ltl2tgba_fm.cc 21.7 KB
Newer Older
1
// Copyright (C) 2003, 2004  Laboratoire d'Informatique de Paris 6 (LIP6),
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// dpartement Systmes Rpartis Coopratifs (SRC), Universit Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

22
#include "misc/hash.hh"
23
#include "misc/bddalloc.hh"
24
#include "misc/bddlt.hh"
25
#include "misc/minato.hh"
26
27
28
29
30
31
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/destroy.hh"
#include "ltlvisit/tostring.hh"
32
#include "ltlvisit/postfix.hh"
33
34
35
36
37
38
39
40
41
42
43
44
#include <cassert>

#include "tgba/tgbabddconcretefactory.hh"
#include "ltl2tgba_fm.hh"

namespace spot
{
  using namespace ltl;

  namespace
  {

45
46
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
47
48
49
50
51
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
52
    class translate_dict
53
54
55
    {
    public:

56
57
      translate_dict(bdd_dict* dict)
	: dict(dict),
58
59
60
61
62
63
64
65
66
67
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
68
	  destroy(i->first);
69
	dict->unregister_all_my_variables(this);
70
71
      }

72
73
      bdd_dict* dict;

74
      /// Formula-to-BDD-variable maps.
75
76
      typedef Sgi::hash_map<const formula*, int,
			    ptr_hash<formula> > fv_map;
77
      /// BDD-variable-to-formula maps.
78
      typedef Sgi::hash_map<int, const formula*> vf_map;
79
80
81
82
83
84
85
86
87

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
88
      register_proposition(const formula* f)
89
      {
90
	int num = dict->register_proposition(f, this);
91
92
93
94
95
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
96
      register_a_variable(const formula* f)
97
      {
98
	int num = dict->register_acceptance_variable(f, this);
99
100
101
102
103
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
104
      register_next_variable(const formula* f)
105
106
107
108
109
110
111
112
113
114
115
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
	    f = clone(f);
116
	    num = dict->register_anonymous_variables(1, this);
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
134
135
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
136
137
138
	return os;
      }

139
      formula*
140
141
142
143
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
144
	  return clone(isi->second);
145
146
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
147
	  return clone(isi->second);
148
149
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
150
	  return clone(isi->second);
151
	assert(0);
152
153
154
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
155
156
      }

157
      formula*
158
159
160
      conj_bdd_to_formula(bdd b)
      {
	if (b == bddfalse)
161
162
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
163
164
165
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
166
	    formula* res = var_to_formula(var);
167
168
169
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
170
		res = unop::instance(unop::Not, res);
171
172
173
174
		b = bdd_low(b);
	      }
	    else
	      {
175
		assert(bdd_low(b) == bddfalse);
176
177
178
179
180
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
181
	return multop::instance(multop::And, v);
182
183
      }

184
185
      const formula*
      bdd_to_formula(bdd f)
186
      {
187
	if (f == bddfalse)
188
	  return constant::false_instance();
189

190
191
192
193
194
195
196
197
198
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
199
200
201
202
203
204
205
206
207
208
209

      void
      conj_bdd_to_acc(tgba_explicit* a, bdd b, tgba_explicit::transition* t)
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
210
		// Simply ignore negated acceptance variables.
211
212
213
214
		b = bdd_low(b);
	      }
	    else
	      {
215
		formula* ac = var_to_formula(var);
216

217
		if (!a->has_acceptance_condition(ac))
218
219
		  a->declare_acceptance_condition(clone(ac));
		a->add_acceptance_condition(t, ac);
220
221
222
223
224
225
226
227
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };


272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    // The rewrite rules used here are adapted from Jean-Michel
    // Couvreur's FM paper.
    class ltl_trad_visitor: public const_visitor
    {
    public:
      ltl_trad_visitor(translate_dict& dict)
	: dict_(dict)
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

