ltl2tgba_fm.cc 44.2 KB
Newer Older
1
2
3
// Copyright (C) 2008, 2009, 2010 Laboratoire de Recherche et
// Dveloppement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire
4
5
// d'Informatique de Paris 6 (LIP6), dpartement Systmes Rpartis
// Coopratifs (SRC), Universit Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

24
#include "misc/hash.hh"
25
#include "misc/bddalloc.hh"
26
#include "misc/bddlt.hh"
27
#include "misc/minato.hh"
28
29
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
30
31
32
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/tostring.hh"
33
#include "ltlvisit/postfix.hh"
34
#include "ltlvisit/apcollect.hh"
35
36
#include "ltlvisit/mark.hh"
#include "ltlvisit/tostring.hh"
37
#include <cassert>
38
#include <memory>
39
#include "ltl2tgba_fm.hh"
40
#include "ltlvisit/contain.hh"
41
42
#include "ltlvisit/consterm.hh"
#include "tgba/bddprint.hh"
43
44
45
46
47
48
49
50

namespace spot
{
  using namespace ltl;

  namespace
  {

51
52
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
53
54
55
56
57
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
58
    class translate_dict
59
60
61
    {
    public:

62
63
      translate_dict(bdd_dict* dict)
	: dict(dict),
64
65
66
67
68
69
70
71
72
73
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
74
	  i->first->destroy();
75
	dict->unregister_all_my_variables(this);
76
77
      }

78
79
      bdd_dict* dict;

80
81
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
82
83
84
85
86
87
88
89
90

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
91
      register_proposition(const formula* f)
92
      {
93
	int num = dict->register_proposition(f, this);
94
95
96
97
98
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
99
      register_a_variable(const formula* f)
100
      {
101
	int num = dict->register_acceptance_variable(f, this);
102
103
104
105
106
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
107
      register_next_variable(const formula* f)
108
109
110
111
112
113
114
115
116
117
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
118
	    f = f->clone();
119
	    num = dict->register_anonymous_variables(1, this);
120
121
122
123
124
125
126
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
	return os;
      }

142
      formula*
143
144
145
146
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
147
	  return isi->second->clone();
148
149
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
150
	  return isi->second->clone();
151
152
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
153
	  return isi->second->clone();
154
	assert(0);
155
156
157
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
158
159
      }

160
      formula*
161
      conj_bdd_to_formula(bdd b, multop::type op = multop::And) const
162
163
      {
	if (b == bddfalse)
164
165
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
166
167
168
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
169
	    formula* res = var_to_formula(var);
170
171
172
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
173
		res = unop::instance(unop::Not, res);
174
175
176
177
		b = bdd_low(b);
	      }
	    else
	      {
178
		assert(bdd_low(b) == bddfalse);
179
180
181
182
183
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
184
	return multop::instance(op, v);
185
186
      }

187
      formula*
188
      bdd_to_formula(bdd f)
189
      {
190
	if (f == bddfalse)
191
	  return constant::false_instance();
192

193
194
195
196
197
198
199
200
201
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
202
203

      void
204
      conj_bdd_to_acc(tgba_explicit_formula* a, bdd b,
Pierre PARUTTO's avatar
Pierre PARUTTO committed
205
		      state_explicit_formula::transition* t)
206
207
208
209
210
211
212
213
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
214
		// Simply ignore negated acceptance variables.
215
216
217
218
		b = bdd_low(b);
	      }
	    else
	      {
219
		formula* ac = var_to_formula(var);
220

221
		if (!a->has_acceptance_condition(ac))
222
		  a->declare_acceptance_condition(ac->clone());
223
		a->add_acceptance_condition(t, ac);
224
225
226
227
228
229
230
231
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


232
233
234
235
236
237
238
239
240
241
242
    // Debugging function.
    std::ostream&
    trace_ltl_bdd(const translate_dict& d, bdd f)
    {
      minato_isop isop(f);
      bdd cube;
      while ((cube = isop.next()) != bddfalse)
	{
	  bdd label = bdd_exist(cube, d.next_set);
	  bdd dest_bdd = bdd_existcomp(cube, d.next_set);
	  const formula* dest = d.conj_bdd_to_formula(dest_bdd);
243
244
245
246
	  bdd_print_set(std::cerr, d.dict, label) << " => ";
	  bdd_print_set(std::cerr, d.dict, dest_bdd) << " = "
						     << to_string(dest)
						     << std::endl;
247
248
249
250
251
252
	  dest->destroy();
	}
      return std::cerr;
    }


