dtbasat.cc 24.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// -*- coding: utf-8 -*-
// Copyright (C) 2013 Laboratoire de Recherche et Développement
// de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

#include <iostream>
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
21
#include <fstream>
22
23
24
25
26
27
#include <sstream>
#include "dtbasat.hh"
#include "reachiter.hh"
#include <map>
#include <utility>
#include "scc.hh"
28
#include "isweakscc.hh"
29
30
31
#include "tgba/bddprint.hh"
#include "ltlast/constant.hh"
#include "stats.hh"
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
32
#include "misc/satsolver.hh"
33

34
35
36
// If you set the SPOT_TMPKEEP environment variable the temporary
// file used to communicate with the sat solver will be left in
// the current directory.
37
//
38
39
40
41
// Additionally, if the following DEBUG macro is set to 1, the CNF
// file will be output with a comment before each clause, and an
// additional output file (dtba-sat.dbg) will be created with a list
// of all positive variables in the result and their meaning.
42
43
44
45

#define DEBUG 0
#if DEBUG
#define dout out << "c "
46
#define trace std::cerr
47
#else
48
49
#define dout while (0) std::cout
#define trace dout
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#endif

namespace spot
{
  namespace
  {
    static bdd_dict* debug_dict = 0;

    struct transition
    {
      int src;
      bdd cond;
      int dst;

      transition(int src, bdd cond, int dst)
	: src(src), cond(cond), dst(dst)
      {
      }

      bool operator<(const transition& other) const
      {
	if (this->src < other.src)
	  return true;
	if (this->src > other.src)
	  return false;
	if (this->dst < other.dst)
	  return true;
	if (this->dst > other.dst)
	  return false;
	return this->cond.id() < other.cond.id();
      }

      bool operator==(const transition& other) const
      {
	return (this->src == other.src
		&& this->dst == other.dst
		&& this->cond.id() == other.cond.id());
      }
    };

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    struct src_cond
    {
      int src;
      bdd cond;

      src_cond(int src, bdd cond)
	: src(src), cond(cond)
      {
      }

      bool operator<(const src_cond& other) const
      {
	if (this->src < other.src)
	  return true;
	if (this->src > other.src)
	  return false;
	return this->cond.id() < other.cond.id();
      }

      bool operator==(const src_cond& other) const
      {
	return (this->src == other.src
		&& this->cond.id() == other.cond.id());
      }
    };

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    struct state_pair
    {
      int a;
      int b;

      state_pair(int a, int b)
	: a(a), b(b)
      {
      }

      bool operator<(const state_pair& other) const
      {
	if (this->a < other.a)
	  return true;
	if (this->a > other.a)
	  return false;
	if (this->b < other.b)
	  return true;
	if (this->b > other.b)
	  return false;
	return false;
      }
    };

    struct path
    {
      int src_cand;
      int src_ref;
      int dst_cand;
      int dst_ref;

      path(int src_cand, int src_ref,
	   int dst_cand, int dst_ref)
	: src_cand(src_cand), src_ref(src_ref),
	  dst_cand(dst_cand), dst_ref(dst_ref)
      {
      }

      bool operator<(const path& other) const
      {
	if (this->src_cand < other.src_cand)
	  return true;
	if (this->src_cand > other.src_cand)
	  return false;
	if (this->src_ref < other.src_ref)
	  return true;
	if (this->src_ref > other.src_ref)
	  return false;
	if (this->dst_cand < other.dst_cand)
	  return true;
	if (this->dst_cand > other.dst_cand)
	  return false;
	if (this->dst_ref < other.dst_ref)
	  return true;
	if (this->dst_ref > other.dst_ref)
	  return false;
	return false;
      }