287
288
      bdd
      result() const
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
      {
	return res_;
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
323
324
325
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
326
327
328
329
330
331
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
	      return;
	    }
	  case unop::G:
	    {
332
333
334
335
336
337
338
339
340
341
342
343
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
344
	      const formula* child = node->child();
345
	      int x = dict_.register_next_variable(node);
346
347
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
348
349
350
351
	      return;
	    }
	  case unop::Not:
	    {
352
	      // r(!y) = !r(y)
353
354
355
356
357
	      res_ = bdd_not(recurse(node->child()));
	      return;
	    }
	  case unop::X:
	    {
358
	      // r(Xy) = Next[y]
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop* node)
      {
	bdd f1 = recurse(node->first());
	bdd f2 = recurse(node->second());

	switch (node->op())
	  {
376
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
	  case binop::Xor:
	    res_ = bdd_apply(f1, f2, bddop_xor);
	    return;
	  case binop::Implies:
	    res_ = bdd_apply(f1, f2, bddop_imp);
	    return;
	  case binop::Equiv:
	    res_ = bdd_apply(f1, f2, bddop_biimp);
	    return;
	  case binop::U:
	    {
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
	      return;
	    }
	  case binop::R:
	    {
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const multop* node)
      {
	int op = -1;
	switch (node->op())
	  {
	  case multop::And:
	    op = bddop_and;
	    res_ = bddtrue;
	    break;
	  case multop::Or:
	    op = bddop_or;
	    res_ = bddfalse;
	    break;
	  }
	assert(op != -1);
	unsigned s = node->size();
	for (unsigned n = 0; n < s; ++n)
	  {
	    res_ = bdd_apply(res_, recurse(node->nth(n)), op);
	  }
      }

      bdd
      recurse(const formula* f)
      {
	ltl_trad_visitor v(dict_);
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
    };

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

    // Check whether a formula has a R or G operator at its top-level
    // (preceding logical operators do not count).
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
	    return;
	  case binop::R:
	    res_ = true;
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
527
528
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
529
530
531
532
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
533
	pfl_[f] = rel;
534
535
536
537
538
	return rel;
      }

    private:
      typedef Sgi::hash_map<const formula*, bool, ptr_hash<formula> > pfl_map;
539
      pfl_map pfl_;
540
541
    };

542
543
544
545
546
547
548
549
550
551
    class formula_canonizer
    {
    public:
      formula_canonizer(translate_dict& d)
	: v_(d)
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
552

553
554
      ~formula_canonizer()
      {
555
	while (!f2b_.empty())
556
	  {
557
558
559
560
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
	    destroy(f);
561
	  }
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
      }

      bdd
      translate(const formula* f)
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

	// Perform the actual translation.
	f->accept(v_);
	bdd res = v_.result();
	f2b_[clone(f)] = res;

	// Register the reverse mapping if it is not already done.
	if (b2f_.find(res) == b2f_.end())
	  b2f_[res] = f;
	return res;
      }

      const formula*
      canonize(const formula* f)
      {
	bdd b = translate(f);

	bdd_to_formula_map::iterator i = b2f_.find(b);
	// Since we have just translated the formula, it is necessary in b2f_.
	assert(i != b2f_.end());

	if (i->second != f)
593
	  {
594
595
	    destroy(f);
	    f = clone(i->second);
596
	  }
597
	return f;
598
599
      }

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;
      bdd_to_formula_map b2f_;
      // Map a representation of successors to a canonical formula.
      // We do this because many formulae (such as `aR(bRc)' and
      // `aR(bRc).(bRc)') are equivalent, and are trivially identified
      // by looking at the set of successors.
      typedef std::map<const formula*, bdd> formula_to_bdd_map;
      formula_to_bdd_map f2b_;
    };

  }

  typedef std::map<bdd, bdd, bdd_less_than> prom_map;
  typedef Sgi::hash_map<const formula*, prom_map, ptr_hash<formula> > dest_map;

  static void
  fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
  {
623
    bdd conds = bdd_existcomp(label, d.var_set);
624
625
    bdd promises = bdd_existcomp(label, d.a_set);

626
627
628
629
630
631
632
633
634
635
636
637
638
    dest_map::iterator i = dests.find(dest);
    if (i == dests.end())
      {
	dests[dest][promises] = conds;
      }
    else
      {
	i->second[promises] |= conds;
	destroy(dest);
      }
  }


639
  tgba_explicit*
640
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
641
642
		 bool exprop, bool symb_merge, bool branching_postponement,
		 bool fair_loop_approx)
643
  {
644
645
    possible_fair_loop_checker pflc;

