twa.hh 42.3 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
3
// Copyright (C) 2009, 2011, 2013, 2014, 2015, 2016 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
Guillaume Sadegh's avatar
Guillaume Sadegh committed
4
// Copyright (C) 2003, 2004, 2005 Laboratoire d'Informatique de
5
6
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
7
8
9
10
11
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
12
// the Free Software Foundation; either version 3 of the License, or
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
13
14
15
16
17
18
19
20
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
21
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
22

23
#pragma once
24

25
26
27
#include <spot/twa/fwd.hh>
#include <spot/twa/acc.hh>
#include <spot/twa/bdddict.hh>
28
29
#include <cassert>
#include <memory>
30
31
#include <unordered_map>
#include <functional>
32
#include <array>
33
#include <vector>
34
35
36
#include <spot/misc/casts.hh>
#include <spot/misc/hash.hh>
#include <spot/tl/formula.hh>
37
#include <spot/misc/trival.hh>
38
39
40

namespace spot
{
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
41
  /// \ingroup twa_essentials
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  /// \brief Abstract class for states.
  class SPOT_API state
  {
  public:
    /// \brief Compares two states (that come from the same automaton).
    ///
    /// This method returns an integer less than, equal to, or greater
    /// than zero if \a this is found, respectively, to be less than, equal
    /// to, or greater than \a other according to some implicit total order.
    ///
    /// This method should not be called to compare states from
    /// different automata.
    ///
    /// \sa spot::state_ptr_less_than
    virtual int compare(const state* other) const = 0;

    /// \brief Hash a state.
    ///
    /// This method returns an integer that can be used as a
    /// hash value for this state.
    ///
    /// Note that the hash value is guaranteed to be unique for all
    /// equal states (in compare()'s sense) for only has long has one
    /// of these states exists.  So it's OK to use a spot::state as a
    /// key in a \c hash_map because the mere use of the state as a
    /// key in the hash will ensure the state continues to exist.
    ///
    /// However if you create the state, get its hash key, delete the
    /// state, recreate the same state, and get its hash key, you may
    /// obtain two different hash keys if the same state were not
    /// already used elsewhere.  In practice this weird situation can
    /// occur only when the state is BDD-encoded, because BDD numbers
    /// (used to build the hash value) can be reused for other
    /// formulas.  That probably doesn't matter, since the hash value
    /// is meant to be used in a \c hash_map, but it had to be noted.
    virtual size_t hash() const = 0;

    /// Duplicate a state.
    virtual state* clone() const = 0;

    /// \brief Release a state.
    ///
84
    /// Methods from the tgba or twa_succ_iterator always return a
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    /// new state that you should deallocate with this function.
    /// Before Spot 0.7, you had to "delete" your state directly.
    /// Starting with Spot 0.7, you should update your code to use
    /// this function instead. destroy() usually call delete, except
    /// in subclasses that destroy() to allow better memory management
    /// (e.g., no memory allocation for explicit automata).
    virtual void destroy() const
    {
      delete this;
    }

  protected:
    /// \brief Destructor.
    ///
    /// Note that client code should call
100
101
102
    /// \code s->destroy(); \endcode
    /// instead of
    /// \code delete s; \endcode .
103
104
105
106
107
    virtual ~state()
    {
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
108
  /// \ingroup twa_essentials
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  /// \brief Strict Weak Ordering for \c state*.
  ///
  /// This is meant to be used as a comparison functor for
  /// STL \c map whose key are of type \c state*.
  ///
  /// For instance here is how one could declare
  /// a map of \c state*.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::map<spot::state*, int, spot::state_ptr_less_than> seen;
  /// \endcode
  struct state_ptr_less_than
  {
    bool
    operator()(const state* left, const state* right) const
    {
      assert(left);
      return left->compare(right) < 0;
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
130
  /// \ingroup twa_essentials
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
  /// \brief An Equivalence Relation for \c state*.
  ///
  /// This is meant to be used as a comparison functor for
  /// an \c unordered_map whose key are of type \c state*.
  ///
  /// For instance here is how one could declare
  /// a map of \c state*.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<spot::state*, int, spot::state_ptr_hash,
  ///                                    spot::state_ptr_equal> seen;
  /// \endcode
  struct state_ptr_equal
  {
    bool
    operator()(const state* left, const state* right) const
    {
      assert(left);
      return 0 == left->compare(right);
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
153
  /// \ingroup twa_essentials
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
  /// \ingroup hash_funcs
  /// \brief Hash Function for \c state*.
  ///
  /// This is meant to be used as a hash functor for
  /// an \c unordered_map whose key are of type \c state*.
  ///
  /// For instance here is how one could declare
  /// a map of \c state*.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<spot::state*, int, spot::state_ptr_hash,
  ///                                    spot::state_ptr_equal> seen;
  /// \endcode
  struct state_ptr_hash
  {
    size_t
    operator()(const state* that) const
    {
      assert(that);
      return that->hash();
    }
  };

