__init__.py 30.4 KB
Newer Older
1
# -*- coding: utf-8 -*-
2
# Copyright (C) 2014, 2015, 2016  Laboratoire de
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Recherche et Développement de l'Epita (LRDE).
#
# This file is part of Spot, a model checking library.
#
# Spot is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Spot is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

20
21
22
23
24
25
26
27

import sys


if sys.hexversion < 0x03030000:
    sys.exit("This module requires Python 3.3 or newer")


28
from spot.impl import *
29
import subprocess
30
31
import os
import signal
32
from functools import lru_cache
33

34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
def _extend(*classes):
    """
    Decorator that extends all the given classes with the contents
    of the class currently being defined.
    """
    def wrap(this):
        for cls in classes:
            for (name, val) in this.__dict__.items():
                if name not in ('__dict__', '__weakref__') \
                   and not (name == '__doc__' and val is None):
                    setattr(cls, name, val)
        return classes[0]
    return wrap

49
_show_default = None
50

51
52
53
def setup(**kwargs):
    """Configure Spot for fancy display.

54
    This is manly useful in Jupyter/IPython.
55

56
57
    Note that this function needs to be called before any automaton is
    displayed.  Afterwards it will have no effect (you should restart
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    Python, or the Jupyter/IPython Kernel).

    Parameters
    ----------
    bullets : bool
        whether to display acceptance conditions as UTF8 bullets
        (default: True)
    fillcolor : str
        the color to use for states (default: '#ffffaa')
    size : str
        the width and height of the GraphViz output in inches
        (default: '10.2,5')
    font : str
        the font to use in the GraphViz output (default: 'Lato')
72
73
    show_default : str
        default options for show()
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
74
75
    max_states : int
        maximum number of states in GraphViz output (default: 50)
76
    """
Etienne Renault's avatar
Etienne Renault committed
77
    import os
78

79
80
    s = ('size="{}" node[style=filled,fillcolor="{}"] '
         'edge[arrowhead=vee, arrowsize=.7]')
81
82
83
84
    os.environ['SPOT_DOTEXTRA'] = s.format(kwargs.get('size', '10.2,5'),
                                           kwargs.get('fillcolor', '#ffffaa'))

    bullets = 'B' if kwargs.get('bullets', True) else ''
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
85
86
    max_states = '<' + str(kwargs.get('max_states', 50))
    d = 'rf({})'.format(kwargs.get('font', 'Lato')) + bullets + max_states
87
88
    global _show_default
    _show_default = kwargs.get('show_default', None)
89
90
    os.environ['SPOT_DOTDEFAULT'] = d

91

92
93
94
95
# In version 3.0.2, Swig puts strongly typed enum in the main
# namespace without prefixing them.  Latter versions fix this.  So we
# can remove for following hack once 3.0.2 is no longer used in our
# build farm.
96
if 'op_ff' not in globals():
97
98
99
100
101
102
    for i in ('ff', 'tt', 'eword', 'ap', 'Not', 'X', 'F', 'G',
              'Closure', 'NegClosure', 'NegClosureMarked',
              'Xor', 'Implies', 'Equiv', 'U', 'R', 'W', 'M',
              'EConcat', 'EConcatMarked', 'UConcat', 'Or',
              'OrRat', 'And', 'AndRat', 'AndNLM', 'Concat',
              'Fusion', 'Star', 'FStar'):
103
        globals()['op_' + i] = globals()[i]
104
105
106
        del globals()[i]


107
108
# Global BDD dict so that we do not have to create one in user code.
_bdd_dict = make_bdd_dict()
Etienne Renault's avatar
Etienne Renault committed
109

110

111
112
113
114
115
# Add a small LRU cache so that when we display automata into a
# interactive widget, we avoid some repeated calls to dot for
# identical inputs.
@lru_cache(maxsize=64)
def _str_to_svg(str):
116
117
118
    dotty = subprocess.Popen(['dot', '-Tsvg'],
                             stdin=subprocess.PIPE,
                             stdout=subprocess.PIPE)
119
    dotty.stdin.write(str)
120
121
122
    res = dotty.communicate()
    return res[0].decode('utf-8')

123

124
125
126
def _ostream_to_svg(ostr):
    return _str_to_svg(ostr.str().encode('utf-8'))