253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };

296
297
298
299
    // Rewrite rule for rational operators.
    class ratexp_trad_visitor: public const_visitor
    {
    public:
300
301
      ratexp_trad_visitor(translate_dict& dict, formula* to_concat = 0)
	: dict_(dict), to_concat_(to_concat)
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
      {
      }

      virtual
      ~ratexp_trad_visitor()
      {
	if (to_concat_)
	  to_concat_->destroy();
      }

      bdd
      result() const
      {
	return res_;
      }

      bdd next_to_concat()
      {
	if (!to_concat_)
	  to_concat_ = constant::empty_word_instance();
	int x = dict_.register_next_variable(to_concat_);
	return bdd_ithvar(x);
      }

      bdd now_to_concat()
      {
328
329
330
	if (to_concat_ && to_concat_ != constant::empty_word_instance())
	  return recurse(to_concat_);

331
	return bddfalse;
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = (bdd_ithvar(dict_.register_proposition(node))
		& next_to_concat());
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = next_to_concat();
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  case constant::EmptyWord:
	    res_ = now_to_concat();
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	  case unop::G:
	  case unop::Not:
	  case unop::X:
	  case unop::Finish:
370
371
372
	  case unop::Closure:
	  case unop::NegClosure:
	    break;
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
	    assert(!"not a rational operator");
	    return;
	  case unop::Star:
	    {
	      formula* f;
	      if (to_concat_)
		f = multop::instance(multop::Concat, node->clone(),
				     to_concat_->clone());
	      else
		f = node->clone();

	      res_ = recurse(node->child(), f) | now_to_concat();
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const automatop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const multop* node)
      {
407
408
	multop::type op = node->op();
	switch (op)
409
	  {
410
	  case multop::AndNLM:
411
412
413
	  case multop::And:
	    {
	      unsigned s = node->size();
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

	      if (op == multop::AndNLM)
		{
		  multop::vec* final = new multop::vec;
		  multop::vec* non_final = new multop::vec;

		  for (unsigned n = 0; n < s; ++n)
		    {
		      const formula* f = node->nth(n);
		      if (constant_term_as_bool(f))
			final->push_back(f->clone());
		      else
			non_final->push_back(f->clone());
		    }

		  if (non_final->empty())
		    {
		      delete non_final;
		      // (a* & b*);c = (a*|b*);c
		      formula* f = multop::instance(multop::Or, final);
		      res_ = recurse_and_concat(f);
		      f->destroy();
		      break;
		    }
		  if (!final->empty())
		    {
		      // let F_i be final formulae
		      //     N_i be non final formula
		      // (F_1 & ... & F_n & N_1 & ... & N_m)
		      // =   (F_1 | ... | F_n);[*] && (N_1 & ... & N_m)
		      //   | (F_1 | ... | F_n) && (N_1 & ... & N_m);[*]
		      formula* f = multop::instance(multop::Or, final);
		      formula* n = multop::instance(multop::AndNLM, non_final);
		      formula* t = unop::instance(unop::Star,
						  constant::true_instance());
		      formula* ft = multop::instance(multop::Concat,
						     f->clone(), t->clone());
		      formula* nt = multop::instance(multop::Concat,
						     n->clone(), t);
		      formula* ftn = multop::instance(multop::And, ft, n);
		      formula* fnt = multop::instance(multop::And, f, nt);
		      formula* all = multop::instance(multop::Or, ftn, fnt);
		      res_ = recurse_and_concat(all);
		      all->destroy();
		      break;
		    }
		  // No final formula.
		  // Apply same rule as &&, until we reach a point where
		  // we have final formulae.
		  delete final;
		  for (unsigned n = 0; n < s; ++n)
		    (*non_final)[n]->destroy();
		  delete non_final;
		}

	      res_ = bddtrue;
470
	      for (unsigned n = 0; n < s; ++n)
471
472
473
474
475
		{
		  bdd res = recurse(node->nth(n));
		  // trace_ltl_bdd(dict_, res);
		  res_ &= res;
		}
476
477
478
479
480
481