177
178
179
180
181
  /// \brief Unordered set of abstract states
  ///
  /// Destroying each state if needed is the user's responsibility.
  ///
  /// \see state_unicity_table
182
  typedef std::unordered_set<const state*,
183
                             state_ptr_hash, state_ptr_equal> state_set;
184

185
186
187
188
189
  /// \brief Unordered map of abstract states
  ///
  /// Destroying each state if needed is the user's responsibility.
  template<class val>
  using state_map = std::unordered_map<const state*, val,
190
                                       state_ptr_hash, state_ptr_equal>;
191

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
192
  /// \ingroup twa_essentials
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
  /// \brief Render state pointers unique via a hash table.
  class SPOT_API state_unicity_table
  {
    state_set m;
  public:

    /// \brief Canonicalize state pointer.
    ///
    /// If this is the first time a state is seen, this return the
    /// state pointer as-is, otherwise it frees the state and returns
    /// a point to the previously seen copy.
    ///
    /// States are owned by the table and will be freed on
    /// destruction.
    const state* operator()(const state* s)
    {
      auto p = m.insert(s);
      if (!p.second)
211
        s->destroy();
212
213
214
215
216
217
218
219
220
221
222
      return *p.first;
    }

    /// \brief Canonicalize state pointer.
    ///
    /// Same as operator(), except that a nullptr
    /// is returned if the state is not new.
    const state* is_new(const state* s)
    {
      auto p = m.insert(s);
      if (!p.second)
223
224
225
226
        {
          s->destroy();
          return nullptr;
        }
227
228
229
230
231
232
      return *p.first;
    }

    ~state_unicity_table()
    {
      for (state_set::iterator i = m.begin(); i != m.end();)
233
234
235
236
237
238
        {
          // Advance the iterator before destroying its key.  This
          // avoid issues with old g++ implementations.
          state_set::iterator old = i++;
          (*old)->destroy();
        }
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    }

    size_t
    size()
    {
      return m.size();
    }
  };



  // Functions related to shared_ptr.
  //////////////////////////////////////////////////

  typedef std::shared_ptr<const state> shared_state;

  inline void shared_state_deleter(state* s) { s->destroy(); }

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
257
  /// \ingroup twa_essentials
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  /// \brief Strict Weak Ordering for \c shared_state
  /// (shared_ptr<const state*>).
  ///
  /// This is meant to be used as a comparison functor for
  /// STL \c map whose key are of type \c shared_state.
  ///
  /// For instance here is how one could declare
  /// a map of \c shared_state.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::map<shared_state, int, spot::state_shared_ptr_less_than> seen;
  /// \endcode
  struct state_shared_ptr_less_than
  {
    bool
    operator()(shared_state left,
               shared_state right) const
    {
      assert(left);
      return left->compare(right.get()) < 0;
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
281
  /// \ingroup twa_essentials
282
283
284
285
  /// \brief An Equivalence Relation for \c shared_state
  /// (shared_ptr<const state*>).
  ///
  /// This is meant to be used as a comparison functor for
286
  /// an \c unordered_map whose key are of type \c shared_state.
287
288
289
290
291
292
293
294
295
  ///
  /// For instance here is how one could declare
  /// a map of \c shared_state
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<shared_state, int,
  ///                      state_shared_ptr_hash,
  ///                      state_shared_ptr_equal> seen;
  /// \endcode
296
297
  ///
  /// \see shared_state_set
298
299
300
301
302
303
304
305
306
307
308
  struct state_shared_ptr_equal
  {
    bool
    operator()(shared_state left,
               shared_state right) const
    {
      assert(left);
      return 0 == left->compare(right.get());
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
309
  /// \ingroup twa_essentials
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
  /// \ingroup hash_funcs
  /// \brief Hash Function for \c shared_state (shared_ptr<const state*>).
  ///
  /// This is meant to be used as a hash functor for
  /// an \c unordered_map whose key are of type
  /// \c shared_state.
  ///
  /// For instance here is how one could declare
  /// a map of \c shared_state.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<shared_state, int,
  ///                      state_shared_ptr_hash,
  ///                      state_shared_ptr_equal> seen;
  /// \endcode
325
326
  ///
  /// \see shared_state_set
327
328
329
330
331
332
333
334
335
336
  struct state_shared_ptr_hash
  {
    size_t
    operator()(shared_state that) const
    {
      assert(that);
      return that->hash();
    }
  };