127

128
129
130
131
132
@_extend(twa, ta)
class twa:
    def _repr_svg_(self, opt=None):
        """Output the automaton as SVG"""
        ostr = ostringstream()
133
134
135
        if opt is None:
            global _show_default
            opt = _show_default
136
137
138
139
140
        print_dot(ostr, self, opt)
        return _ostream_to_svg(ostr)

    def show(self, opt=None):
        """Display the automaton as SVG, in the IPython/Jupyter notebook"""
141
142
143
        if opt is None:
            global _show_default
            opt = _show_default
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        # Load the SVG function only if we need it. This way the
        # bindings can still be used outside of IPython if IPython is
        # not installed.
        from IPython.display import SVG
        return SVG(self._repr_svg_(opt))


@_extend(twa)
class twa:
    def to_str(a, format='hoa', opt=None):
        format = format.lower()
        if format == 'hoa':
            ostr = ostringstream()
            print_hoa(ostr, a, opt)
            return ostr.str()
        if format == 'dot':
            ostr = ostringstream()
            print_dot(ostr, a, opt)
            return ostr.str()
        if format == 'spin':
            ostr = ostringstream()
            print_never_claim(ostr, a, opt)
            return ostr.str()
        if format == 'lbtt':
            ostr = ostringstream()
            print_lbtt(ostr, a, opt)
            return ostr.str()
171
        raise ValueError("unknown string format: " + format)
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    def save(a, filename, format='hoa', opt=None, append=False):
        with open(filename, 'a' if append else 'w') as f:
            s = a.to_str(format, opt)
            f.write(s)
            if s[-1] != '\n':
                f.write('\n')
        return a


@_extend(formula)
class formula:
    def __init__(self, str):
        """Parse the given string to create a formula."""
        self.this = parse_formula(str)

    def show_ast(self):
        """Display the syntax tree of the formula."""
        # Load the SVG function only if we need it. This way the bindings
        # can still be used outside of IPython if IPython is not
        # installed.
        from IPython.display import SVG
194
        return SVG(_str_to_svg(self.to_str('d')))
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

    def to_str(self, format='spot', parenth=False):
        if format == 'spot' or format == 'f':
            return str_psl(self, parenth)
        elif format == 'spin' or format == 's':
            return str_spin_ltl(self, parenth)
        elif format == 'utf8' or format == '8':
            return str_utf8_psl(self, parenth)
        elif format == 'lbt' or format == 'l':
            return str_lbt_ltl(self)
        elif format == 'wring' or format == 'w':
            return str_wring_ltl(self)
        elif format == 'latex' or format == 'x':
            return str_latex_psl(self, parenth)
        elif format == 'sclatex' or format == 'X':
            return str_sclatex_psl(self, parenth)
211
212
213
214
        elif format == 'dot' or format == 'd':
            ostr = ostringstream()
            print_dot_psl(ostr, self)
            return ostr.str().encode('utf-8')
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        else:
            raise ValueError("unknown string format: " + format)

    def __format__(self, spec):
        """Format the formula according to `spec`.

        Parameters
        ----------
        spec : str, optional
            a list of letters that specify how the formula
            should be formatted.

        Supported specifiers
        --------------------

        - 'f': use Spot's syntax (default)
        - '8': use Spot's syntax in UTF-8 mode
        - 's': use Spin's syntax
        - 'l': use LBT's syntax
        - 'w': use Wring's syntax
        - 'x': use LaTeX output
        - 'X': use self-contained LaTeX output

        Add some of those letters for additional options:

        - 'p': use full parentheses
        - 'c': escape the formula for CSV output (this will
               enclose the formula in double quotes, and escape
               any included double quotes)
        - 'h': escape the formula for HTML output
        - 'd': escape double quotes and backslash,
               for use in C-strings (the outermost double
               quotes are *not* added)
        - 'q': quote and escape for shell output, using single
               quotes or double quotes depending on the contents.

        - ':spec': pass the remaining specification to the
                   formating function for strings.

