minimize.cc 16.8 KB
Newer Older
1
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Développement
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

21
22
23
24
25
26
27
28
29

//#define TRACE

#ifdef TRACE
#  define trace std::cerr
#else
#  define trace while (0) std::cerr
#endif

30
#include <queue>
31
32
33
#include <deque>
#include <set>
#include <list>
34
#include <vector>
35
#include <sstream>
36
37
38
#include "minimize.hh"
#include "ltlast/allnodes.hh"
#include "misc/hash.hh"
39
#include "misc/bddlt.hh"
40
41
#include "tgba/tgbaproduct.hh"
#include "tgba/tgbatba.hh"
42
#include "tgbaalgos/powerset.hh"
43
44
45
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/sccfilter.hh"
46
#include "tgbaalgos/scc.hh"
47
#include "tgbaalgos/ltl2tgba_fm.hh"
48
#include "tgbaalgos/bfssteps.hh"
49
50
51
52
53
54
55
56

namespace spot
{
  typedef Sgi::hash_set<const state*,
                        state_ptr_hash, state_ptr_equal> hash_set;
  typedef Sgi::hash_map<const state*, unsigned,
                        state_ptr_hash, state_ptr_equal> hash_map;

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  namespace
  {
    static std::ostream&
    dump_hash_set(const hash_set* hs, const tgba* aut, std::ostream& out)
    {
      out << "{";
      const char* sep = "";
      for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
	{
	  out << sep << aut->format_state(*i);
	  sep = ", ";
	}
      out << "}";
      return out;
    }

    static std::string
    format_hash_set(const hash_set* hs, const tgba* aut)
    {
      std::ostringstream s;
      dump_hash_set(hs, aut, s);
      return s.str();
    }
  }

82
83
84
85
  // Given an automaton a, find all states that are not in "final" and add
  // them to the set "non_final".
  void init_sets(const tgba_explicit* a,
                 hash_set& final,
86
                 hash_set& non_final)
87
88
  {
    hash_set seen;
Felix Abecassis's avatar
Felix Abecassis committed
89
    std::queue<const state*> tovisit;
90
    // Perform breadth-first traversal.
Felix Abecassis's avatar
Felix Abecassis committed
91
    const state* init = a->get_init_state();
92
93
94
95
    tovisit.push(init);
    seen.insert(init);
    while (!tovisit.empty())
    {
Felix Abecassis's avatar
Felix Abecassis committed
96
      const state* src = tovisit.front();
97
98
99
      tovisit.pop();
      // Is the state final ?
      if (final.find(src) == final.end())
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
100
101
	// No, add it to the set non_final
	non_final.insert(src->clone());
102
103
104
      tgba_succ_iterator* sit = a->succ_iter(src);
      for (sit->first(); !sit->done(); sit->next())
      {
Felix Abecassis's avatar
Felix Abecassis committed
105
        const state* dst = sit->current_state();
106
107
108
109
110
111
112
113
114
115
        // Is it a new state ?
        if (seen.find(dst) == seen.end())
        {
          // Register the successor for later processing.
          tovisit.push(dst);
          seen.insert(dst);
        }
        else
          delete dst;
      }
Felix Abecassis's avatar
Felix Abecassis committed
116
      delete sit;
117
    }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
118
119
120
121
122
123
124
125
126

    while (!seen.empty())
      {
	hash_set::iterator i = seen.begin();
	const state* s = *i;
	seen.erase(i);
	delete s;
      }

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
  }

  // From the base automaton and the list of sets, build the minimal
  // resulting automaton
  tgba_explicit_number* build_result(const tgba* a,
                                     std::list<hash_set*>& sets,
                                     hash_set* final)
  {
    // For each set, create a state in the resulting automaton.
    // For a state s, state_num[s] is the number of the state in the minimal
    // automaton.
    hash_map state_num;
    std::list<hash_set*>::iterator sit;
    unsigned num = 0;
    for (sit = sets.begin(); sit != sets.end(); ++sit)
    {
      hash_set::iterator hit;
      hash_set* h = *sit;
      for (hit = h->begin(); hit != h->end(); ++hit)
        state_num[*hit] = num;
      ++num;
    }
    typedef tgba_explicit_number::transition trs;
    tgba_explicit_number* res = new tgba_explicit_number(a->get_dict());
    // For each transition in the initial automaton, add the corresponding
    // transition in res.
153
154
    if (!final->empty())
      res->declare_acceptance_condition(ltl::constant::true_instance());
155
156
157
158
159
160
161
162
163
    for (sit = sets.begin(); sit != sets.end(); ++sit)
    {
      hash_set::iterator hit;
      hash_set* h = *sit;
      for (hit = h->begin(); hit != h->end(); ++hit)
      {
        const state* src = *hit;
        unsigned src_num = state_num[src];
        tgba_succ_iterator* succit = a->succ_iter(src);
Felix Abecassis's avatar
Felix Abecassis committed
164
        bool accepting = (final->find(src) != final->end());
165
166
        for (succit->first(); !succit->done(); succit->next())
        {
Felix Abecassis's avatar
Felix Abecassis committed
167
          const state* dst = succit->current_state();
168
          unsigned dst_num = state_num[dst];
Felix Abecassis's avatar
Felix Abecassis committed
169
          delete dst;
170
171
172
173
174
          trs* t = res->create_transition(src_num, dst_num);
          res->add_conditions(t, succit->current_condition());
          if (accepting)
            res->add_acceptance_condition(t, ltl::constant::true_instance());
        }
Felix Abecassis's avatar
Felix Abecassis committed
175
        delete succit;
176
177
178
179
180
      }
    }
    res->merge_transitions();
    const state* init_state = a->get_init_state();
    unsigned init_num = state_num[init_state];
Felix Abecassis's avatar
Felix Abecassis committed
181
    delete init_state;
182
183
184
185
    res->set_init_state(init_num);
    return res;
  }