646
647
648
649
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
650
651
652
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
    destroy(f1);
653

654
655
    std::set<const formula*> formulae_seen;
    std::set<const formula*> formulae_to_translate;
656

657
    translate_dict d(dict);
658
    formula_canonizer fc(d);
659

660
661
662
663
664
665
666
667
668
    // Compute the set of all promises occurring inside the formula.
    bdd all_promises = bddtrue;
    if (fair_loop_approx)
      {
	ltl_promise_visitor pv(d);
	f2->accept(pv);
	all_promises = pv.result();
      }

669
670
671
672
673
674
675
676
677
678
    formulae_seen.insert(f2);
    formulae_to_translate.insert(f2);

    tgba_explicit* a = new tgba_explicit(dict);

    a->set_init_state(to_string(f2));

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
679
	const formula* f = *formulae_to_translate.begin();
680
681
682
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
683
	bdd res = fc.translate(f);
684
685
686

	std::string now = to_string(f);

687
688
689
690
691
	// When branching_postponement is used, we must assume that
	// the source state is in a fair loop.
	bool pflc_from =
	  (fair_loop_approx && !branching_postponement) ? pflc.check(f) : true;

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
	// We used to factor only Next and A variables while computing
	// prime implicants, with
	//    minato_isop isop(res, d.next_set & d.a_set);
	// in order to obtain transitions with formulae of atomic
	// proposition directly, but unfortunately this led to strange
	// factorizations.  For instance f U g was translated as
	//     r(f U g) = g + a(g).r(X(f U g)).(f + g)
	// instead of just
	//     r(f U g) = g + a(g).r(X(f U g)).f
	// Of course both formulae are logically equivalent, but the
	// latter is "more deterministic" than the former, so it should
	// be preferred.
	//
	// Therefore we now factor all variables.  This may lead to more
	// transitions than necessary (e.g.,  r(f + g) = f + g  will be
707
708
709
	// coded as two transitions), but we later merge all transitions
	// with same source/destination and acceptance conditions.  This
	// is the goal of the `dests' hash.
710
	//
711
	// Note that this is still not optimal.  For instance it is
712
	// better to encode `f U g' as
713
	//     r(f U g) = g + a(g).r(X(f U g)).f.!g
714
715
716
717
	// because that leads to a deterministic automaton.  In order
	// to handle this, we take the conditions of any transition
	// going to true (it's `g' here), and remove it from the other
	// transitions.
718
719
720
	//
	// In `exprop' mode, considering all possible combinations of
	// outgoing propositions generalizes the above trick.
721
	dest_map dests;
722

723
	// Compute all outgoing arcs.
724
725
726
727
728

	// If EXPROP is set, we will refine the symbolic
	// representation of the successors for all combinations of
	// the atomic properties involved in the formula.
	// VAR_SET is the set of these properties.
729
	bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
730
731
732
733
734
	// ALL_PROPS is the combinations we have yet to consider.
	// We used to start with `all_props = bddtrue', but it is
	// more efficient to start with the set of all satisfiable
	// variables combinations.
	bdd all_props = bdd_existcomp(res, d.var_set);
735
	while (all_props != bddfalse)
736
	  {
737
738
739
	    bdd one_prop_set =
	      exprop ? bdd_satoneset(all_props, var_set, bddtrue) : bddtrue;
	    all_props -= one_prop_set;
740

741
	    typedef std::map<bdd, const formula*, bdd_less_than> succ_map;
742
743
	    succ_map succs;

744
745
746
	    minato_isop isop(res & one_prop_set);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
747
	      {
748
		bdd label = bdd_exist(cube, d.next_set);
749
		bdd dest_bdd = bdd_existcomp(cube, d.next_set);
750
751
752
753
754
755
		const formula* dest = d.conj_bdd_to_formula(dest_bdd);

		// If we already know a state with the same
		// successors, use it in lieu of the current one.
		if (symb_merge)
		  dest = fc.canonize(dest);
756
757
758
759

		// If the destination cannot possibly be part of a fair
		// loop, make all possible promises.
		if (fair_loop_approx
760
761
		    && !(dest == constant::true_instance()
			 || (pflc_from && pflc.check(dest))))
762
		  label &= all_promises;
763