337
  /// Unordered set of shared states
338
  typedef std::unordered_set<shared_state,
339
340
                             state_shared_ptr_hash,
                             state_shared_ptr_equal> shared_state_set;
341

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
342
  /// \ingroup twa_essentials
343
344
  /// \brief Iterate over the successors of a state.
  ///
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
  /// This class provides the basic functionality required to iterate
  /// over the set of edges leaving a given state.  Instance of
  /// twa_succ_iterator should normally not be created directly.
  /// Instead, they are created by passing a "source" state to
  /// twa::succ_iter(), which will create the instance of
  /// twa_succ_iterator to iterate over the successors of that state.
  ///
  /// This twa_succ_iterator class offers two types of services,
  /// offered by two groups of methods.  The methods first(), next(),
  /// and done() allow iteration over the set of outgoing edges.
  /// The methods cond(), acc(), dst(), allow inspecting the current
  /// edge.
  ///
  /// The twa_succ_iterator is usually subclassed so that iteration
  /// methods and accessor methods can be implemented differently in
  /// different automata.  In particular, this interface allows
  /// computing the set of successor on the fly if needed.
  ///
  /// The iterator can be used to iterate over all successors in a
  /// loop as follows:
  ///
  /// \code
  ///     for (i->first(); !i->done(); i->next())
  ///       {
  ///         // use i->cond(), i->acc(), i->dst()
  ///       }
  /// \endcode
  ///
  /// If there are n successors, there will be 1 call to first(), n
  /// calls to next() and n+1 calls to done(), so a total of 2(n+1)
  /// calls to virtual methods just to handle the iteration.  For this
  /// reason, we usually favor the following more efficient way of
  /// performing the same loop:
  ///
  /// \code
  ///     if (i->first())
  ///       do
  ///         {
  ///           // use i->cond(), i->acc(), i->dst()
  ///         }
  ///       while(i->next());
  /// \endcode
  ///
  /// This loops uses the return value of first() and next() to save
  /// n+1 calls to done().
390
  class SPOT_API twa_succ_iterator
391
392
393
  {
  public:
    virtual
394
    ~twa_succ_iterator()
395
396
397
398
    {
    }

    /// \name Iteration
399
    ///@{
400
401
402

    /// \brief Position the iterator on the first successor (if any).
    ///
403
404
    /// This method can be called several times in order to make
    /// multiple passes over successors.
405
406
407
408
409
410
    ///
    /// \warning One should always call \c done() (or better: check
    /// the return value of first()) to ensure there is a successor,
    /// even after \c first().  A common trap is to assume that there
    /// is at least one successor: this is wrong.
    ///
411
412
413
414
    /// \return true iff there is at least one successor
    ///
    /// If first() returns false, it is invalid to call next(),
    /// cond(), acc(), or dst().
415
416
417
418
419
420
421
    virtual bool first() = 0;

    /// \brief Jump to the next successor (if any).
    ///
    /// \warning Again, one should always call \c done() (or better:
    /// check the return value of next()) ensure there is a successor.
    ///
422
423
424
425
426
    /// \return true if the iterator moved to a new successor, false
    /// if the iterator could not move to a new successor.
    ///
    /// If next() returns false, it is invalid to call next() again,
    /// or to call cond(), acc() or dst().
427
428
429
430
431
432
433
    virtual bool next() = 0;

    /// \brief Check whether the iteration is finished.
    ///
    /// This function should be called after any call to \c first()
    /// or \c next() and before any enquiry about the current state.
    ///
434
    /// The typical use case of done() is in a \c for loop such as:
435
436
437
    ///
    ///     for (s->first(); !s->done(); s->next())
    ///       ...
438
439
440
441
442
443
    ///
    /// \return false iff the iterator is pointing to a successor.
    ///
    /// It is incorrect to call done() if first() hasn't been called
    /// before.  If done() returns true, it is invalid to call
    /// next(), cond(), acc(), or dst().
444
445
    virtual bool done() const = 0;