    };

    std::ostream& operator<<(std::ostream& os, const state_pair& p)
    {
      os << "<" << p.a << "," << p.b << ">";
      return os;
    }

    std::ostream& operator<<(std::ostream& os, const transition& t)
    {
      os << "<" << t.src << ","
	 << bdd_format_formula(debug_dict, t.cond)
	 << "," << t.dst << ">";
      return os;
    }

    std::ostream& operator<<(std::ostream& os, const path& p)
    {
      os << "<"
	 << p.src_cand << ","
	 << p.src_ref << ","
	 << p.dst_cand << ","
	 << p.dst_ref << ">";
      return os;
    }

    struct dict
    {
      typedef std::map<transition, int> trans_map;
      trans_map transid;
      trans_map transacc;
      typedef std::map<int, transition> rev_map;
      rev_map revtransid;
      rev_map revtransacc;
209
      std::set<int> weak_scc;
210
211

      std::map<state_pair, int> prodid;
212
      std::map<state_pair, int> pathcand;
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
      std::map<path, int> pathid_ref;
      std::map<path, int> pathid_cand;
      int nvars;
      typedef Sgi::hash_map<const state*, int,
			    state_ptr_hash, state_ptr_equal> state_map;
      typedef Sgi::hash_map<int, const state*> int_map;
      state_map state_to_int;
      int_map int_to_state;
      int cand_size;

      ~dict()
      {
	state_map::const_iterator s = state_to_int.begin();
	while (s != state_to_int.end())
	  // Always advance the iterator before deleting the key.
	  s++->first->destroy();
      }
    };


    class filler_dfs: public tgba_reachable_iterator_depth_first
    {
    protected:
      dict& d;
      int size_;
      bdd ap_;
239
      bool state_based_;
240
      scc_map& sm_;
241
    public:
242
243
      filler_dfs(const tgba* aut, dict& d, bdd ap, bool state_based,
		 scc_map& sm)
244
	: tgba_reachable_iterator_depth_first(aut), d(d), ap_(ap),
245
	  state_based_(state_based), sm_(sm)
246
247
      {
	d.nvars = 0;
248
249
250
251
	unsigned count = sm.scc_count();
	for (unsigned i = 0; i < count; ++i)
	  if (!sm_.trivial(i) && is_weak_scc(sm, i))
	    d.weak_scc.insert(i);
252
253
254
255
256
257
258
259
260
261
262
263
264
265
      }

      int size()
      {
	return size_;
      }

      void end()
      {
	size_ = seen.size();

	if (d.cand_size == -1)
	  d.cand_size = size_ - 1;

266
	// Reverse the "seen" map.  States are labeled from 1 to size_.
267
268
	for (dict::state_map::const_iterator i2 = seen.begin();
	     i2 != seen.end(); ++i2)
269
270
271
	  d.int_to_state[i2->second] = i2->first;

	for (int i = 1; i <= size_; ++i)
272
	  {
273
274
275
276
	    unsigned i_scc = sm_.scc_of_state(d.int_to_state[i]);

	    bool is_weak = sm_.trivial(i_scc)
	      || (d.weak_scc.find(i_scc) != d.weak_scc.end());
277

278
279
280
281
	    for (int j = 1; j <= d.cand_size; ++j)
	      {
		d.prodid[state_pair(j, i)] = ++d.nvars;

282
		// skip weak or trivial SCCs
283
		if (is_weak)
284
		  continue;
285

286
		for (int k = 1; k <= size_; ++k)
287
		  {
288
		    if (sm_.scc_of_state(d.int_to_state[k]) != i_scc)
289
290
		      continue;
		    for (int l = 1; l <= d.cand_size; ++l)
291
		    {
292
293
		      if (i == k && j == l)
			continue;
294
295
296
297
		      path p(j, i, l, k);
		      d.pathid_ref[p] = ++d.nvars;
		      d.pathid_cand[p] = ++d.nvars;
		    }
298
		  }
299
300
301
302
303
304
	      }
	  }

	std::swap(d.state_to_int, seen);