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

  namespace
  {

    struct wdba_search_acc_loop : public bfs_steps
    {
      wdba_search_acc_loop(const tgba* det_a,
			   unsigned scc_n, scc_map& sm,
			   power_map& pm, const state* dest)
	: bfs_steps(det_a), scc_n(scc_n), sm(sm), pm(pm), dest(dest)
      {
	seen.insert(dest);
      }

      virtual
      ~wdba_search_acc_loop()
      {
	hash_set::const_iterator i = seen.begin();
	while (i != seen.end())
	  {
	    hash_set::const_iterator old = i;
	    ++i;
	    delete *old;
	  }
      }

      virtual const state*
      filter(const state* s)
      {
	// Use the state from seen.
	hash_set::const_iterator i = seen.find(s);
	if (i == seen.end())
	  {
	    seen.insert(s);
	  }
	else
	  {
	    delete s;
	    s = *i;
	  }
	// Ignore states outside SCC #n.
	if (sm.scc_of_state(s) != scc_n)
	  return 0;
	return s;
      }

      virtual bool
      match(tgba_run::step&, const state* to)
      {
	return to == dest;
      }

      unsigned scc_n;
      scc_map& sm;
      power_map& pm;
      const state* dest;
      hash_set seen;
    };


    bool
    wdba_scc_is_accepting(const tgba_explicit_number* det_a, unsigned scc_n,
			  const tgba* orig_a, scc_map& sm, power_map& pm)
    {
      // Get some state from the SCC #n.
      const state* start = sm.one_state_of(scc_n)->clone();

      // Find a loop around START in SCC #n.
      wdba_search_acc_loop wsal(det_a, scc_n, sm, pm, start);
      tgba_run::steps loop;
      const state* reached = wsal.search(start, loop);
      assert(reached == start);
      (void)reached;

      // Build an automaton representing this loop.
      tgba_explicit_number loop_a(det_a->get_dict());
      tgba_run::steps::const_iterator i;
      int loop_size = loop.size();
      int n;
      for (n = 1, i = loop.begin(); n < loop_size; ++n, ++i)
	{
	  loop_a.create_transition(n - 1, n)->condition = i->label;
	  delete i->s;
	}
      assert(i != loop.end());
      loop_a.create_transition(n - 1, 0)->condition = i->label;
      delete i->s;
      assert(++i == loop.end());

      const state* loop_a_init = loop_a.get_init_state();
      assert(loop_a.get_label(loop_a_init) == 0);

      // Check if the loop is accepting in the original automaton.
      bool accepting = false;

      // Iterate on each original state corresponding to start.
      const power_map::power_state& ps = pm.states_of(det_a->get_label(start));
      for (power_map::power_state::const_iterator it = ps.begin();
	   it != ps.end() && !accepting; ++it)
	{
	  // Contrustruct a product between
	  // LOOP_A, and ORIG_A starting in *IT.

	  tgba* p = new tgba_product_init(&loop_a, orig_a,
					  loop_a_init, *it);

	  emptiness_check* ec = couvreur99(p);
	  emptiness_check_result* res = ec->check();

	  if (res)
	    accepting = true;
	  delete res;
	  delete ec;
	  delete p;
	}

      delete loop_a_init;
      return accepting;
    }

  }

308
309
  tgba_explicit_number* minimize_dfa(const tgba_explicit_number* det_a,
				     hash_set* final)
310
  {
311
312
313
    typedef std::list<hash_set*> partition_t;
    partition_t cur_run;
    partition_t next_run;
314

