting:" << std::endl;
//	    trace_ltl_bdd(v_.get_dict(), t.symbolic);
	  }
1161
1162
1163
1164
1165
1166
1167
1168
1169

	// Apply the fair-loop approximation if requested.
	if (fair_loop_approx_)
	  {
	    // If the source cannot possibly be part of a fair
	    // loop, make all possible promises.
	    if (fair_loop_approx_
		&& f != constant::true_instance()
		&& !pflc_.check(f))
1170
	      t.symbolic &= all_promises_;
1171
1172
	  }

1173
	// Register the reverse mapping if it is not already done.
1174
1175
1176
1177
	if (b2f_.find(t.symbolic) == b2f_.end())
	  b2f_[t.symbolic] = f;

	return f2b_[f->clone()] = t;
1178
1179
1180
1181
1182
      }

      const formula*
      canonize(const formula* f)
      {
1183
	bool new_variable = false;
1184
	bdd b = translate(f, &new_variable).symbolic;
1185
1186

	bdd_to_formula_map::iterator i = b2f_.find(b);
1187
1188
	// Since we have just translated the formula, it is
	// necessarily in b2f_.
1189
1190
1191
	assert(i != b2f_.end());

	if (i->second != f)
1192
	  {
1193
	    // The translated bdd maps to an already seen formula.
1194
	    f->destroy();
1195
	    f = i->second->clone();
1196
	  }
1197
	return f;
1198
1199
      }

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;
      bdd_to_formula_map b2f_;
      // Map a representation of successors to a canonical formula.
      // We do this because many formulae (such as `aR(bRc)' and
      // `aR(bRc).(bRc)') are equivalent, and are trivially identified
      // by looking at the set of successors.
1211
      typedef std::map<const formula*, translated> formula_to_bdd_map;
1212
      formula_to_bdd_map f2b_;
1213
1214
1215
1216

      possible_fair_loop_checker pflc_;
      bool fair_loop_approx_;
      bdd all_promises_;
1217
      translate_dict& d_;
1218
1219
1220
1221
1222
    };

  }

  typedef std::map<bdd, bdd, bdd_less_than> prom_map;
1223
  typedef Sgi::hash_map<const formula*, prom_map, formula_ptr_hash> dest_map;
1224
1225
1226
1227

  static void
  fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
  {
1228
    bdd conds = bdd_existcomp(label, d.var_set);
1229
1230
    bdd promises = bdd_existcomp(label, d.a_set);

1231
1232
1233
1234
1235
1236
1237
1238
    dest_map::iterator i = dests.find(dest);
    if (i == dests.end())
      {
	dests[dest][promises] = conds;
      }
    else
      {
	i->second[promises] |= conds;
1239
	dest->destroy();
1240
1241
1242
1243
      }
  }


Pierre PARUTTO's avatar
Pierre PARUTTO committed
1244
  tgba_explicit_formula*
1245
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
1246
		 bool exprop, bool symb_merge, bool branching_postponement,
1247
		 bool fair_loop_approx, const atomic_prop_set* unobs,
1248
		 int reduce_ltl)
1249
1250
1251
1252
1253
  {
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
1254
1255
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
1256
    f1->destroy();
1257

1258
1259
1260
1261
    // Simplify the formula, if requested.
    if (reduce_ltl)
      {
	formula* tmp = reduce(f2, reduce_ltl);
1262
	f2->destroy();
1263
1264
1265
	f2 = tmp;
      }

1266
1267
    typedef std::set<const formula*, formula_ptr_less_than> set_type;
    set_type formulae_to_translate;
1268

1269
    translate_dict d(dict);
1270

1271
1272
    // Compute the set of all promises that can possibly occurre
    // inside the formula.
1273
    bdd all_promises = bddtrue;
1274
    if (fair_loop_approx || unobs)
1275
1276
1277
1278
1279
1280
      {
	ltl_promise_visitor pv(d);
	f2->accept(pv);
	all_promises = pv.result();
      }

1281
    formula_canonizer fc(d, fair_loop_approx, all_promises, exprop);
1282

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
    // These are used when atomic propositions are interpreted as
    // events.  There are two kinds of events: observable events are
    // those used in the formula, and unobservable events or other
    // events that can occur at anytime.  All events exclude each
    // other.
    bdd observable_events = bddfalse;
    bdd unobservable_events = bddfalse;
    if (unobs)
      {
	bdd neg_events = bddtrue;
1293
1294
	std::auto_ptr<atomic_prop_set> aps(atomic_prop_collect(f));
	for (atomic_prop_set::const_iterator i = aps->begin();
1295
1296
1297
1298
1299
1300
1301
1302
	     i != aps->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    observable_events = (observable_events & neg) | (neg_events & pos);
	    neg_events &= neg;
	  }
1303
	for (atomic_prop_set::const_iterator i = unobs->begin();
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
	     i != unobs->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    unobservable_events = ((unobservable_events & neg)
				   | (neg_events & pos));
	    observable_events &= neg;
	    neg_events &= neg;
	  }
      }
    bdd all_events = observable_events | unobservable_events;

1317

1318
    tgba_explicit_formula* a = new tgba_explicit_formula(dict);
1319

1320
1321
1322
1323
    // This is in case the initial state is equivalent to true...
    if (symb_merge)
      f2 = const_cast<formula*>(fc.canonize(f2));

1324
1325
    formulae_to_translate.insert(f2);
    a->set_init_state(f2);
1326
1327
1328
1329