	for (int i = 1; i <= d.cand_size; ++i)
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
	  {
	    int transacc = -1;
	    if (state_based_)
	      // All outgoing transitions use the same acceptance variable.
	      transacc = ++d.nvars;

	    for (int j = 1; j <= d.cand_size; ++j)
	      {
		bdd all = bddtrue;
		while (all != bddfalse)
		  {
		    bdd one = bdd_satoneset(all, ap_, bddfalse);
		    all -= one;

		    transition t(i, one, j);
		    d.transid[t] = ++d.nvars;
		    d.revtransid.insert(dict::rev_map::value_type(d.nvars, t));
		    int ta = d.transacc[t] =
		      state_based_ ? transacc : ++d.nvars;
		    d.revtransacc.insert(dict::rev_map::value_type(ta, t));
		  }
	      }
	  }
328
329
330
331
332
333
334
335
336
337
338


	if (!d.weak_scc.empty())
	  {
	    for (int i = 1; i <= d.cand_size; ++i)
	      for (int j = 1; j <= d.cand_size; ++j)
		{
		  state_pair pc(i, j);
		  d.pathcand[pc] = ++d.nvars;
		}
	  }
339
340
341
342
      }
    };

    static
343
344
    void dtba_to_sat(std::ostream& out, const tgba* ref, dict& d,
		     bool state_based)
345
    {
346
      clause_counter nclauses;
347
348
349
350
351
352
      int ref_size = 0;

      scc_map sm(ref);
      sm.build_map();
      bdd ap = sm.aprec_set_of(sm.initial());

353
354
355
356
357
358
359
360
361
362
363
364
      // Count the number of atomic propositions
      int nap = 0;
      {
	bdd cur = ap;
	while (cur != bddtrue)
	  {
	    ++nap;
	    cur = bdd_high(cur);
	  }
	nap = 1 << nap;
      }

365
366
      // Number all the SAT variable we may need.
      {
367
	filler_dfs f(ref, d, ap, state_based, sm);
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
	f.run();
	ref_size = f.size();
      }

      // empty automaton is impossible
      if (d.cand_size == 0)
	{
	  out << "p cnf 1 2\n-1 0\n1 0\n";
	  return;
	}

      // An empty line for the header
      out << "                                                 \n";

#if DEBUG
      debug_dict = ref->get_dict();
384
385
      dout << "ref_size: " << ref_size << "\n";
      dout << "cand_size: " << d.cand_size << "\n";
386
387
#endif

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
      dout << "symmetry-breaking clauses\n";
      int j = 0;
      bdd all = bddtrue;
      while (all != bddfalse)
 	{
 	  bdd s = bdd_satoneset(all, ap, bddfalse);
 	  all -= s;
 	  for (int i = 1; i < d.cand_size; ++i)
 	    for (int k = (i - 1) * nap + j + 3; k <= d.cand_size; ++k)
	      {
		transition t(i, s, k);
		int ti = d.transid[t];
		dout << "¬" << t << "\n";
		out << -ti << " 0\n";
		++nclauses;
	      }
 	  ++j;
 	}
406
      if (!nclauses.nb_clauses())
407
 	dout << "(none)\n";
408

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
      dout << "(1) the candidate automaton is complete\n";
      for (int q1 = 1; q1 <= d.cand_size; ++q1)
	{
	  bdd all = bddtrue;
	  while (all != bddfalse)
	    {
	      bdd s = bdd_satoneset(all, ap, bddfalse);
	      all -= s;

#if DEBUG
	      dout;
	      for (int q2 = 1; q2 <= d.cand_size; q2++)
		{
		  transition t(q1, s, q2);
		  out << t << "δ";
		  if (q2 != d.cand_size)
		    out << " ∨ ";
		}
	      out << "\n";
#endif

	      for (int q2 = 1; q2 <= d.cand_size; q2++)
		{
		  transition t(q1, s, q2);
		  int ti = d.transid[t];

		  out << ti << " ";
		}
	      out << "0\n";