315
316
    // The list of equivalent states.
    partition_t done;
317

318
    hash_map state_set_map;
319

320
    hash_set* non_final = new hash_set;
321
322

    init_sets(det_a, *final, *non_final);
323
324
    // Size of det_a
    unsigned size = final->size() + non_final->size();
325
326
    // Use bdd variables to number sets.  set_num is the first variable
    // available.
327
328
    unsigned set_num =
      det_a->get_dict()->register_anonymous_variables(size, det_a);
329
330
331
332
333
334

    std::set<int> free_var;
    for (unsigned i = set_num; i < set_num + size; ++i)
      free_var.insert(i);
    std::map<int, int> used_var;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
335
336
    hash_set* final_copy;

337
338
339
340
341
342
    if (!final->empty())
      {
	unsigned s = final->size();
	used_var[set_num] = s;
	free_var.erase(set_num);
	if (s > 1)
343
	  cur_run.push_back(final);
344
345
346
347
348
	else
	  done.push_back(final);
	for (hash_set::const_iterator i = final->begin();
	     i != final->end(); ++i)
	  state_set_map[*i] = set_num;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
349
350

	final_copy = new hash_set(*final);
351
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
352
353
354
355
356
    else
      {
	final_copy = final;
      }

357
358
359
360
361
362
363
    if (!non_final->empty())
      {
	unsigned s = non_final->size();
	unsigned num = set_num + 1;
	used_var[num] = s;
	free_var.erase(num);
	if (s > 1)
364
	  cur_run.push_back(non_final);
365
366
367
368
369
370
	else
	  done.push_back(non_final);
	for (hash_set::const_iterator i = non_final->begin();
	     i != non_final->end(); ++i)
	  state_set_map[*i] = num;
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
371
372
373
374
    else
      {
	delete non_final;
      }
375

376
377
    // A bdd_states_map is a list of formulae (in a BDD form) associated with a
    // destination set of states.
378
379
380
381
382
    typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;

    bool did_split = true;

    while (did_split)
383
      {
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
	did_split = false;
	while (!cur_run.empty())
	  {
	    // Get a set to process.
	    hash_set* cur = cur_run.front();
	    cur_run.pop_front();

	    trace << "processing " << format_hash_set(cur, det_a) << std::endl;

	    hash_set::iterator hi;
	    bdd_states_map bdd_map;
	    for (hi = cur->begin(); hi != cur->end(); ++hi)
	      {
		const state* src = *hi;
		bdd f = bddfalse;
		tgba_succ_iterator* si = det_a->succ_iter(src);
		for (si->first(); !si->done(); si->next())
		  {
		    const state* dst = si->current_state();
		    unsigned dst_set = state_set_map[dst];
		    delete dst;
		    f |= (bdd_ithvar(dst_set) & si->current_condition());
		  }
		delete si;

		// Have we already seen this formula ?
		bdd_states_map::iterator bsi = bdd_map.find(f);
		if (bsi == bdd_map.end())
		  {
		    // No, create a new set.
		    hash_set* new_set = new hash_set;
		    new_set->insert(src);
		    bdd_map[f] = new_set;
		  }
		else
		  {
		    // Yes, add the current state to the set.
		    bsi->second->insert(src);
		  }
	      }

	    bdd_states_map::iterator bsi = bdd_map.begin();
	    if (bdd_map.size() == 1)
	      {
		// The set was not split.
		trace << "set " << format_hash_set(bsi->second, det_a)
		      << " was not split" << std::endl;
		next_run.push_back(bsi->second);
	      }
	    else
	      {
		for (; bsi != bdd_map.end(); ++bsi)
		  {
		    hash_set* set = bsi->second;
		    // Free the number associated to these states.
		    unsigned num = state_set_map[*set->begin()];
		    assert(used_var.find(num) != used_var.end());
		    unsigned left = (used_var[num] -= set->size());
		    // Make sure LEFT does not become negative (hence bigger
		    // than SIZE when read as unsigned)
		    assert(left < size);
		    if (left == 0)
		      {
			used_var.erase(num);
			free_var.insert(num);
		      }
		    // Pick a free number
		    assert(!free_var.empty());
		    num = *free_var.begin();
		    free_var.erase(free_var.begin());
		    used_var[num] = set->size();
		    for (hash_set::iterator hit = set->begin();
			 hit != set->end(); ++hit)
		      state_set_map[*hit] = num;
		    // Trivial sets can't be splitted any further.
		    if (set->size() == 1)
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " is minimal" << std::endl;
			done.push_back(set);
		      }
		    else
		      {
			did_split = true;
			trace << "set " << format_hash_set(set, det_a)
			      << " should be processed further" << std::endl;
			next_run.push_back(set);
		      }
		  }
	      }
	    delete cur;
	  }
	if (did_split)
	  trace << "splitting did occur during this pass." << std::endl;
	else
	  trace << "splitting did not occur during this pass." << std::endl;
	std::swap(cur_run, next_run);
481
      }
482
483
484
485
486
487
488
489
490

    done.splice(done.end(), cur_run);