        """

        syntax = 'f'
        parent = False
        escape = None

        while spec:
            c, spec = spec[0], spec[1:]
            if c in ('f', 's', '8', 'l', 'w', 'x', 'X'):
                syntax = c
            elif c == 'p':
                parent = True
            elif c in ('c', 'd', 'h', 'q'):
                escape = c
            elif c == ':':
                break
            else:
                raise ValueError("unknown format specification: " + c + spec)

        s = self.to_str(syntax, parent)

        if escape == 'c':
            o = ostringstream()
            escape_rfc4180(o, s)
            s = '"' + o.str() + '"'
        elif escape == 'd':
            s = escape_str(s)
        elif escape == 'h':
            o = ostringstream()
            escape_html(o, s)
            s = o.str()
        elif escape == 'q':
            o = ostringstream()
            quote_shell_string(o, s)
            s = o.str()

        return s.__format__(spec)

    def traverse(self, func):
        if func(self):
            return
        for f in self:
            f.traverse(func)

    def map(self, func):
        k = self.kind()
        if k in (op_ff, op_tt, op_eword, op_ap):
            return self
        if k in (op_Not, op_X, op_F, op_G, op_Closure,
                 op_NegClosure, op_NegClosureMarked):
            return formula.unop(k, func(self[0]))
        if k in (op_Xor, op_Implies, op_Equiv, op_U, op_R, op_W,
                 op_M, op_EConcat, op_EConcatMarked, op_UConcat):
            return formula.binop(k, func(self[0]), func(self[1]))
        if k in (op_Or, op_OrRat, op_And, op_AndRat, op_AndNLM,
                 op_Concat, op_Fusion):
            return formula.multop(k, [func(x) for x in self])
        if k in (op_Star, op_FStar):
            return formula.bunop(k, func(self[0]), self.min(), self.max())
        raise ValueError("unknown type of formula")
314

315

316
317
def automata(*sources, timeout=None, ignore_abort=True,
             trust_hoa=True, debug=False):
318
319
    """Read automata from a list of sources.

320
321
322
323
324
325
    Parameters
    ----------
    *sources : list of str
        These sources can be either commands (end with `|`),
        textual represantations of automata (contain `\n`),
        or filenames (else).
326
    timeout : int, optional
327
328
        Number of seconds to wait for the result of a command.
        If None (the default), not limit is used.
329
330
331
332
    ignore_abort : bool, optional
        If True (the default), skip HOA atomata that ends with
        `--ABORT--`, and return the next automaton in the stream.
        If False, aborted automata are reported as syntax errors.
333
334
335
    trust_hoa : bool, optional
        If True (the default), supported HOA properies that
        cannot be easily verified are trusted.
336
337
    debug : bool, optional
        Whether to run the parser in debug mode.
338
339
340

    Notes
    -----
341
342
343

    The automata can be written in the `HOA format`_, as `never
    claims`_, in `LBTT's format`_, or in `ltl2dstar's format`_.
344

345
346
347
348
349
350
    .. _HOA format: http://adl.github.io/hoaf/
    .. _never claims: http://spinroot.com/spin/Man/never.html
    .. _LBTT's format:
       http://www.tcs.hut.fi/Software/lbtt/doc/html/Format-for-automata.html
    .. _ltl2dstar's format:
       http://www.ltl2dstar.de/docs/ltl2dstar.html#output-format-dstar
351

352
    If an argument ends with a `|`, then this argument is interpreted as
353
    a shell command, and the output of that command (without the `|`)
354
355
356
357
358
359
    is parsed.

    If an argument contains a newline, then it is interpreted as
    actual contents to be parsed.

    Otherwise, the argument is assumed to be a filename.
360
361
362
363

    The result of this function is a generator on all the automata
    objects read from these sources.  The typical usage is::

364
        for aut in spot.automata(filename, command, ...):
365
366
            # do something with aut

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    When the source is a command, and no `timeout` is specified,
    parsing is done straight out of the pipe connecting the
    command.  So

        for aut in spot.automata('randaut -H -n 10 2 |'):
            process(aut)

    will call `process(aut)` on each automaton as soon as it is output by
    `randaut`, and without waiting for `randaut` to terminate.

    However if `timeout` is passed, then `automata()` will wait for
    the entire command to terminate before parsing its entire output.
    If one command takes more than `timeout` seconds,
    `subprocess.TimeoutExpired` is raised.