	      ++nclauses;
	    }
	}

      dout << "(2) the initial state is reachable\n";
      dout << state_pair(1, 1) << "\n";
      out << d.prodid[state_pair(1, 1)] << " 0\n";
      ++nclauses;

      for (std::map<state_pair, int>::const_iterator pit = d.prodid.begin();
	   pit != d.prodid.end(); ++pit)
	{
	  int q1 = pit->first.a;
	  int q1p = pit->first.b;

	  dout << "(3) augmenting paths based on Cand[" << q1
	       << "] and Ref[" << q1p << "]\n";
	  tgba_succ_iterator* it = ref->succ_iter(d.int_to_state[q1p]);
	  for (it->first(); !it->done(); it->next())
	    {
	      const state* dps = it->current_state();
	      int dp = d.state_to_int[dps];
	      dps->destroy();

	      bdd all = it->current_condition();
	      while (all != bddfalse)
		{
		  bdd s = bdd_satoneset(all, ap, bddfalse);
		  all -= s;

		  for (int q2 = 1; q2 <= d.cand_size; q2++)
		    {
		      transition t(q1, s, q2);
		      int ti = d.transid[t];

		      state_pair p2(q2, dp);
		      int succ = d.prodid[p2];

477
478
479
		      if (pit->second == succ)
			continue;

480
481
482
483
484
485
486
487
488
489
		      dout << pit->first << " ∧ " << t << "δ → " << p2 << "\n";
		      out << -pit->second << " " << -ti << " "
			  << succ << " 0\n";
		      ++nclauses;
		    }
		}
	    }
	  delete it;
	}

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
      if (!d.weak_scc.empty())
	{
	  dout << "Rules for tracking paths in the candidate\n";

	  for (int q1 = 1; q1 <= d.cand_size; q1++)
	    {
	      state_pair q1q1(q1, q1);
	      int q1q1id = d.pathcand[q1q1];
	      dout << q1q1 << "C\n";
	      out << q1q1id << " 0\n";
	      ++nclauses;
	      for (int q2 = 1; q2 <= d.cand_size; q2++)
		{
		  state_pair q1q2(q1, q2);
		  int q1q2id = d.pathcand[q1q2];

		  for (int q3 = 1; q3 <= d.cand_size; q3++)
		    {
		      if (q3 == q1)
			continue;
		      state_pair q1q3(q1, q3);
		      int q1q3id = d.pathcand[q1q3];

		      bdd all = bddtrue;
		      while (all != bddfalse)
			{
			  bdd s = bdd_satoneset(all, ap, bddfalse);
			  all -= s;

			  transition t(q2, s, q3);
			  int ti = d.transid[t];

			  dout << q1q2 << "C ∧ " << t << "δ → "
			       << q1q3 << "C\n";
			  out << -q1q2id << ' ' << -ti << ' ' << q1q3id
			      << " 0\n";
			  ++nclauses;
			}
		    }
		}
	    }
	}

533
534
535
536
537
      bdd all_acc = ref->all_acceptance_conditions();

      // construction of contraints (4,5) : all loops in the product
      // where no accepting run is detected in the ref. automaton,
      // must also be marked as not accepting in the cand. automaton
538
539
540
      for (int q1p = 1; q1p <= ref_size; ++q1p)
	{
	  unsigned q1p_scc = sm.scc_of_state(d.int_to_state[q1p]);
541
542
	  if (sm.trivial(q1p_scc))
	    continue;
543
544
545
546
547
548
	  for (int q2p = 1; q2p <= ref_size; ++q2p)
	    {
	      // We are only interested in transition that can form a
	      // cycle, so they must belong to the same SCC.
	      if (sm.scc_of_state(d.int_to_state[q2p]) != q1p_scc)
		continue;
549
550
551
552
553
554
555
	      if (d.weak_scc.find(q1p_scc) == d.weak_scc.end())
		{
		  // The SCC is not weak.
		  for (int q1 = 1; q1 <= d.cand_size; ++q1)
		    for (int q2 = 1; q2 <= d.cand_size; ++q2)
		      {
			path p1(q1, q1p, q2, q2p);
556