#ifdef TRACE
    trace << "Final partition: ";
    for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
      trace << format_hash_set(*i, det_a) << " ";
    trace << std::endl;
#endif
Felix Abecassis's avatar
Felix Abecassis committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504

    // Build the result.
    tgba_explicit_number* res = build_result(det_a, done, final_copy);

    // Free all the allocated memory.
    delete final_copy;
    hash_map::iterator hit;
    for (hit = state_set_map.begin(); hit != state_set_map.end(); ++hit)
      delete hit->first;
    std::list<hash_set*>::iterator it;
    for (it = done.begin(); it != done.end(); ++it)
      delete *it;
    delete det_a;

505
506
    return res;
  }
507

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

  tgba_explicit_number* minimize(const tgba* a, bool monitor)
  {
    hash_set* final = new hash_set;
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);

      if (!monitor)
	{
	  // For each SCC of the deterministic automaton, determine if
	  // it is accepting or not.
	  scc_map sm(det_a);
	  sm.build_map();
	  unsigned scc_count = sm.scc_count();
	  std::vector<bool> accepting(scc_count);
	  // SCC are numbered in topological order
	  for (unsigned n = 0; n < scc_count; ++n)
	    {
	      bool acc = true;

	      if (sm.trivial(n))
		{
		  // Trivial SCCs are accepting if all their
		  // successors are accepting.

		  // This corresponds to the algorithm in Fig. 1 of
		  // "Efficient minimization of deterministic weak
		  // omega-automata" written by Christof Löding and
		  // published in Information Processing Letters 79
		  // (2001) pp 105--109.  Except we do not keep track
		  // of the actual color associated to each SCC.

		  const scc_map::succ_type& succ = sm.succ(n);
		  for (scc_map::succ_type::const_iterator i = succ.begin();
		       i != succ.end(); ++i)
		    {
		      if (!accepting[i->first])
			{
			  acc = false;
			  break;
			}
		    }
		}
	      else
		{
		  // Regular SCCs are accepting if any of their loop
		  // corresponds to an accepting
		  acc = wdba_scc_is_accepting(det_a, n, a, sm, pm);
		}

	      accepting[n] = acc;
	      if (acc)
		{
		  std::list<const state*> l = sm.states_of(n);
		  std::list<const state*>::const_iterator il;
		  for (il = l.begin(); il != l.end(); ++il)
		    final->insert((*il)->clone());
		}
	    }
	}
    }

    return minimize_dfa(det_a, final);
  }

576
577
578
579
580
  const tgba*
  minimize_obligation(const tgba* aut_f,
		      const ltl::formula* f, const tgba* aut_neg_f)
  {
    // WDBA minimization
581
    tgba_explicit_number* min_aut_f = minimize(aut_f);
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

    // If aut_f is a safety automaton, the WDBA minimization must be
    // correct.
    if (is_safety_automaton(aut_f))
      {
	return min_aut_f;
      }

    if (!f && !aut_neg_f)
      {
	// We do not now if the minimization is safe.
	return 0;
      }

    const tgba* to_free = 0;

    // Build negation automaton if not supplied.
    if (!aut_neg_f)
      {
	assert(f);

	ltl::formula* neg_f = ltl::unop::instance(ltl::unop::Not, f->clone());
	aut_neg_f = ltl_to_tgba_fm(neg_f, aut_f->get_dict());
	neg_f->destroy();

	// Remove useless SCCs.
	const tgba* tmp = scc_filter(aut_neg_f, true);
	delete aut_neg_f;
	to_free = aut_neg_f = tmp;
      }

    // If the negation is a safety automaton, then the
    // minimization is correct.
    if (is_safety_automaton(aut_neg_f))
      {
	delete to_free;
	return min_aut_f;
      }

    bool ok = false;

    tgba* p = new tgba_product(min_aut_f, aut_neg_f);
    emptiness_check* ec = couvreur99(p);
    emptiness_check_result* res = ec->check();
    if (!res)
      {
	delete ec;
	delete p;
630
631
632
	// Complement the minimized WDBA.
	min_aut_f->complement_all_acceptance_conditions();
	tgba* p = new tgba_product(aut_f, min_aut_f);
633
634
635
636
	emptiness_check* ec = couvreur99(p);
	res = ec->check();

	if (!res)
637
638
639
640
641
642
643
	  {
	    // Finally, we are now sure that it was safe
	    // to minimize the automaton.
	    ok = true;
	    // Get the original automaton back.
	    min_aut_f->complement_all_acceptance_conditions();
	  }
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

	delete res;
	delete ec;
	delete p;
      }
    else
      {
	delete res;
	delete ec;
	delete p;
      }
    delete to_free;

    if (ok)
      return min_aut_f;
    delete min_aut_f;
    return aut_f;
  }
662
}