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
1330
	const formula* now = *formulae_to_translate.begin();
1331
1332
1333
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
1334
1335
	const formula_canonizer::translated& t = fc.translate(now);
	bdd res = t.symbolic;
1336

1337
1338
1339
1340
	// Handle exclusive events.
	if (unobs)
	  {
	    res &= observable_events;
1341
	    int n = d.register_next_variable(now);
1342
1343
1344
	    res |= unobservable_events & bdd_ithvar(n) & all_promises;
	  }

1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
	// We used to factor only Next and A variables while computing
	// prime implicants, with
	//    minato_isop isop(res, d.next_set & d.a_set);
	// in order to obtain transitions with formulae of atomic
	// proposition directly, but unfortunately this led to strange
	// factorizations.  For instance f U g was translated as
	//     r(f U g) = g + a(g).r(X(f U g)).(f + g)
	// instead of just
	//     r(f U g) = g + a(g).r(X(f U g)).f
	// Of course both formulae are logically equivalent, but the
	// latter is "more deterministic" than the former, so it should
	// be preferred.
	//
	// Therefore we now factor all variables.  This may lead to more
	// transitions than necessary (e.g.,  r(f + g) = f + g  will be
1360
1361
1362
	// coded as two transitions), but we later merge all transitions
	// with same source/destination and acceptance conditions.  This
	// is the goal of the `dests' hash.
1363
	//
1364
	// Note that this is still not optimal.  For instance it is
1365
	// better to encode `f U g' as
1366
	//     r(f U g) = g + a(g).r(X(f U g)).f.!g
1367
1368
1369
1370
	// because that leads to a deterministic automaton.  In order
	// to handle this, we take the conditions of any transition
	// going to true (it's `g' here), and remove it from the other
	// transitions.
1371
1372
1373
	//
	// In `exprop' mode, considering all possible combinations of
	// outgoing propositions generalizes the above trick.
1374
	dest_map dests;
1375

1376
	// Compute all outgoing arcs.
1377
1378
1379
1380
1381

	// If EXPROP is set, we will refine the symbolic
	// representation of the successors for all combinations of
	// the atomic properties involved in the formula.
	// VAR_SET is the set of these properties.
1382
	bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
1383
1384
1385
1386
1387
	// ALL_PROPS is the combinations we have yet to consider.
	// We used to start with `all_props = bddtrue', but it is
	// more efficient to start with the set of all satisfiable
	// variables combinations.
	bdd all_props = bdd_existcomp(res, d.var_set);
1388
	while (all_props != bddfalse)
1389
	  {
1390
1391
1392
	    bdd one_prop_set = bddtrue;
	    if (exprop)
	      one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
1393
	    all_props -= one_prop_set;
1394

1395
	    typedef std::map<bdd, const formula*, bdd_less_than> succ_map;
1396
1397
	    succ_map succs;

1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
	    // Compute prime implicants.
	    // The reason we use prime implicants and not bdd_satone()
	    // is that we do not want to get any negation in front of Next
	    // or Acc variables.  We wouldn't know what to do with these.
	    // We never added negations in front of these variables when
	    // we built the BDD, so prime implicants will not "invent" them.
	    //
	    // FIXME: minato_isop is quite expensive, and I (=adl)
	    // don't think we really care that much about getting the
	    // smalled sum of products that minato_isop strives to
	    // compute.  Given that Next and Acc variables should
	    // always be positive, maybe there is a faster way to
	    // compute the successors?  E.g. using bdd_satone() and
	    // ignoring negated Next and Acc variables.
1412
1413
1414
	    minato_isop isop(res & one_prop_set);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
1415
	      {
1416
		bdd label = bdd_exist(cube, d.next_set);
1417
		bdd dest_bdd = bdd_existcomp(cube, d.next_set);
1418
1419
		const formula* dest = d.conj_bdd_to_formula(dest_bdd);

1420
1421
1422
1423
		// Simplify the formula, if requested.
		if (reduce_ltl)
		  {
		    formula* tmp = reduce(dest, reduce_ltl);
1424
		    dest->destroy();
1425
1426
1427
1428
1429
1430
		    dest = tmp;
		    // Ignore the arc if the destination reduces to false.
		    if (dest == constant::false_instance())
		      continue;
		  }

1431
1432
1433
1434
		// If we already know a state with the same
		// successors, use it in lieu of the current one.
		if (symb_merge)
		  dest = fc.canonize(dest);
1435

1436
1437
1438
1439
1440
1441
		// If we are not postponing the branching, we can
		// declare the outgoing transitions immediately.
		// Otherwise, we merge transitions with identical
		// label, and declare the outgoing transitions in a
		// second loop.
		if (!branching_postponement)
1442
		  {
1443
		    fill_dests(d, dests, label, dest);
1444
1445
1446
		  }
		else
		  {
1447
1448
1449
1450
		    succ_map::iterator si = succs.find(label);
		    if (si == succs.end())
		      succs[label] = dest;
		    else
1451
1452
1453
1454
		      si->second =
			multop::instance(multop::Or,
					 const_cast<formula*>(si->second),
					 const_cast<formula*>(dest));
1455
1456
		  }
	      }
1457
1458
1459
	    if (branching_postponement)
	      for (succ_map::const_iterator si = succs.begin();
		   si != succs.end(); ++si)
1460
		fill_dests(d, dests, si->first, si->second);
1461
	  }
1462

1463
	// Check for an arc going to 1 (True).  Register it first, that
1464
	// way it will be explored before others during model checking.
1465
	dest_map::const_iterator i = dests.find(constant::true_instance());
1466
	// COND_FOR_TRUE is the conditions of the True arc, so we