446
    ///@}
447
448

    /// \name Inspection
449
    ///@{
450

451
    /// \brief Get the destination state of the current edge.
452
    ///
453
454
455
    /// Each call to dst() (even several times on the same edge)
    /// creates a new state that has to be destroyed (see
    /// state::destroy()).  by the caller after it is no longer used.
456
    ///
457
458
459
    /// Note that the same state may occur at different points in the
    /// iteration, as different outgoing edges (usually with different
    /// labels or acceptance membership) may go to the same state.
460
    virtual const state* dst() const = 0;
461
    /// \brief Get the condition on the edge leading to this successor.
462
463
    ///
    /// This is a boolean function of atomic propositions.
464
    virtual bdd cond() const = 0;
465
466
    /// \brief Get the acceptance mark of the edge leading to this
    /// successor.
467
    virtual acc_cond::mark_t acc() const = 0;
468

469
    ///@}
470
471
472
473
  };

  namespace internal
  {
474
    /// \brief Helper structure to iterate over the successor of a
475
    /// state using the on-the-fly interface.
476
477
478
    ///
    /// This one emulates an STL-like iterator over the
    /// twa_succ_iterator interface.
479
480
481
    struct SPOT_API succ_iterator
    {
    protected:
482
      twa_succ_iterator* it_;
483
484
    public:

485
      succ_iterator(twa_succ_iterator* it):
486
        it_(it)
487
488
489
490
491
      {
      }

      bool operator==(succ_iterator o) const
      {
492
        return it_ == o.it_;
493
494
495
496
      }

      bool operator!=(succ_iterator o) const
      {
497
        return it_ != o.it_;
498
499
      }

500
      const twa_succ_iterator* operator*() const
501
      {
502
        return it_;
503
504
505
506
      }

      void operator++()
      {
507
508
        if (!it_->next())
          it_ = nullptr;
509
510
511
      }
    };
  }
512

513
  /// \defgroup twa TωA (Transition-based ω-Automata)
514
  ///
515
  /// Spot is centered around the spot::twa type.  This type and its
516
  /// cousins are listed \ref twa_essentials "here".  This is an
517
  /// abstract interface.  Its implementations are either \ref
518
519
520
  /// twa_representation "concrete representations", or \ref
  /// twa_on_the_fly_algorithms "on-the-fly algorithms".  Other
  /// algorithms that work on spot::twa are \ref twa_algorithms
521
522
  /// "listed separately".

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
523
  /// \addtogroup twa_essentials Essential TωA types
524
  /// \ingroup twa
525

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
526
  /// \ingroup twa_essentials
527
  /// \brief A Transition-based ω-Automaton.
528
  ///
529
530
531
532
  /// The acronym TωA stands for Transition-based ω-automaton.
  /// We may write it as TwA or twa, but never as TWA as the
  /// w is just a non-utf8 replacement for ω that should not be
  /// capitalized.
533
  ///
534
535
536
537
538
539
  /// TωAs are transition-based automata, meanings that not-only do
  /// they have labels on edges, but they also have an acceptance
  /// condition defined in term of sets of transitions.  The
  /// acceptance condition can be anything supported by the HOA format
  /// (http://adl.github.io/hoaf/).  The only restriction w.r.t. the
  /// format is that this class does not support alternating automata.
540
  ///
541
  /// Previous versions of Spot supported a type of automata called
542
  /// TGBA, which are TωA in which the acceptance condition is a set
543
  /// of sets of transitions that must be visited infinitely often.
544
545
  ///
  /// In this version, TGBAs are now represented by TωAs for which
546
  ///
547
548
549
550
551
552
553
554
  ///     aut->acc().is_generalized_buchi()
  ///
  /// returns true.
  ///
  /// Browsing a TωA is usually achieved using two methods: \c
  /// get_init_state(), and succ().  The former returns the initial
  /// state while the latter allows iterating over the outgoing edges
  /// of any given state.
555
  ///
556
  /// Note that although this is a transition-based automata, we never
557
  /// represent edges in the API.  Information about edges can be
558
559
  /// obtained by querying the iterator over the successors of a
  /// state.
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
  ///
  /// The interface presented here is what we call the on-the-fly
  /// interface of automata, because the TωA class can be subclassed
  /// to implement an object that computes its successors on-the-fly.
  /// The down-side is that all these methods are virtual, so you you
  /// pay the cost of virtual calls when iterating over automata
  /// constructed on-the-fly.  Also the interface assumes that each
  /// successor state is a new object whose memory management is the
  /// responsibility of the caller, who should then call
  /// state::destroy() to release it.
  ///
  /// If you want to work with a TωA that is explicitly stored as a
  /// graph in memory, use the spot::twa_graph subclass instead.  A
  /// twa_graph object can be used as a spot::twa (using the
  /// on-the-fly interface, even though nothing needs to be
  /// constructed), but it also offers a faster interface that do not
  /// use virtual methods.
577
  class SPOT_API twa: public std::enable_shared_from_this<twa>
578
  {
579
  protected:
580
    twa(const bdd_dict_ptr& d);
581
    /// Any iterator returned via release_iter.
582
    mutable twa_succ_iterator* iter_cache_;
583
    /// BDD dictionary used by the automaton.
584
    bdd_dict_ptr dict_;
585
  public:
586
587