	      //std::cerr << "Pre-Concat:" << std::endl;
	      //trace_ltl_bdd(dict_, res_);

	      if (to_concat_)
		{
482
		  // If we have translated (a* && b*) in (a* && b*);c, we
483
484
485
486
487
488
489
490
491
		  // have to append ";c" to all destinations.

		  minato_isop isop(res_);
		  bdd cube;
		  res_ = bddfalse;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
492
493
		      formula* dest =
			dict_.conj_bdd_to_formula(dest_bdd, op);
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
		      formula* dest2;
		      int x;
		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & next_to_concat();
			}
		      else
			{
			  dest2 = multop::instance(multop::Concat, dest,
						   to_concat_->clone());
			  if (dest2 != constant::false_instance())
			    {
			      x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(node))
			    res_ |= label & next_to_concat();
			}
		    }
		}
515
516
	      if (constant_term_as_bool(node))
		res_ |= now_to_concat();
517
518
519
520
521
522
523

	      break;
	    }
	  case multop::Or:
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
524
525
	      for (unsigned n = 0; n < s; ++n)
		res_ |= recurse_and_concat(node->nth(n));
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
	      break;
	    }
	  case multop::Concat:
	    {
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      if (to_concat_)
		v->push_back(to_concat_->clone());
	      res_ = recurse(node->nth(0),
			     multop::instance(multop::Concat, v));
	      break;
	    }
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
	  case multop::Fusion:
	    {
	      assert(node->size() >= 2);

	      // the head
	      bdd res = recurse(node->nth(0));

	      // the tail
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s - 1);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      formula* tail = multop::instance(multop::Fusion, v);
	      bdd tail_bdd;
	      bool tail_computed = false;

	      //trace_ltl_bdd(dict_, res);

	      minato_isop isop(res);
	      bdd cube;
	      res_ = bddfalse;
	      while ((cube = isop.next()) != bddfalse)
		{
		  bdd label = bdd_exist(cube, dict_.next_set);
		  bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		  formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		  if (constant_term_as_bool(dest))
		    {
		      // The destination is a final state.  Make sure we
		      // can also exit if tail is satisfied.
		      if (!tail_computed)
			{
575
			  tail_bdd = recurse_and_concat(tail);
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
			  tail_computed = true;
			}
		      res_ |= label & tail_bdd;
		    }

		  if (dynamic_cast<constant*>(dest) == 0)
		    {
		      // If the destination is not a constant, it
		      // means it can have successors.  Fusion the
		      // tail and append anything to concatenate.
		      formula* dest2 = multop::instance(multop::Fusion, dest,
							tail->clone());
		      if (to_concat_)
			 dest2 = multop::instance(multop::Concat, dest2,
						 to_concat_->clone());
		      if (dest2 != constant::false_instance())
			{
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}

	      tail->destroy();
	      break;
	    }
603
604
605
606
607
608
	  }
      }

      bdd
      recurse(const formula* f, formula* to_concat = 0)
      {
609
	ratexp_trad_visitor v(dict_, to_concat);
610
611
612
613
	f->accept(v);
	return v.result();
      }

614
615
616
617
618
      bdd
      recurse_and_concat(const formula* f)
      {
	return recurse(f, to_concat_ ? to_concat_->clone() : 0);
      }
619
620
621
622
623
624
625

    private:
      translate_dict& dict_;
      bdd res_;
      formula* to_concat_;
    };

626

627
    // The rewrite rules used here are adapted from Jean-Michel
628
    // Couvreur's FM paper, augmented to support rational operators.
629
630
631
    class ltl_trad_visitor: public const_visitor
    {
    public:
632
633
634
635
      ltl_trad_visitor(translate_dict& dict, bool mark_all = false,
		       bool exprop = false)
	: dict_(dict), rat_seen_(false), has_marked_(false),
	  mark_all_(mark_all), exprop_(exprop)
636
637
638
639
640
641
642
643
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

644
645
646
647
648
649
650
651
      void
      reset(bool mark_all)
      {
	rat_seen_ = false;
	has_marked_ = false;
	mark_all_ = mark_all;
      }

652
653
      bdd
      result() const
654
655
656
657
      {
	return res_;
      }

