minimize.cc 18.3 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
3
// Copyright (C) 2010, 2011, 2012, 2013, 2014 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19

20
21
22
23
24
25
26
27
28

//#define TRACE

#ifdef TRACE
#  define trace std::cerr
#else
#  define trace while (0) std::cerr
#endif

29
#include <queue>
30
31
32
#include <deque>
#include <set>
#include <list>
33
#include <vector>
34
#include <sstream>
35
36
37
#include "minimize.hh"
#include "ltlast/allnodes.hh"
#include "misc/hash.hh"
38
#include "misc/bddlt.hh"
39
#include "tgba/tgbaproduct.hh"
40
#include "tgba/wdbacomp.hh"
41
#include "tgbaalgos/powerset.hh"
42
43
44
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/sccfilter.hh"
45
#include "tgbaalgos/scc.hh"
46
#include "tgbaalgos/ltl2tgba_fm.hh"
47
#include "tgbaalgos/bfssteps.hh"
48
#include "tgbaalgos/isdet.hh"
49
#include "tgbaalgos/dtgbacomp.hh"
50
51
52

namespace spot
{
53
54
  // FIXME: do we really want to use unordered_set instead of set here?
  // This calls for benchmarking.
55
56
57
58
  typedef std::unordered_set<const state*,
			     state_ptr_hash, state_ptr_equal> hash_set;
  typedef std::unordered_map<const state*, unsigned,
			     state_ptr_hash, state_ptr_equal> hash_map;
59

60
61
62
63
64
  namespace
  {
    static std::ostream&
    dump_hash_set(const hash_set* hs, const tgba* aut, std::ostream& out)
    {
65
      out << '{';
66
67
68
69
70
71
      const char* sep = "";
      for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
	{
	  out << sep << aut->format_state(*i);
	  sep = ", ";
	}
72
      out << '}';
73
74
75
76
77
78
79
80
81
82
83
84
      return out;
    }

    static std::string
    format_hash_set(const hash_set* hs, const tgba* aut)
    {
      std::ostringstream s;
      dump_hash_set(hs, aut, s);
      return s.str();
    }
  }

85
  // Find all states of an automaton.
86
  void build_state_set(const tgba* a, hash_set* seen)
87
  {
Felix Abecassis's avatar
Felix Abecassis committed
88
    std::queue<const state*> tovisit;
89
    // Perform breadth-first traversal.
Felix Abecassis's avatar
Felix Abecassis committed
90
    const state* init = a->get_init_state();
91
    tovisit.push(init);
92
    seen->insert(init);
93
94
    while (!tovisit.empty())
      {
95
96
97
98
	const state* src = tovisit.front();
	tovisit.pop();

	for (auto sit: a->succ(src))
99
	  {
100
101
102
103
104
105
106
107
108
109
	    const state* dst = sit->current_state();
	    // Is it a new state ?
	    if (seen->find(dst) == seen->end())
	      {
		// Register the successor for later processing.
		tovisit.push(dst);
		seen->insert(dst);
	      }
	    else
	      dst->destroy();
110
	  }
111
112
113
114
115
      }
  }

  // From the base automaton and the list of sets, build the minimal
  // resulting automaton
116
117
118
  tgba_digraph* build_result(const tgba* a,
			     std::list<hash_set*>& sets,
			     hash_set* final)
119
  {
120
121
122
123
124
125
    auto dict = a->get_dict();
    auto res = new tgba_digraph(dict);
    dict->register_all_variables_of(a, res);
    dict->unregister_all_typed_variables(bdd_dict::acc, res);
    res->set_bprop(tgba_digraph::StateBasedAcc);

126
127
128
129
130
131
    // For each set, create a state in the resulting automaton.
    // For a state s, state_num[s] is the number of the state in the minimal
    // automaton.
    hash_map state_num;
    std::list<hash_set*>::iterator sit;
    for (sit = sets.begin(); sit != sets.end(); ++sit)
132
133
134
      {
	hash_set::iterator hit;
	hash_set* h = *sit;
135
	unsigned num = res->new_state();
136
137
138
	for (hit = h->begin(); hit != h->end(); ++hit)
	  state_num[*hit] = num;
      }
139

140
141
    // For each transition in the initial automaton, add the corresponding
    // transition in res.
142
    bdd allacc = bddfalse;
143
    if (!final->empty())
144
145
146
147
148
149
150
151
      {
	int accvar =
	  dict->register_acceptance_variable(ltl::constant::true_instance(),
					     res);
	allacc = bdd_ithvar(accvar);
	res->set_acceptance_conditions(allacc);
      }