#ifndef SWIG
588
589
590
591
592
    /// \brief Helper class to iterate over the successor of a state
    /// using the on-the-fly interface
    ///
    /// This one emulates an STL-like container with begin()/end()
    /// methods so that it can be iterated using a ranged-for.
593
594
595
    class succ_iterable
    {
    protected:
596
      const twa* aut_;
597
      twa_succ_iterator* it_;
598
    public:
599
      succ_iterable(const twa* aut, twa_succ_iterator* it)
600
        : aut_(aut), it_(it)
601
602
603
604
      {
      }

      succ_iterable(succ_iterable&& other)
605
        : aut_(other.aut_), it_(other.it_)
606
      {
607
        other.it_ = nullptr;
608
609
610
611
      }

      ~succ_iterable()
      {
612
613
        if (it_)
          aut_->release_iter(it_);
614
615
616
617
      }

      internal::succ_iterator begin()
      {
618
        return it_->first() ? it_ : nullptr;
619
620
621
622
      }

      internal::succ_iterator end()
      {
623
        return nullptr;
624
625
626
627
      }
    };
#endif

628
    virtual ~twa();
629

630
631
632
    /// \brief Get the initial state of the automaton.
    ///
    /// The state has been allocated with \c new.  It is the
633
    /// responsability of the caller to \c destroy it when no
634
    /// longer needed.
635
    virtual const state* get_init_state() const = 0;
636

637
    /// \brief Get an iterator over the successors of \a local_state.
638
639
640
641
    ///
    /// The iterator has been allocated with \c new.  It is the
    /// responsability of the caller to \c delete it when no
    /// longer needed.
642
643
    ///
    /// \see succ()
644
    virtual twa_succ_iterator*
645
    succ_iter(const state* local_state) const = 0;
646

647
#ifndef SWIG
648
649
650
    /// \brief Build an iterable over the successors of \a s.
    ///
    /// This is meant to be used as
651
652
653
654
655
656
657
658
659
660
    ///
    /// \code
    ///    for (auto i: aut->succ(s))
    ///      {
    ///        // use i->cond(), i->acc(), i->dst()
    ///      }
    /// \endcode
    ///
    /// and the above loop is in fact syntactic sugar for
    ///
661
    /// \code
662
663
664
665
666
667
668
669
    ///    twa_succ_iterator* i = aut->succ_iter(s);
    ///    if (i->first())
    ///      do
    ///        {
    ///          // use i->cond(), i->acc(), i->dst()
    ///        }
    ///      while (i->next());
    ///    aut->release_iter(i);
670
    /// \endcode
671
    succ_iterable
672
673
674
675
    succ(const state* s) const
    {
      return {this, succ_iter(s)};
    }
676
677
678
679
680
681
#endif

    /// \brief Release an iterator after usage.
    ///
    /// This iterator can then be reused by succ_iter() to avoid
    /// memory allocation.
682
    void release_iter(twa_succ_iterator* i) const
683
684
    {
      if (iter_cache_)
685
        delete i;
686
      else
687
        iter_cache_ = i;
688
    }
689