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
      const translate_dict&
      get_dict() const
      {
	return dict_;
      }

      bool
      has_rational() const
      {
	return rat_seen_;
      }

      bool
      has_marked() const
      {
	return has_marked_;
      }

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
693
	  case constant::EmptyWord:
694
695
	    assert(!"Not an LTL operator");
	    return;
696
697
698
699
700
701
702
703
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
704
705
706
	unop::type op = node->op();

	switch (op)
707
708
709
710
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
711
712
713
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
714
715
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
716
	      break;
717
718
719
	    }
	  case unop::G:
	    {
720
721
722
723
724
725
726
727
728
729
730
731
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
732
	      const formula* child = node->child();
733
	      int x = dict_.register_next_variable(node);
734
735
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
736
	      break;
737
738
739
	    }
	  case unop::Not:
	    {
740
	      // r(!y) = !r(y)
741
	      res_ = bdd_not(recurse(node->child()));
742
	      break;
743
744
745
	    }
	  case unop::X:
	    {
746
	      // r(Xy) = Next[y]
747
748
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
749
	      break;
750
	    }
751
752
753
	  case unop::Closure:
	    {
	      rat_seen_ = true;
754
755
756
757
758
759
760
	      if (constant_term_as_bool(node->child()))
		{
		  res_ = bddtrue;
		  return;
		}

	      ratexp_trad_visitor v(dict_);
761
762
763
764
	      node->child()->accept(v);
	      bdd f1 = v.result();
	      res_ = bddfalse;

765

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
	      if (exprop_)
		{
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
		    {
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		      all_props -= label;

		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));

		      const formula* dest2;
		      if (constant_term_as_bool(dest))
			{
			  dest->destroy();
			  res_ |= label;
			}
		      else
			{
			  dest2 = unop::instance(op, dest);
			  if (dest2 == constant::false_instance())
			    continue;
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		      const formula* dest2;
		      if (constant_term_as_bool(dest))
			{
			  dest->destroy();
			  res_ |= label;
			}
		      else
			{
			  dest2 = unop::instance(op, dest);
			  if (dest2 == constant::false_instance())
			    continue;
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}
	    }
	    break;

	  case unop::NegClosure:
	    {
	      rat_seen_ = true;
	      has_marked_ = true;
830
831
832
833
834
835
836
837

	      if (constant_term_as_bool(node->child()))
		{
		  res_ = bddfalse;
		  return;
		}

	      ratexp_trad_visitor v(dict_);
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
	      node->child()->accept(v);
	      bdd f1 = v.result();

	      // trace_ltl_bdd(dict_, f1);

	      bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
	      bdd all_props = bdd_existcomp(f1, dict_.var_set);

	      res_ = !all_props &
		// stick X(1) to preserve determinism.
		bdd_ithvar(dict_.register_next_variable
			   (constant::true_instance()));

	      while (all_props != bddfalse)
		{
		  bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		  all_props -= label;

		  formula* dest =
		    dict_.bdd_to_formula(bdd_exist(f1 & label,
						   dict_.var_set));

		  // !{ Exp } is false if Exp accepts the empty word.
		  if (constant_term_as_bool(dest))
		    {
		      dest->destroy();
		      continue;
		    }

		  const formula* dest2 = unop::instance(op, dest);

		  if (dest == constant::false_instance())
		    continue;

		  int x = dict_.register_next_variable(dest2);
		  dest2->destroy();
		  res_ |= label & bdd_ithvar(x);
		}
	    }
	    break;

879
880
	  case unop::Finish:
	    assert(!"unsupported operator");
881
882
883
884
	    break;
	  case unop::Star:
	    assert(!"Not an LTL operator");
	    break;
885
886
887
888
889
890
	  }
      }

      void
      visit(const binop* node)
      {
891
	binop::type op = node->op();
892