    If any command terminates with a non-zero error,
    `subprocess.CalledProcessError` is raised.
384
    """
385

386
387
388
    o = automaton_parser_options()
    o.debug = debug
    o.ignore_abort = ignore_abort
389
    o.trust_hoa = trust_hoa
390
    o.raise_errors = True
391
    for filename in sources:
392
        try:
393
            p = None
394
            proc = None
395
            if filename[-1] == '|':
396
397
398
399
400
401
402
                # universal_newlines for str output instead of bytes
                # when the pipe is read from Python (which happens
                # when timeout is set).
                proc = subprocess.Popen(filename[:-1], shell=True,
                                        preexec_fn=os.setsid,
                                        universal_newlines=True,
                                        stdout=subprocess.PIPE)
403
404
                if timeout is None:
                    p = automaton_stream_parser(proc.stdout.fileno(),
405
                                                filename, o)
406
                else:
407
408
409
410
411
412
413
                    try:
                        out, err = proc.communicate(timeout=timeout)
                    except subprocess.TimeoutExpired:
                        # Using subprocess.check_output() with timeout
                        # would just kill the shell, not its children.
                        os.killpg(proc.pid, signal.SIGKILL)
                        raise
414
415
416
417
418
                    else:
                        ret = proc.wait()
                        if ret:
                            raise subprocess.CalledProcessError(ret,
                                                                filename[:-1])
419
420
                    finally:
                        proc = None
421
                    p = automaton_stream_parser(out, filename, o)
422
            elif '\n' in filename:
423
                p = automaton_stream_parser(filename, "<string>", o)
424
            else:
425
                p = automaton_stream_parser(filename, o)
426
427
            a = True
            while a:
428
                # This returns None when we reach the end of the file.
429
                a = p.parse(_bdd_dict).aut
430
431
432
                if a:
                    yield a
        finally:
433
434
            # Make sure we destroy the parser (p) and the subprocess
            # (prop) in the correct order...
435
            del p
436
            if proc is not None:
437
438
                if not a:
                    # We reached the end of the stream.  Wait for the
439
                    # process to finish, so that we get its exit code.
440
441
442
                    ret = proc.wait()
                else:
                    # if a != None, we probably got there through an
443
                    # exception, and the subprocess might still be
444
445
446
                    # running.  Check if an exit status is available
                    # just in case.
                    ret = proc.poll()
447
448
                del proc
                if ret:
449
                    raise subprocess.CalledProcessError(ret, filename[:-1])
450
451
452
453
454
455
    # deleting o explicitely now prevents Python 3.5 from
    # reporting the following error: "<built-in function
    # delete_automaton_parser_options> returned a result with
    # an error set".  It's not clear to me if the bug is in Python
    # or Swig.  At least it's related to the use of generators.
    del o
456
457
    return

458

459
def automaton(filename, **kwargs):
460
461
    """Read a single automaton from a file.

462
    See `spot.automata` for a list of supported formats."""
463
    try:
464
        return next(automata(filename, **kwargs))
465
466
    except StopIteration:
        raise RuntimeError("Failed to read automaton from {}".format(filename))
467

468

469
def _postproc_translate_options(obj, default_type, *args):
470
471
472
473
474
475
476
477
478
    type_ = None
    pref_ = None
    optm_ = None
    comp_ = 0
    unam_ = 0
    sbac_ = 0

    def type_set(val):
        nonlocal type_
479
        if type_ is not None and type_ != val:
480
481
            raise ValueError("type cannot be both {} and {}"
                             .format(type_, val))
482
483
        elif val == 'generic':
            type_ = postprocessor.Generic
484
485
486
487
        elif val == 'tgba':
            type_ = postprocessor.TGBA
        elif val == 'ba':
            type_ = postprocessor.BA
488
        else:
489
490
491
492
493
            assert(val == 'monitor')
            type_ = postprocessor.Monitor

    def pref_set(val):
        nonlocal pref_
494
        if pref_ is not None and pref_ != val:
495
496
497
498
499
500
501
502
503
504
505
506
            raise ValueError("preference cannot be both {} and {}"
                             .format(pref_, val))
        elif val == 'small':
            pref_ = postprocessor.Small
        elif val == 'deterministic':
            pref_ = postprocessor.Deterministic
        else:
            assert(val == 'any')
            pref_ = postprocessor.Any

    def optm_set(val):
        nonlocal optm_
507
        if optm_ is not None and optm_ != val:
508
509
            raise ValueError("optimization level cannot be both {} and {}"
                             .format(optm_, val))
510
        if val == 'high':
511
            optm_ = postprocessor.High
512
        elif val.startswith('med'):
513
514
            optm_ = postprocessor.Medium
        else:
515
            assert(val == 'low')
516
517
518
519
520
521
522
523
            optm_ = postprocessor.Low

    def misc_set(val):
        nonlocal comp_, unam_, sbac_
        if val == 'complete':
            comp_ = postprocessor.Complete
        elif val == 'sbacc' or val == 'state-based-acceptance':
            sbac_ = postprocessor.SBAcc
524
        else:
525
526
527
528
529
530
531
            assert(val == 'unambiguous')
            unam_ = postprocessor.Unambiguous