152
    for (sit = sets.begin(); sit != sets.end(); ++sit)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
      {
	hash_set::iterator hit;
	hash_set* h = *sit;

	// Pick one state.
	const state* src = *h->begin();
	unsigned src_num = state_num[src];
	bool accepting = (final->find(src) != final->end());

	// Connect it to all destinations.
	for (auto succit: a->succ(src))
	  {
	    const state* dst = succit->current_state();
	    hash_map::const_iterator i = state_num.find(dst);
	    dst->destroy();
	    if (i == state_num.end()) // Ignore useless destinations.
	      continue;
170
	    bdd acc = bddfalse;
171
	    if (accepting)
172
173
174
	      acc = allacc;
	    res->new_transition(src_num, i->second,
				succit->current_condition(), acc);
175
176
	  }
      }
177
    res->merge_transitions();
178
179
180
181
182
183
184
    if (res->num_states() > 0)
      {
	const state* init_state = a->get_init_state();
	unsigned init_num = state_num[init_state];
	init_state->destroy();
	res->set_init_state(init_num);
      }
185
186
187
    return res;
  }

188
189
190
191
192
193
194
195
196
197
198

  namespace
  {

    struct wdba_search_acc_loop : public bfs_steps
    {
      wdba_search_acc_loop(const tgba* det_a,
			   unsigned scc_n, scc_map& sm,
			   power_map& pm, const state* dest)
	: bfs_steps(det_a), scc_n(scc_n), sm(sm), pm(pm), dest(dest)
      {
199
	seen(dest);
200
201
202
203
204
      }

      virtual const state*
      filter(const state* s)
      {
205
	s = seen(s);
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
	if (sm.scc_of_state(s) != scc_n)
	  return 0;
	return s;
      }

      virtual bool
      match(tgba_run::step&, const state* to)
      {
	return to == dest;
      }

      unsigned scc_n;
      scc_map& sm;
      power_map& pm;
      const state* dest;
221
      state_unicity_table seen;
222
223
224
225
    };


    bool
226
    wdba_scc_is_accepting(const tgba_digraph* det_a, unsigned scc_n,
227
228
			  const tgba* orig_a, scc_map& sm, power_map& pm)
    {
229

230
231
232
233
234
235
236
237
238
239
240
      // Get some state from the SCC #n.
      const state* start = sm.one_state_of(scc_n)->clone();

      // Find a loop around START in SCC #n.
      wdba_search_acc_loop wsal(det_a, scc_n, sm, pm, start);
      tgba_run::steps loop;
      const state* reached = wsal.search(start, loop);
      assert(reached == start);
      (void)reached;

      // Build an automaton representing this loop.
241
      tgba_digraph loop_a(det_a->get_dict());
242
243
      tgba_run::steps::const_iterator i;
      int loop_size = loop.size();
244
      loop_a.new_states(loop_size);
245
246
247
      int n;
      for (n = 1, i = loop.begin(); n < loop_size; ++n, ++i)
	{
248
	  loop_a.new_transition(n - 1, n, i->label);
249
	  i->s->destroy();
250
251
	}
      assert(i != loop.end());
252
      loop_a.new_transition(n - 1, 0, i->label);
253
      i->s->destroy();
254
255
      assert(++i == loop.end());

256
      loop_a.set_init_state(0U);
257
258
259
260
261
262
      const state* loop_a_init = loop_a.get_init_state();

      // Check if the loop is accepting in the original automaton.
      bool accepting = false;

      // Iterate on each original state corresponding to start.
263
264
265
      const power_map::power_state& ps =
	pm.states_of(det_a->state_number(start));
      for (auto& it: ps)
266
267
268
	{
	  // Contrustruct a product between
	  // LOOP_A, and ORIG_A starting in *IT.
269
	  // FIXME: This could be sped up a lot!
270
	  tgba* p = new tgba_product_init(&loop_a, orig_a, loop_a_init, it);
271
272
273
274
275
	  emptiness_check* ec = couvreur99(p);
	  emptiness_check_result* res = ec->check();
	  delete res;
	  delete ec;
	  delete p;
276
277
278
279
280
281

	  if (res)
	    {
	      accepting = true;
	      break;
	    }
282
283
	}

284
      loop_a_init->destroy();
285
286
287
288
289
      return accepting;
    }