893
	switch (op)
894
	  {
895
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
896
	  case binop::Xor:
897
898
899
900
901
902
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_xor);
	      return;
	    }
903
	  case binop::Implies:
904
905
906
907
908
909
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_imp);
	      return;
	    }
910
	  case binop::Equiv:
911
912
913
914
915
916
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_biimp);
	      return;
	    }
917
918
	  case binop::U:
	    {
919
920
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
921
922
923
924
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
925
	      break;
926
	    }
927
928
	  case binop::W:
	    {
929
930
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
931
932
933
	      // r(f1 W f2) = r(f2) + r(f1)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (f1 & bdd_ithvar(x));
934
	      break;
935
	    }
936
937
	  case binop::R:
	    {
938
939
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
940
941
942
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
943
	      break;
944
	    }
945
946
	  case binop::M:
	    {
947
948
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
949
950
951
952
	      // r(f1 M f2) = r(f1)r(f2) + a(f1)r(f2)r(X(f1 M f2))
	      int a = dict_.register_a_variable(node->first());
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (bdd_ithvar(a) & f2 & bdd_ithvar(x));
953
	      break;
954
	    }
955
956
957
	  case binop::EConcatMarked:
	    has_marked_ = true;
	    /* fall through */
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
958
	  case binop::EConcat:
959
960
	    rat_seen_ = true;
	    {
961
962
	      // Recognize f2 on transitions going to destinations
	      // that accept the empty word.
963
	      bdd f2 = recurse(node->second());
964
	      ratexp_trad_visitor v(dict_);
965
966
	      node->first()->accept(v);
	      bdd f1 = v.result();
967
	      res_ = bddfalse;
968
969
970
971
972
973
974

	      if (mark_all_)
		{
		  op = binop::EConcatMarked;
		  has_marked_ = true;
		}

975
	      if (exprop_)
976
		{
977
978
979
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
980
		    {
981
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
982
983
984
985
986
987
988
989
990
		      all_props -= label;

		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));

		      const formula* dest2 =
			binop::instance(op, dest, node->second()->clone());

991
992
		      if (dest2 != constant::false_instance())
			{
993
			  int x = dict_.register_next_variable(dest2);
994
995
996
997
998
999
1000
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		      if (constant_term_as_bool(dest))
			res_ |= label & f2;
		    }
		}
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & f2;
			}
		      else
			{
			  formula* dest2 = binop::instance(op, dest,
						  node->second()->clone());
			  if (dest2 != constant::false_instance())
			    {
			      int x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(dest))
			    res_ |= label & f2;
			}
		    }
		}
1030
1031
1032
1033
1034
	    }
	    break;

	  case binop::UConcat:
	    {
1035
1036
1037
	      // Transitions going to destinations accepting the empty
	      // word should recognize f2, and the automaton for f1
	      // should be understood as universal.
1038
	      bdd f2 = recurse(node->second());
1039
	      ratexp_trad_visitor v(dict_);
1040
1041
1042
	      node->first()->accept(v);
	      bdd f1 = v.result();
	      res_ = bddtrue;
1043
1044

	      if (exprop_)
1045
		{
1046
1047
1048
1049
1050
1051
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
		    {
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		      all_props -= label;
1052

1053
1054
1055
		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));
1056

1057
1058
1059
1060
		      formula* dest2 = binop::instance(op, dest,
						       node->second()->clone());
		      bdd udest =
			bdd_ithvar(dict_.register_next_variable(dest2));
1061

1062
1063
		      if (constant_term_as_bool(dest))
			udest &= f2;
1064

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
		      dest2->destroy();
		      label = bdd_apply(label, udest, bddop_imp);

		      res_ &= label;
		    }
		}
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
		      formula* dest2;
		      bdd udest;

		      dest2 = binop::instance(op, dest,
					      node->second()->clone());
		      udest = bdd_ithvar(dict_.register_next_variable(dest2));

		      if (constant_term_as_bool(dest))
			udest &= f2;

		      dest2->destroy();
		      label = bdd_apply(label, udest, bddop_imp);

		      res_ &= label;
		    }
1095
1096
		}
	    }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1097
	    break;
1098
1099
1100
	  }
      }

1101
1102
1103
1104
1105
1106
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

1107
1108
1109
1110
1111
1112
      void
      visit(const multop* node)
      {
	switch (node->op())
	  {
	  case multop::And:
1113
1114
1115
1116
1117
1118
	    {
	      res_ = bddtrue;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		{
		  bdd res = recurse(node->nth(n));
1119
1120
1121
		  //std::cerr << "== in And (" << to_string(node->nth(n))
		  // << ")" << std::endl;
		  // trace_ltl_bdd(dict_, res);
1122
1123
		  res_ &= res;
		}
1124
1125
	      //std::cerr << "=== And final" << std::endl;
	      // trace_ltl_bdd(dict_, res_);
1126
1127
	      break;
	    }
1128
	  case multop::Or:
1129
1130
1131
1132
1133
1134
1135
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		res_ |= recurse(node->nth(n));
	      break;
	    }
1136
	  case multop::Concat:
1137
	  case multop::Fusion:
1138
	  case multop::AndNLM:
1139
1140
	    assert(!"Not an LTL operator");
	    break;
1141
	  }
1142