557
558
			dout << "(4&5) matching paths from reference based on "
			     << p1 << "\n";
559

560
561
562
563
564
			int pid1;
			if (q1 == q2 && q1p == q2p)
			  pid1 = d.prodid[state_pair(q1, q1p)];
			else
			  pid1 = d.pathid_ref[p1];
565

566
567
568
			tgba_succ_iterator* it =
			  ref->succ_iter(d.int_to_state[q2p]);
			for (it->first(); !it->done(); it->next())
569
			  {
570
571
572
573
574
575
576
577
			    const state* dps = it->current_state();
			    // Skip destinations not in the SCC.
			    if (sm.scc_of_state(dps) != q1p_scc)
			      {
				dps->destroy();
				continue;
			      }
			    int dp = d.state_to_int[dps];
578
579
			    dps->destroy();

580
581
582
			    if (it->current_acceptance_conditions() == all_acc)
			      continue;
			    for (int q3 = 1; q3 <= d.cand_size; ++q3)
583
			      {
584
				if (dp == q1p && q3 == q1) // (4) looping
585
				  {
586
587
588
589
590
591
				    bdd all = it->current_condition();
				    while (all != bddfalse)
				      {
					bdd s = bdd_satoneset(all, ap,
							      bddfalse);
					all -= s;
592

593
594
595
					transition t(q2, s, q1);
					int ti = d.transid[t];
					int ta = d.transacc[t];
596

597
598
599
600
601
602
					dout << p1 << "R ∧ " << t << "δ → ¬"
					     << t << "F\n";
					out << -pid1 << " " << -ti << " "
					    << -ta << " 0\n";
					++nclauses;
				      }
603
604


605
606
				  }
				else // (5) not looping
607
				  {
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
				    path p2 = path(q1, q1p, q3, dp);
				    int pid2 = d.pathid_ref[p2];

				    if (pid1 == pid2)
				      continue;

				    bdd all = it->current_condition();
				    while (all != bddfalse)
				      {
					bdd s = bdd_satoneset(all, ap,
							      bddfalse);
					all -= s;

					transition t(q2, s, q3);
					int ti = d.transid[t];

					dout << p1 << "R ∧ " << t << "δ → "
					     << p2 << "R\n";
					out << -pid1 << " " << -ti << " "
					    << pid2 << " 0\n";
					++nclauses;
				      }
630
631
632
				  }
			      }
			  }
633
			delete it;
634
		      }
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
		}
	      else		// The SCC is weak.
		{
		  for (int q1 = 1; q1 <= d.cand_size; ++q1)
		    {
		      state_pair q1q1p(q1, q1p);
		      int q1q1pid = d.prodid[q1q1p];

		      for (int q2 = 1; q2 <= d.cand_size; ++q2)
			{
			  state_pair q2q2p(q2, q2p);
			  int q2q2pid = d.prodid[q2q2p];

			  state_pair q1q2(q1, q2);
			  int q1q2id = d.pathcand[q1q2];

			  tgba_succ_iterator* it =
			    ref->succ_iter(d.int_to_state[q2p]);


			  for (it->first(); !it->done(); it->next())
			    {
			      const state* dps = it->current_state();
			      int dp = d.state_to_int[dps];
			      dps->destroy();
			      // Skip destinations different from q1.
			      if (dp != q1p)
				continue;

			      bdd all = it->current_condition();
			      while (all != bddfalse)
				{
				  bdd s = bdd_satoneset(all, ap,
							bddfalse);
				  all -= s;

				  transition t(q2, s, q1);
				  int tid = d.transid[t];
				  int tacc = d.transacc[t];