  }

290
291
  tgba_digraph* minimize_dfa(const tgba_digraph* det_a,
			     hash_set* final, hash_set* non_final)
292
  {
293
294
295
    typedef std::list<hash_set*> partition_t;
    partition_t cur_run;
    partition_t next_run;
296

297
298
    // The list of equivalent states.
    partition_t done;
299

300
    hash_map state_set_map;
301

302
303
    // Size of det_a
    unsigned size = final->size() + non_final->size();
304
305
    // Use bdd variables to number sets.  set_num is the first variable
    // available.
306
307
    unsigned set_num =
      det_a->get_dict()->register_anonymous_variables(size, det_a);
308
309
310
311
312
313

    std::set<int> free_var;
    for (unsigned i = set_num; i < set_num + size; ++i)
      free_var.insert(i);
    std::map<int, int> used_var;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
314
315
    hash_set* final_copy;

316
317
318
319
320
321
    if (!final->empty())
      {
	unsigned s = final->size();
	used_var[set_num] = s;
	free_var.erase(set_num);
	if (s > 1)
322
	  cur_run.push_back(final);
323
324
325
326
327
	else
	  done.push_back(final);
	for (hash_set::const_iterator i = final->begin();
	     i != final->end(); ++i)
	  state_set_map[*i] = set_num;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
328
329

	final_copy = new hash_set(*final);
330
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
331
332
333
334
335
    else
      {
	final_copy = final;
      }

336
337
338
339
340
341
342
    if (!non_final->empty())
      {
	unsigned s = non_final->size();
	unsigned num = set_num + 1;
	used_var[num] = s;
	free_var.erase(num);
	if (s > 1)
343
	  cur_run.push_back(non_final);
344
345
346
347
348
349
	else
	  done.push_back(non_final);
	for (hash_set::const_iterator i = non_final->begin();
	     i != non_final->end(); ++i)
	  state_set_map[*i] = num;
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
350
351
352
353
    else
      {
	delete non_final;
      }
354

355
356
    // A bdd_states_map is a list of formulae (in a BDD form) associated with a
    // destination set of states.
357
358
359
360
361
    typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;

    bool did_split = true;

    while (did_split)
362
      {
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
	did_split = false;
	while (!cur_run.empty())
	  {
	    // Get a set to process.
	    hash_set* cur = cur_run.front();
	    cur_run.pop_front();

	    trace << "processing " << format_hash_set(cur, det_a) << std::endl;

	    hash_set::iterator hi;
	    bdd_states_map bdd_map;
	    for (hi = cur->begin(); hi != cur->end(); ++hi)
	      {
		const state* src = *hi;
		bdd f = bddfalse;
378
		for (auto si: det_a->succ(src))
379
380
		  {
		    const state* dst = si->current_state();
381
		    hash_map::const_iterator i = state_set_map.find(dst);
382
		    dst->destroy();
383
384
385
386
387
388
389
390
391
		    if (i == state_set_map.end())
		      // The destination state is not in our
		      // partition.  This can happen if the initial
		      // FINAL and NON_FINAL supplied to the algorithm
		      // do not cover the whole automaton (because we
		      // want to ignore some useless states).  Simply
		      // ignore these states here.
		      continue;
		    f |= (bdd_ithvar(i->second) & si->current_condition());
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
		  }

		// Have we already seen this formula ?
		bdd_states_map::iterator bsi = bdd_map.find(f);
		if (bsi == bdd_map.end())
		  {
		    // No, create a new set.
		    hash_set* new_set = new hash_set;
		    new_set->insert(src);
		    bdd_map[f] = new_set;
		  }
		else
		  {
		    // Yes, add the current state to the set.
		    bsi->second->insert(src);
		  }
	      }

	    bdd_states_map::iterator bsi = bdd_map.begin();
	    if (bdd_map.size() == 1)
	      {
		// The set was not split.
		trace << "set " << format_hash_set(bsi->second, det_a)
		      << " was not split" << std::endl;
		next_run.push_back(bsi->second);
	      }
	    else
	      {
420
		did_split = true;
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
		for (; bsi != bdd_map.end(); ++bsi)
		  {
		    hash_set* set = bsi->second;
		    // Free the number associated to these states.
		    unsigned num = state_set_map[*set->begin()];
		    assert(used_var.find(num) != used_var.end());
		    unsigned left = (used_var[num] -= set->size());
		    // Make sure LEFT does not become negative (hence bigger
		    // than SIZE when read as unsigned)
		    assert(left < size);
		    if (left == 0)
		      {
			used_var.erase(num);
			free_var.insert(num);
		      }
		    // Pick a free number
		    assert(!free_var.empty());
		    num = *free_var.begin();
		    free_var.erase(free_var.begin());
		    used_var[num] = set->size();
		    for (hash_set::iterator hit = set->begin();
			 hit != set->end(); ++hit)
		      state_set_map[*hit] = num;
		    // Trivial sets can't be splitted any further.
		    if (set->size() == 1)
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " is minimal" << std::endl;
			done.push_back(set);
		      }
		    else
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " should be processed further" << std::endl;
			next_run.push_back(set);
		      }
		  }
	      }
	    delete cur;
	  }
	if (did_split)
	  trace << "splitting did occur during this pass." << std::endl;
	else
	  trace << "splitting did not occur during this pass." << std::endl;
	std::swap(cur_run, next_run);
466
      }
467
468
469
470
471
472