1143
1144
1145
1146
1147
      }

      bdd
      recurse(const formula* f)
      {
1148
	ltl_trad_visitor v(dict_, mark_all_, exprop_);
1149
	f->accept(v);
1150
1151
	rat_seen_ |= v.has_rational();
	has_marked_ |= v.has_marked();
1152
1153
1154
1155
1156
1157
1158
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
1159
1160
1161
      bool rat_seen_;
      bool has_marked_;
      bool mark_all_;
1162
      bool exprop_;
1163
1164
    };

1165

1166
1167
    // Check whether a formula has a R, W, or G operator at its
    // top-level (preceding logical operators do not count).
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
1218
	  case binop::M:
1219
1220
	    return;
	  case binop::R:
1221
	  case binop::W:
1222
1223
	    res_ = true;
	    return;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1224
1225
	  case binop::UConcat:
	  case binop::EConcat:
1226
	  case binop::EConcatMarked:
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1227
	    node->second()->accept(*this);
1228
	    // FIXME: we might need to add Acc[1]
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1229
	    return;
1230
1231
1232
1233
1234
	  }
	/* Unreachable code.  */
	assert(0);
      }

1235
1236
1237
1238
1239
1240
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
1263
1264
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
1265
1266
1267
1268
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
1269
	pfl_[f] = rel;
1270
1271
1272
1273
	return rel;
      }

    private:
1274
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
1275
      pfl_map pfl_;
1276
1277
    };

1278
1279
1280
    class formula_canonizer
    {
    public:
1281
      formula_canonizer(translate_dict& d,
1282
1283
			bool fair_loop_approx, bdd all_promises, bool exprop)
	: v_(d, false, exprop),
1284
	  fair_loop_approx_(fair_loop_approx),
1285
1286
	  all_promises_(all_promises),
	  d_(d)
1287
1288
1289
1290
1291
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
1292

1293
1294
      ~formula_canonizer()
      {
1295
	while (!f2b_.empty())
1296
	  {
1297
1298
1299
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
1300
	    f->destroy();
1301
	  }
1302
1303
      }

1304
1305
1306
1307
1308
1309
1310
1311
      struct translated
      {
	bdd symbolic;
	bool has_rational:1;
	bool has_marked:1;
      };

      const translated&
1312
      translate(const formula* f, bool* new_flag = 0)
1313
1314
1315
1316
1317
1318
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

1319
1320
1321
	if (new_flag)
	  *new_flag = true;

1322
	// Perform the actual translation.
1323
	v_.reset(!has_mark(f));
1324
	f->accept(v_);
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
	translated t;
	t.symbolic = v_.result();
	t.has_rational = v_.has_rational();
	t.has_marked = v_.has_marked();

//	std::cerr << "-----" << std::endl;
//	std::cerr << "Formula: " << to_string(f) << std::endl;
//	std::cerr << "Rational: " << t.has_rational << std::endl;
//	std::cerr << "Marked: " << t.has_marked << std::endl;
//	std::cerr << "Mark all: " << !has_mark(f) << std::endl;
//	std::cerr << "Transitions:" << std::endl;
//	trace_ltl_bdd(v_.get_dict(), t.symbolic);

	if (t.has_rational)
	  {
	    bdd res = bddfalse;

	    minato_isop isop(t.symbolic);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
	      {
		bdd label = bdd_exist(cube, d_.next_set);
		bdd dest_bdd = bdd_existcomp(cube, d_.next_set);
		formula* dest =
		  d_.conj_bdd_to_formula(dest_bdd);