    options = {
        'tgba': type_set,
        'ba': type_set,
        'monitor': type_set,
532
        'generic': type_set,
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        'small': pref_set,
        'deterministic': pref_set,
        'any': pref_set,
        'high': optm_set,
        'medium': optm_set,
        'low': optm_set,
        'complete': misc_set,
        'unambiguous': misc_set,
        'statebasedacceptance': misc_set,
        'sbacc': misc_set,
    }

    for arg in args:
        arg = arg.lower()
        fn = options.get(arg)
        if fn:
            fn(arg)
550
        else:
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
            # arg is not an know option, but maybe it is a prefix of
            # one of them
            compat = []
            f = None
            for key, fn in options.items():
                if key.startswith(arg):
                    compat.append(key)
                    f = fn
            lc = len(compat)
            if lc == 1:
                f(compat[0])
            elif lc < 1:
                raise ValueError("unknown option '{}'".format(arg))
            else:
                raise ValueError("ambiguous option '{}' is prefix of {}"
                                 .format(arg, str(compat)))

568
    if type_ is None:
569
        type_ = default_type
570
    if pref_ is None:
571
        pref_ = postprocessor.Small
572
    if optm_ is None:
573
574
        optm_ = postprocessor.High

575
576
577
    obj.set_type(type_)
    obj.set_pref(pref_ | comp_ | unam_ | sbac_)
    obj.set_level(optm_)
578

579

580
def translate(formula, *args, dict=_bdd_dict):
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    """Translate a formula into an automaton.

    Keep in mind that 'Deterministic' expresses just a preference that
    may not be satisfied.

    The optional arguments should be strings among the following:
    - at most one in 'TGBA', 'BA', or 'Monitor'
      (type of automaton to build)
    - at most one in 'Small', 'Deterministic', 'Any'
      (preferred characteristics of the produced automaton)
    - at most one in 'Low', 'Medium', 'High'
      (optimization level)
    - any combination of 'Complete', 'Unambiguous', and
      'StateBasedAcceptance' (or 'SBAcc' for short)

    The default corresponds to 'tgba', 'small' and 'high'.
    """
598
    a = translator(dict)
599
600
601
    _postproc_translate_options(a, postprocessor.TGBA, *args)
    if type(formula) == str:
        formula = parse_formula(formula)
602
    return a.run(formula)
603

604

605
formula.translate = translate
606

607

608
def postprocess(automaton, *args, formula=None):
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
    """Post process an automaton.

    This applies a number of simlification algorithms, depending on
    the options supplied. Keep in mind that 'Deterministic' expresses
    just a preference that may not be satisfied if the input is
    not already 'Deterministic'.

    The optional arguments should be strings among the following:
    - at most one in 'Generic', 'TGBA', 'BA', or 'Monitor'
      (type of automaton to build)
    - at most one in 'Small', 'Deterministic', 'Any'
      (preferred characteristics of the produced automaton)
    - at most one in 'Low', 'Medium', 'High'
      (optimization level)
    - any combination of 'Complete' and 'StateBasedAcceptance'
      (or 'SBAcc' for short)

    The default corresponds to 'generic', 'small' and 'high'.
627
628
629
630

    If a formula denoted by this automaton is known, pass it to as the
    optional `formula` argument; it can help some algorithms by
    providing an easy way to complement the automaton.
631
632
633
634
635
    """
    p = postprocessor()
    if type(automaton) == str:
        automaton = globals()['automaton'](automaton)
    _postproc_translate_options(p, postprocessor.Generic, *args)
636
    return p.run(automaton, formula)
637
638
639
640


twa.postprocess = postprocess

641
642
643
644
# Wrap C++-functions into lambdas so that they get converted into
# instance methods (i.e., self passed as first argument
# automatically), because only used-defined functions are converted as
# instance methods.
645
def _add_twa_graph(meth):
646
647
    setattr(twa_graph, meth, (lambda self, *args, **kwargs:
                              globals()[meth](self, *args, **kwargs)))
648

649
650
651
652
for meth in ('scc_filter', 'scc_filter_states',
             'is_deterministic', 'is_unambiguous'):
    _add_twa_graph(meth)