    done.splice(done.end(), cur_run);

#ifdef TRACE
    trace << "Final partition: ";
    for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
473
      trace << format_hash_set(*i, det_a) << ' ';
474
475
    trace << std::endl;
#endif
Felix Abecassis's avatar
Felix Abecassis committed
476
477

    // Build the result.
478
    auto* res = build_result(det_a, done, final_copy);
Felix Abecassis's avatar
Felix Abecassis committed
479
480
481
482

    // Free all the allocated memory.
    delete final_copy;
    hash_map::iterator hit;
483
484
485
    for (hit = state_set_map.begin(); hit != state_set_map.end();)
      {
	hash_map::iterator old = hit++;
486
	old->first->destroy();
487
      }
Felix Abecassis's avatar
Felix Abecassis committed
488
489
490
491
492
    std::list<hash_set*>::iterator it;
    for (it = done.begin(); it != done.end(); ++it)
      delete *it;
    delete det_a;

493
494
    return res;
  }
495

496

497
  tgba_digraph* minimize_monitor(const tgba* a)
498
499
  {
    hash_set* final = new hash_set;
500
    hash_set* non_final = new hash_set;
501
    tgba_digraph* det_a;
502
503
504
505
506

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);
    }
507
508

    // non_final contain all states.
509
    // final is empty: there is no acceptance condition
510
    build_state_set(det_a, non_final);
511
512

    return minimize_dfa(det_a, final, non_final);
513
514
  }

515
  tgba_digraph* minimize_wdba(const tgba* a)
516
517
  {
    hash_set* final = new hash_set;
518
519
    hash_set* non_final = new hash_set;

520
    tgba_digraph* det_a;
521
522
523
524
525

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);

526
527
528
529
530
      // For each SCC of the deterministic automaton, determine if it
      // is accepting or not.

      // This corresponds to the algorithm in Fig. 1 of "Efficient
      // minimization of deterministic weak omega-automata" written by
531
      // Christof Löding and published in Information Processing
532
533
534
535
536
      // Letters 79 (2001) pp 105--109.

      // We also keep track of whether an SCC is useless
      // (i.e., it is not the start of any accepting word).

537
538
539
      scc_map sm(det_a);
      sm.build_map();
      unsigned scc_count = sm.scc_count();
540
541
      // SCC that have been marked as useless.
      std::vector<bool> useless(scc_count);
542
543
544
545
546
547
548
      // The "color".  Even number correspond to
      // accepting SCCs.
      std::vector<unsigned> d(scc_count);

      // An even number larger than scc_count.
      unsigned k = (scc_count | 1) + 1;

549
      // SCC are numbered in topological order
550
      // (but in the reverse order as Löding's)
551
      for (unsigned m = 0; m < scc_count; ++m)
552
	{
553
	  bool is_useless = true;
554
555
	  bool transient = sm.trivial(m);
	  const scc_map::succ_type& succ = sm.succ(m);
556

557
	  if (transient && succ.empty())
558
	    {
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
	      // A trivial SCC without successor is useless.
	      useless[m] = true;
	      d[m] = k - 1;
	      continue;
	    }

	  // Compute the minimum color l of the successors.
	  // Also SCCs are useless if all their successor are
	  // useless.
	  unsigned l = k;
	  for (scc_map::succ_type::const_iterator j = succ.begin();
	       j != succ.end(); ++j)
	    {
	      is_useless &= useless[j->first];
	      unsigned dj = d[j->first];
	      if (dj < l)
		l = dj;
	    }

	  if (transient)
	    {
	      d[m] = l;
581
582
583
584
	    }
	  else
	    {
	      // Regular SCCs are accepting if any of their loop
585
586
	      // corresponds to an accepted word in the original
	      // automaton.
587
	      if (wdba_scc_is_accepting(det_a, m, a, sm, pm))
588
589
		{
		  is_useless = false;
590
		  d[m] = l & ~1; // largest even number inferior or equal
591
592
593
		}
	      else
		{
594
		  d[m] = (l - 1) | 1; // largest odd number inferior or equal
595
		}
596
	    }
597