764
765
766
767
768
769
		// If we are not postponing the branching, we can
		// declare the outgoing transitions immediately.
		// Otherwise, we merge transitions with identical
		// label, and declare the outgoing transitions in a
		// second loop.
		if (!branching_postponement)
770
		  {
771
		    fill_dests(d, dests, label, dest);
772
773
774
		  }
		else
		  {
775
776
777
778
		    succ_map::iterator si = succs.find(label);
		    if (si == succs.end())
		      succs[label] = dest;
		    else
779
780
781
782
		      si->second =
			multop::instance(multop::Or,
					 const_cast<formula*>(si->second),
					 const_cast<formula*>(dest));
783
784
		  }
	      }
785
786
787
	    if (branching_postponement)
	      for (succ_map::const_iterator si = succs.begin();
		   si != succs.end(); ++si)
788
		fill_dests(d, dests, si->first, si->second);
789
	  }
790

791
	// Check for an arc going to 1 (True).  Register it first, that
792
793
794
	// way it will be explored before the other during the model
	// checking.
	dest_map::const_iterator i = dests.find(constant::true_instance());
795
796
797
798
	// COND_FOR_TRUE is the conditions of the True arc, so when
	// can remove them from all other arcs.  It might sounds that
	// this is not needed when exprop is used, but in fact it is
	// complementary.
799
800
	//
	// Consider
801
	//   f = r(X(1) R p) = p.(1 + r(X(1) R p))
802
	// with exprop the two outgoing arcs would be
803
804
        //         p                  p
	//     f ----> 1       f ----------> 1
805
806
	//
	// where in fact we could output
807
808
        //         p
	//     f ----> 1
809
	//
810
	// because there is no point in looping on f if we can go to 1.
811
	bdd cond_for_true = bddfalse;
812
813
	if (i != dests.end())
	  {
814
	    // There should be only one transition going to 1 (true) ...
815
	    assert(i->second.size() == 1);
816
817
818
	    prom_map::const_iterator j = i->second.begin();
	    // ... and it is not expected to make any promises.
	    assert(j->first == bddtrue);
819

820
	    cond_for_true = j->second;
821
822
	    tgba_explicit::transition* t =
	      a->create_transition(now, constant::true_instance()->val_name());
823
	    a->add_condition(t, d.bdd_to_formula(cond_for_true));
824
825
826
827
828
	  }
	// Register other transitions.
	for (i = dests.begin(); i != dests.end(); ++i)
	  {
	    const formula* dest = i->first;
829
830
831
832
	    // The cond_for_true optimization can cause some
	    // transitions to be removed.  So we have to remember
	    // whether a formula is actually reachable.
	    bool reachable = false;
833

834
835
836
837
838
839
	    if (dest != constant::true_instance())
	      {
		std::string next = to_string(dest);
		for (prom_map::const_iterator j = i->second.begin();
		     j != i->second.end(); ++j)
		  {
840
841
842
		    bdd cond = j->second - cond_for_true;
		    if (cond == bddfalse) // Skip false transitions.
		      continue;
843
844
		    tgba_explicit::transition* t =
		      a->create_transition(now, next);
845
		    a->add_condition(t, d.bdd_to_formula(cond));
846
		    d.conj_bdd_to_acc(a, j->first, t);
847
		    reachable = true;
848
849
		  }
	      }
850
851
852
853
854
855
856
	    else
	      {
		// "1" is reachable.
		reachable = true;
	      }
	    if (reachable
		&& formulae_seen.find(dest) == formulae_seen.end())
857
858
859
860
861
862
	      {
		formulae_seen.insert(dest);
		formulae_to_translate.insert(dest);
	      }
	    else
	      {
863
		destroy(dest);
864
865
866
867
868
	      }
	  }
      }

    // Free all formulae.
869
    for (std::set<const formula*>::iterator i = formulae_seen.begin();
870
	 i != formulae_seen.end(); ++i)
871
      destroy(*i);
872

873
874
    // Turn all promises into real acceptance conditions.
    a->complement_all_acceptance_conditions();
875
876
877
878
    return a;
  }

}