653
654
655
656
657
658
659
660
661
662
663
664
665
# Wrapper around a formula iterator to which we add some methods of formula
# (using _addfilter and _addmap), so that we can write things like
# formulas.simplify().is_X_free().
class formulaiterator:
    def __init__(self, formulas):
        self._formulas = formulas

    def __iter__(self):
        return self

    def __next__(self):
        return next(self._formulas)

666

667
668
669
670
671
672
673
# fun shoud be a predicate and should be a method of formula.
# _addfilter adds this predicate as a filter whith the same name in
# formulaiterator.
def _addfilter(fun):
    def filtf(self, *args, **kwargs):
        it = filter(lambda f: getattr(f, fun)(*args, **kwargs), self)
        return formulaiterator(it)
674

675
676
677
    def nfiltf(self, *args, **kwargs):
        it = filter(lambda f: not getattr(f, fun)(*args, **kwargs), self)
        return formulaiterator(it)
678

679
    if fun[:3] == 'is_':
680
        notfun = 'is_not_' + fun[3:]
681
    elif fun[:4] == 'has_':
682
        notfun = 'has_no_' + fun[4:]
683
684
685
686
687
    else:
        notfun = 'not_' + fun
    setattr(formulaiterator, fun, filtf)
    setattr(formulaiterator, notfun, nfiltf)

688
689
690
691

# fun should be a function taking a formula as its first parameter and
# returning a formula.  _addmap adds this function as a method of
# formula and formulaiterator.
692
693
694
def _addmap(fun):
    def mapf(self, *args, **kwargs):
        return formulaiterator(map(lambda f: getattr(f, fun)(*args, **kwargs),
695
696
                                   self))
    setattr(formula, fun,
697
698
            lambda self, *args, **kwargs:
            globals()[fun](self, *args, **kwargs))
699
700
    setattr(formulaiterator, fun, mapf)

701
702

def randltl(ap, n=-1, **kwargs):
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
    """Generate random formulas.

    Returns a random formula iterator.

    ap: the number of atomic propositions used to generate random formulas.

    n: number of formulas to generate, or unbounded if n < 0.

    **kwargs:
    seed: seed for the random number generator (0).
    output: can be 'ltl', 'psl', 'bool' or 'sere' ('ltl').
    allow_dups: allow duplicate formulas (False).
    tree_size: tree size of the formulas generated, before mandatory
    simplifications (15)
    boolean_priorities: set priorities for Boolean formulas.
    ltl_priorities: set priorities for LTL formulas.
    sere_priorities: set priorities for SERE formulas.
    dump_priorities: show current priorities, do not generate any formula.
    simplify:
      0           No rewriting
      1           basic rewritings and eventual/universal rules
      2           additional syntactic implication rules
      3 (default) better implications using containment
    """
    opts = option_map()
    output_map = {
729
730
731
732
        "ltl": OUTPUTLTL,
        "psl": OUTPUTPSL,
        "bool": OUTPUTBOOL,
        "sere": OUTPUTSERE
733
734
735
736
737
    }

    if isinstance(ap, list):
        aprops = atomic_prop_set()
        for elt in ap:
738
            aprops.insert(formula.ap(elt))
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
        ap = aprops
    ltl_priorities = kwargs.get("ltl_priorities", None)
    sere_priorities = kwargs.get("sere_priorities", None)
    boolean_priorities = kwargs.get("boolean_priorities", None)
    output = output_map[kwargs.get("output", "ltl")]
    opts.set("output", output)
    opts.set("seed", kwargs.get("seed", 0))
    tree_size = kwargs.get("tree_size", 15)
    if isinstance(tree_size, tuple):
        tree_size_min, tree_size_max = tree_size
    else:
        tree_size_min = tree_size_max = tree_size
    opts.set("tree_size_min", tree_size_min)
    opts.set("tree_size_max", tree_size_max)
    opts.set("unique", not kwargs.get("allow_dups", False))
    opts.set("wf", kwargs.get("weak_fairness", False))
    simpl_level = kwargs.get("simplify", 0)
    if simpl_level > 3 or simpl_level < 0:
        sys.stderr.write('invalid simplification level: ' + simpl_level)
        return
    opts.set("simplification_level", simpl_level)

    rg = randltlgenerator(ap, opts, ltl_priorities, sere_priorities,
762
                          boolean_priorities)
763
764
765
766
767