		// Handle a Miyano-Hayashi style unrolling for
		// rational operators.  Marked nodes correspond to
		// subformulae in the Miyano-Hayashi set.
		if (simplify_mark(dest))
		  {
		    // Make the promise that we will exit marked sets.
		    int a =
		      d_.register_a_variable(constant::true_instance());
		    label &= bdd_ithvar(a);
		  }
		else
		  {
		    // We have left marked operators, but still
		    // have other rational operator to check.
		    // Start a new marked cycle.
		    formula* dest2 = mark_concat_ops(dest);
		    dest->destroy();
		    dest = dest2;
		  }
		// Note that simplify_mark may have changed dest.
		dest_bdd = bdd_ithvar(d_.register_next_variable(dest));
		dest->destroy();
		res |= label & dest_bdd;
	      }
	    t.symbolic = res;
//	    std::cerr << "Marking rewriting:" << std::endl;
//	    trace_ltl_bdd(v_.get_dict(), t.symbolic);
	  }
1379
1380
1381
1382
1383
1384
1385
1386
1387

	// Apply the fair-loop approximation if requested.
	if (fair_loop_approx_)
	  {
	    // If the source cannot possibly be part of a fair
	    // loop, make all possible promises.
	    if (fair_loop_approx_
		&& f != constant::true_instance()
		&& !pflc_.check(f))
1388
	      t.symbolic &= all_promises_;
1389
1390
	  }

1391
	// Register the reverse mapping if it is not already done.
1392
1393
1394
1395
	if (b2f_.find(t.symbolic) == b2f_.end())
	  b2f_[t.symbolic] = f;

	return f2b_[f->clone()] = t;
1396
1397
1398
1399
1400
      }

      const formula*
      canonize(const formula* f)
      {
1401
	bool new_variable = false;
1402
	bdd b = translate(f, &new_variable).symbolic;
1403
1404

	bdd_to_formula_map::iterator i = b2f_.find(b);
1405
1406
	// Since we have just translated the formula, it is
	// necessarily in b2f_.
1407
1408
1409
	assert(i != b2f_.end());

	if (i->second != f)
1410
	  {
1411
	    // The translated bdd maps to an already seen formula.
1412
	    f->destroy();
1413
	    f = i->second->clone();
1414
	  }
1415
	return f;
1416
1417
      }

1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;
      bdd_to_formula_map b2f_;
      // Map a representation of successors to a canonical formula.
      // We do this because many formulae (such as `aR(bRc)' and
      // `aR(bRc).(bRc)') are equivalent, and are trivially identified
      // by looking at the set of successors.
1429
      typedef std::map<const formula*, translated> formula_to_bdd_map;
1430
      formula_to_bdd_map f2b_;
1431
1432
1433
1434

      possible_fair_loop_checker pflc_;
      bool fair_loop_approx_;
      bdd all_promises_;
1435
      translate_dict& d_;
1436
1437
1438
1439
1440
    };

  }

  typedef std::map<bdd, bdd, bdd_less_than> prom_map;
1441
  typedef Sgi::hash_map<const formula*, prom_map, formula_ptr_hash> dest_map;
1442
1443
1444
1445

  static void
  fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
  {
1446
    bdd conds = bdd_existcomp(label, d.var_set);
1447
1448
    bdd promises = bdd_existcomp(label, d.a_set);

1449
1450
1451
1452
1453
1454
1455
1456
    dest_map::iterator i = dests.find(dest);
    if (i == dests.end())
      {
	dests[dest][promises] = conds;
      }
    else
      {
	i->second[promises] |= conds;
1457
	dest->destroy();
1458
1459
1460
1461
      }
  }


Pierre PARUTTO's avatar
Pierre PARUTTO committed
1462
  tgba_explicit_formula*
1463
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
1464
		 bool exprop, bool symb_merge, bool branching_postponement,
1465
		 bool fair_loop_approx, const atomic_prop_set* unobs,
1466
		 int reduce_ltl)
1467
1468
1469
1470
1471
  {
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
1472
1473
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
1474
    f1->destroy();
1475

1476
1477
1478
1479
    // Simplify the formula, if requested.
    if (reduce_ltl)
      {
	formula* tmp = reduce(f2, reduce_ltl);
1480
	f2->destroy();
1481
1482
1483
	f2 = tmp;
      }

1484
1485
    typedef std::set<const formula*, formula_ptr_less_than> set_type;
    set_type formulae_to_translate;
1486

Alexandre Duret-Lutz's avatar