				  if (sm.accepting(q1p_scc))
				    {
				      dout << q1q1p << " ∧ "
					   << q2q2p << " ∧ "
					   << q1q2 << "C ∧ "
					   << t << "δ → " << t << "F \n";
				      out << -q1q1pid << ' '
					  << -q2q2pid << ' '
					  << -q1q2id << ' '
					  << -tid << ' '
					  << tacc << " 0\n";
				    }
				  else
				    {
				      dout << q1q1p << " ∧ "
					   << q2q2p << " ∧ "
					   << q1q2 << "C ∧ "
					   << t << "δ → ¬" << t << "F \n";
				      out << -q1q1pid << ' '
					  << -q2q2pid << ' '
					  << -q1q2id << ' '
					  << -tid << ' '
					  << -tacc << " 0\n";
				    }
				  ++nclauses;
				}
			    }
			  delete it;
			}
		    }
		}
706
707
	    }
	}
708
709
710
      // construction of contraints (6,7): all loops in the product
      // where accepting run is detected in the ref. automaton, must
      // also be marked as accepting in the candidate.
711
712
713
      for (int q1p = 1; q1p <= ref_size; ++q1p)
	{
	  unsigned q1p_scc = sm.scc_of_state(d.int_to_state[q1p]);
714
715
	  if (sm.trivial(q1p_scc))
	    continue;
716
717
718
719
720
721
	  for (int q2p = 1; q2p <= ref_size; ++q2p)
	    {
	      // We are only interested in transition that can form a
	      // cycle, so they must belong to the same SCC.
	      if (sm.scc_of_state(d.int_to_state[q2p]) != q1p_scc)
		continue;
722
723
724
	      // Weak SCCs have already be dealt with.
	      if (d.weak_scc.find(q1p_scc) != d.weak_scc.end())
		continue;
725
726
727
728
729
730
	      for (int q1 = 1; q1 <= d.cand_size; ++q1)
		for (int q2 = 1; q2 <= d.cand_size; ++q2)
		  {
		    path p1(q1, q1p, q2, q2p);
		    dout << "(6&7) matching paths from candidate based on "
			 << p1 << "\n";
731
732
733
734
735
736

		    int pid1;
		    if (q1 == q2 && q1p == q2p)
		      pid1 = d.prodid[state_pair(q1, q1p)];
		    else
		      pid1 = d.pathid_cand[p1];
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

		    tgba_succ_iterator* it =
		      ref->succ_iter(d.int_to_state[q2p]);
		    for (it->first(); !it->done(); it->next())
		      {
			const state* dps = it->current_state();
			// Skip destinations not in the SCC.
			if (sm.scc_of_state(dps) != q1p_scc)
			  {
			    dps->destroy();
			    continue;
			  }
			int dp = d.state_to_int[dps];
			dps->destroy();
			for (int q3 = 1; q3 <= d.cand_size; q3++)
			  {
			    if (dp == q1p && q3 == q1) // (6) looping
			      {
				// We only care about the looping case if
				// it is accepting in the reference.
				if (it->current_acceptance_conditions()
				    != all_acc)
				  continue;
				bdd all = it->current_condition();
				while (all != bddfalse)
				  {
				    bdd s = bdd_satoneset(all, ap, bddfalse);
				    all -= s;

				    transition t(q2, s, q1);
				    int ti = d.transid[t];
				    int ta = d.transacc[t];

				    dout << p1 << "C ∧ " << t << "δ → " << t
					 << "F\n";
				    out << -pid1 << " " << -ti << " " << ta
					<< " 0\n";
				    ++nclauses;
				  }
			      }
			    else // (7) no loop
			      {
				path p2 = path(q1, q1p, q3, dp);
				int pid2 = d.pathid_cand[p2];

				if (pid1 == pid2)
				  continue;

				bdd all = it->current_condition();
				while (all != bddfalse)
				  {
				    bdd s = bdd_satoneset(all, ap, bddfalse);
				    all -= s;