    dump_priorities = kwargs.get("dump_priorities", False)
    if dump_priorities:
        dumpstream = ostringstream()
        if output == OUTPUTLTL:
768
769
            print('Use argument ltl_priorities=STRING to set the following '
                  'LTL priorities:\n')
770
771
772
            rg.dump_ltl_priorities(dumpstream)
            print(dumpstream.str())
        elif output == OUTPUTBOOL:
773
774
            print('Use argument boolean_priorities=STRING to set the '
                  'following Boolean formula priorities:\n')
775
776
777
778
            rg.dump_bool_priorities(dumpstream)
            print(dumpstream.str())
        elif output == OUTPUTPSL or output == OUTPUTSERE:
            if output != OUTPUTSERE:
779
780
                print('Use argument ltl_priorities=STRING to set the '
                      'following LTL priorities:\n')
781
782
                rg.dump_psl_priorities(dumpstream)
                print(dumpstream.str())
783
784
            print('Use argument sere_priorities=STRING to set the '
                  'following SERE priorities:\n')
785
786
            rg.dump_sere_priorities(dumpstream)
            print(dumpstream.str())
787
788
            print('Use argument boolean_priorities=STRING to set the '
                  'following Boolean formula priorities:\n')
789
790
791
792
793
794
            rg.dump_sere_bool_priorities(dumpstream)
            print(dumpstream.str())
        else:
            sys.stderr.write("internal error: unknown type of output")
        return

795
796
797
798
799
    class _randltliterator:
        def __init__(self, rg, n):
            self.rg = rg
            self.i = 0
            self.n = n
800

801
802
        def __iter__(self):
            return self
803

804
805
806
807
        def __next__(self):
            if self.i == self.n:
                raise StopIteration
            f = self.rg.next()
808
            if f is None:
809
810
811
812
813
814
815
816
                sys.stderr.write("Warning: could not generate a new "
                                 "unique formula after {} trials.\n"
                                 .format(MAX_TRIALS))
                raise StopIteration
            self.i += 1
            return f

    return formulaiterator(_randltliterator(rg, n))
817

818

819
820
821
def simplify(f, **kwargs):
    level = kwargs.get('level', None)
    if level is not None:
822
        return tl_simplifier(tl_simplifier_options(level)).simplify(f)
823
824
825
826

    basics = kwargs.get('basics', True)
    synt_impl = kwargs.get('synt_impl', True)
    event_univ = kwargs.get('event_univ', True)
827
828
    cont_checks = kwargs.get('containment_checks', False)
    cont_checks_stronger = kwargs.get('containment_checks_stronger', False)
829
830
831
832
833
    nenoform_stop_on_boolean = kwargs.get('nenoform_stop_on_boolean', False)
    reduce_size_strictly = kwargs.get('reduce_size_strictly', False)
    boolean_to_isop = kwargs.get('boolean_to_isop', False)
    favor_event_univ = kwargs.get('favor_event_univ', False)

834
    simp_opts = tl_simplifier_options(basics,
835
836
                                       synt_impl,
                                       event_univ,
837
838
                                       cont_checks,
                                       cont_checks_stronger,
839
840
841
842
                                       nenoform_stop_on_boolean,
                                       reduce_size_strictly,
                                       boolean_to_isop,
                                       favor_event_univ)
843
    return tl_simplifier(simp_opts).simplify(f)
844

845

846
for fun in dir(formula):
847
848
    if (callable(getattr(formula, fun)) and (fun[:3] == 'is_' or
                                             fun[:4] == 'has_')):
849
850
        _addfilter(fun)

851
852
for fun in ['remove_x', 'relabel', 'relabel_bse',
            'simplify', 'unabbreviate']:
853
    _addmap(fun)
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877



# Better interface to the corresponding C++ function.
def sat_minimize(aut, acc=None, colored=False,
                 state_based=False, states=0,
                 max_states=0, dichotomy=False):
    args=''
    if acc is not None:
        if type(acc) is not str:
            raise ValueError("argument 'acc' should be a string")
        args += ',acc="' + acc + '"'
    if colored:
        args += ',colored'
    if states:
        if type(states) is not int or states < 0:
            raise ValueError("argument 'states' should be a positive integer")
        args += ',states=' + str(states)
    if max_states:
        if type(max_states) is not int or max_states < 0:
            raise ValueError("argument 'states' should be a positive integer")
        args += ',max-states=' + str(max_states)
    if dichotomy:
        args += ',dichotomy';
878
    from spot.impl import sat_minimize as sm
879
    return sm(aut, args, state_based)