598
	  useless[m] = is_useless;
599

600
601
	  if (!is_useless)
	    {
602
	      hash_set* dest_set = (d[m] & 1) ? non_final : final;
603
	      const std::list<const state*>& l = sm.states_of(m);
604
605
606
607
	      std::list<const state*>::const_iterator il;
	      for (il = l.begin(); il != l.end(); ++il)
		dest_set->insert((*il)->clone());
	    }
608
609
610
	}
    }

611
    return minimize_dfa(det_a, final, non_final);
612
613
  }

614
615
  tgba_digraph*
  minimize_obligation(const tgba_digraph* aut_f,
616
		      const ltl::formula* f, const tgba_digraph* aut_neg_f,
617
		      bool reject_bigger)
618
  {
619
    auto min_aut_f = minimize_wdba(aut_f);
620

621
622
623
    if (reject_bigger)
      {
	// Abort if min_aut_f has more states than aut_f.
624
	unsigned orig_states = aut_f->num_states();
625
	if (orig_states < min_aut_f->num_states())
626
627
	  {
	    delete min_aut_f;
628
	    return const_cast<tgba_digraph*>(aut_f);
629
630
631
	  }
      }

632
633
634
635
636
    // if f is a syntactic obligation formula, the WDBA minimization
    // must be correct.
    if (f && f->is_syntactic_obligation())
      return min_aut_f;

637
    // If aut_f is a guarantee automaton, the WDBA minimization must be
638
    // correct.
639
    if (is_guarantee_automaton(aut_f))
640
      return min_aut_f;
641
642
643
644
645
646

    const tgba* to_free = 0;

    // Build negation automaton if not supplied.
    if (!aut_neg_f)
      {
647
648
649
650
651
652
653
654
655
656
	if (f)
	  {
	    // If we know the formula, simply build the automaton for
	    // its negation.
	    const ltl::formula* neg_f =
	      ltl::unop::instance(ltl::unop::Not, f->clone());
	    aut_neg_f = ltl_to_tgba_fm(neg_f, aut_f->get_dict());
	    neg_f->destroy();

	    // Remove useless SCCs.
657
	    auto tmp = scc_filter(aut_neg_f, true);
658
659
660
661
662
663
664
	    delete aut_neg_f;
	    to_free = aut_neg_f = tmp;
	  }
	else if (is_deterministic(aut_f))
	  {
	    // If the automaton is deterministic, complementing is
	    // easy.
665
	    to_free = aut_neg_f = dtgba_complement(aut_f);
666
667
668
669
670
	  }
	else
	  {
	    // Otherwise, we cannot check if the minimization is safe.
	    delete min_aut_f;
671
	    return nullptr;
672
	  }
673
674
      }

675
    // If the negation is a guarantee automaton, then the
676
    // minimization is correct.
677
    if (is_guarantee_automaton(aut_neg_f))
678
679
680
681
682
683
684
685
686
687
688
689
690
691
      {
	delete to_free;
	return min_aut_f;
      }

    bool ok = false;

    tgba* p = new tgba_product(min_aut_f, aut_neg_f);
    emptiness_check* ec = couvreur99(p);
    emptiness_check_result* res = ec->check();
    if (!res)
      {
	delete ec;
	delete p;
692

693
	// Complement the minimized WDBA.
694
695
696
	tgba* neg_min_aut_f = wdba_complement(min_aut_f);

	tgba* p = new tgba_product(aut_f, neg_min_aut_f);
697
698
699
700
	emptiness_check* ec = couvreur99(p);
	res = ec->check();

	if (!res)
701
702
703
704
705
	  {
	    // Finally, we are now sure that it was safe
	    // to minimize the automaton.
	    ok = true;
	  }
706
707
708
709

	delete res;
	delete ec;
	delete p;
710
	delete neg_min_aut_f;
711
712
713
714
715
716
717
718
719
720
721
722
      }
    else
      {
	delete res;
	delete ec;
	delete p;
      }
    delete to_free;

    if (ok)
      return min_aut_f;
    delete min_aut_f;
723
    return const_cast<tgba_digraph*>(aut_f);
724
  }
725
}