				    transition t(q2, s, q3);
				    int ti = d.transid[t];
				    int ta = d.transacc[t];

				    dout << p1 << "C ∧ " << t << "δ ∧ ¬"
					 << t << "F → " << p2 << "C\n";

				    out << -pid1 << " " << -ti << " "
					<< ta << " " << pid2 << " 0\n";
				    ++nclauses;
				  }
			      }
			  }
		      }
		    delete it;
		  }
	    }
	}
809
      out.seekp(0);
810
      out << "p cnf " << d.nvars << " " << nclauses.nb_clauses();
811
812
813
    }

    static tgba_explicit_number*
814
815
    sat_build(const satsolver::solution& solution, dict& satdict,
	      const tgba* aut, bool state_based)
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
    {
      bdd_dict* autdict = aut->get_dict();
      tgba_explicit_number* a = new tgba_explicit_number(autdict);
      autdict->register_all_variables_of(aut, a);

      const ltl::formula* t = ltl::constant::true_instance();
      bdd acc = bdd_ithvar(autdict->register_acceptance_variable(t, a));
      a->set_acceptance_conditions(acc);

      for (int s = 1; s < satdict.cand_size; ++s)
	a->add_state(s);

      state_explicit_number::transition* last_aut_trans = 0;
      const transition* last_sat_trans = 0;

#if DEBUG
      std::fstream out("dtba-sat.dbg",
		       std::ios_base::trunc | std::ios_base::out);
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
834
      out.exceptions(std::ifstream::failbit | std::ifstream::badbit);
835
836
837
838
      std::set<int> positive;
#endif

      dout << "--- transition variables ---\n";
839
      std::set<int> acc_states;
840
      std::set<src_cond> seen_trans;
841
      for (satsolver::solution::const_iterator i = solution.begin();
842
	   i != solution.end(); ++i)
843
	{
844
	  int v = *i;
845
846
847
848
849
850
851
852
853
854
855
856

	  if (v < 0)  // FIXME: maybe we can have (v < NNN)?
	    continue;

#if DEBUG
	  positive.insert(v);
#endif

	  dict::rev_map::const_iterator t = satdict.revtransid.find(v);

	  if (t != satdict.revtransid.end())
	    {
857
858
859
860
861
862
863
864
	      // Skip (s,l,d2) if we have already seen some (s,l,d1).
	      if (seen_trans.insert(src_cond(t->second.src,
					     t->second.cond)).second)
		{
		  last_aut_trans = a->create_transition(t->second.src,
							t->second.dst);
		  last_aut_trans->condition = t->second.cond;
		  last_sat_trans = &t->second;
865

866
		  dout << v << "\t" << t->second << \n";
867

868
869
870
871
872
		  // Mark the transition as accepting if the source is.
		  if (state_based
		      && acc_states.find(t->second.src) != acc_states.end())
		    last_aut_trans->acceptance_conditions = acc;
		}
873
874
875
876
877
878
879
880
	    }
	  else
	    {
	      t = satdict.revtransacc.find(v);
	      if (t != satdict.revtransacc.end())
		{
		  dout << v << "\t" << t->second << "F\n";
		  if (last_sat_trans && t->second == *last_sat_trans)
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
		    {
		      assert(!state_based);
		      // This assumes that the SAT solvers output
		      // variables in increasing order.
		      last_aut_trans->acceptance_conditions = acc;
		    }
		  else if (state_based)
		    {
		      // Accepting translations actually correspond to
		      // states and are announced before listing
		      // outgoing transitions.  Again, this assumes
		      // that the SAT solvers output variables in
		      // increasing order.
		      acc_states.insert(t->second.src);
		    }
896
897
898
899
900
901
902
903
904
		}
	    }
	}
#if DEBUG
      dout << "--- state_pair variables ---\n";
      for (std::map<state_pair, int>::const_iterator pit =
	     satdict.prodid.begin(); pit != satdict.prodid.end(); ++pit)
	if (positive.find(pit->second) != positive.end())
	  dout << pit->second << "\t" << pit->first << "\n";
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
905
906
	else
	  dout << -pit->second << "\t¬" << pit->first << "C\n";
907
908
909
910
911
912
913

      dout << "--- pathid_cand variables ---\n";
      for (std::map<path, int>::const_iterator pit =
	     satdict.pathid_cand.begin();
	   pit != satdict.pathid_cand.end(); ++pit)
	if (positive.find(pit->second) != positive.end())
	  dout << pit->second << "\t" << pit->first << "C\n";
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
914
915
916
	else
	  dout << -pit->second << "\t¬" << pit->first << "C\n";

917
918
919
920
921
922
923

      dout << "--- pathid_ref variables ---\n";
      for (std::map<path, int>::const_iterator pit =
	     satdict.pathid_ref.begin();
	   pit != satdict.pathid_ref.end(); ++pit)
	if (positive.find(pit->second) != positive.end())
	  dout << pit->second << "\t" << pit->first << "R\n";
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
924
925
926
927
928
929
930
931
932
933
934
935
	else
	  dout << -pit->second << "\t¬" << pit->first << "C\n";

      dout << "--- pathcand variables ---\n";
      for (std::map<state_pair, int>::const_iterator pit =
	     satdict.pathcand.begin();
	   pit != satdict.pathcand.end(); ++pit)
	if (positive.find(pit->second) != positive.end())
	  dout << pit->second << "\t" << pit->first << "C\n";
	else
	  dout << -pit->second << "\t¬" << pit->first << "C\n";

936
937
938
939
940
941
942
943
#endif

      a->merge_transitions();
      return a;
    }
  }

  tgba_explicit_number*
944
945
  dtba_sat_synthetize(const tgba* a, int target_state_number,
		      bool state_based)
946
  {
947
948
    trace << "dtba_sat_synthetize(..., states = " << target_state_number
	  << ", state_based = " << state_based << ")\n";
949
950
    dict d;
    d.cand_size = target_state_number;
951

952
953
    satsolver solver;
    satsolver::solution_pair solution;
954

955
956
    dtba_to_sat(solver(), a, d, state_based);
    solution = solver.get_solution();
957
958

    tgba_explicit_number* res = 0;
959
960
    if (!solution.second.empty())
      res = sat_build(solution.second, d, a, state_based);
961
962
963
964
965
966
967
968
969
970
971
972

    trace << "dtba_sat_synthetize(...) = " << res << "\n";
    return res;
  }

  tgba_explicit_number*
  dtba_sat_minimize(const tgba* a, bool state_based)
  {
    int n_states = stats_reachable(a).states;

    tgba_explicit_number* prev = 0;
    for (;;)
973
      {
974
975
976
977
978
979
	tgba_explicit_number* next =
	  dtba_sat_synthetize(prev ? prev : a, --n_states, state_based);
	if (next == 0)
	  break;
	delete prev;
	prev = next;
980
      }
981
982
    return prev;
  }
983

984
985
986
987
988
989
990
991
  tgba_explicit_number*
  dtba_sat_minimize_dichotomy(const tgba* a, bool state_based)
  {
    int max_states = stats_reachable(a).states - 1;
    int min_states = 1;

    tgba_explicit_number* prev = 0;
    while (min_states <= max_states)
992
      {
993
994
995
996
	int target = (max_states + min_states) / 2;
	tgba_explicit_number* next =
	  dtba_sat_synthetize(prev ? prev : a, target, state_based);
	if (next == 0)
997
	  {
998
999
1000
1001
1002
1003
1004
	    min_states = target + 1;
	  }
	else
	  {
	    delete prev;
	    prev = next;
	    max_states = target - 1;
1005
1006
	  }
      }
1007
    return prev;
1008
1009
  }
}