690
691
    /// \brief Get the dictionary associated to the automaton.
    ///
692
693
694
695
696
697
698
699
700
701
702
703
704
705
    /// Automata are labeled by Boolean formulas over atomic
    /// propositions.  These Boolean formula are represented as BDDs.
    /// The dictionary allows to map BDD variables back to atomic
    /// propositions, and vice versa.
    ///
    /// Usually automata that are involved in the same computations
    /// should share their dictionaries so that operations between
    /// BDDs of the two automata work naturally.
    ///
    /// It is however possible to declare automata that use different
    /// sets of atomic propositions with different dictionaries.  That
    /// way a BDD variable associated to some atomic proposition in
    /// one automaton might be reused for another atomic proposition
    /// in the other automaton.
706
707
    bdd_dict_ptr get_dict() const
    {
708
      return dict_;
709
    }
710

711
712
713
714
715
716
717
718
719
    ///@{
    /// \brief Register an atomic proposition designated by \a ap.
    ///
    /// This is the preferred way to declare that an automaton is using
    /// a given atomic proposition.
    ///
    /// This adds the atomic proposition to the list of atomic
    /// proposition of the automaton, and also register it to the
    /// bdd_dict.
720
    ///
721
722
    /// \return The BDD variable number assigned for this atomic
    /// proposition.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
723
    int register_ap(formula ap)
724
    {
725
726
      int res = dict_->has_registered_proposition(ap, this);
      if (res < 0)
727
728
729
730
731
        {
          aps_.push_back(ap);
          res = dict_->register_proposition(ap, this);
          bddaps_ &= bdd_ithvar(res);
        }
732
733
734
      return res;
    }

735
    int register_ap(std::string ap)
736
    {
737
      return register_ap(formula::ap(ap));
738
    }
739
    ///@}
740

741
742
743
744
    /// \brief Unregister an atomic proposition.
    ///
    /// \param num the BDD variable number returned by register_ap().
    void unregister_ap(int num);
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

    /// \brief Register all atomic propositions that have
    /// already be register by the bdd_dict for this automaton.
    ///
    /// This method may only be called on an automaton with an empty
    /// list of AP.  It will fetch all atomic proposition that have
    /// been set in the bdd_dict for this particular automaton.
    ///
    /// The typical use-case for this function is when the labels of
    /// an automaton are created by functions such as
    /// formula_to_bdd().  This is for instance done in the parser
    /// for never claims or LBTT.
    void register_aps_from_dict()
    {
      if (!aps_.empty())
        throw std::runtime_error("register_ap_from_dict() may not be"
                                 " called on an automaton that has already"
                                 " registered some AP");
      auto& m = get_dict()->bdd_map;
      unsigned s = m.size();
      for (unsigned n = 0; n < s; ++n)
        if (m[n].refs.find(this) != m[n].refs.end())
          {
            aps_.push_back(m[n].f);
            bddaps_ &= bdd_ithvar(n);
          }
    }

773
    /// \brief The vector of atomic propositions registered by this
774
    /// automaton.
775
    const std::vector<formula>& ap() const
776
777
778
779
    {
      return aps_;
    }

780
    /// \brief The set of atomic propositions as a conjunction.
781
    bdd ap_vars() const
782
783
784
785
    {
      return bddaps_;
    }

786
787
    /// \brief Format the state as a string for printing.
    ///
788
789
790
791
792
    /// Formating is the responsability of the automata that owns the
    /// state, so that state objects could be implemented as very
    /// small objects, maybe sharing data with other state objects via
    /// data structure stored in the automaton.
    virtual std::string format_state(const state* s) const = 0;
793

794
    /// \brief Project a state on an automaton.
795
796
797
798
799
800
801
802
803
804
805
    ///
    /// This converts \a s, into that corresponding spot::state for \a
    /// t.  This is useful when you have the state of a product, and
    /// want restrict this state to a specific automata occuring in
    /// the product.
    ///
    /// It goes without saying that \a s and \a t should be compatible
    /// (i.e., \a s is a state of \a t).
    ///
    /// \return 0 if the projection fails (\a s is unrelated to \a t),
    ///    or a new \c state* (the projected state) that must be
806
    ///    destroyed by the caller.
807
    virtual state* project_state(const state* s,
808
                                 const const_twa_ptr& t) const;
809

810
811
    ///@{
    /// \brief The acceptance condition of the automaton.
812
813
814
815
    const acc_cond& acc() const
    {
      return acc_;
    }
816

817
818
819
820
    acc_cond& acc()
    {
      return acc_;
    }
821
    ///@}
822

823
    /// Check whether the language of the automaton is empty.
824
825
    virtual bool is_empty() const;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
826
  private:
827
828
    acc_cond acc_;

829
830
831
    void set_num_sets_(unsigned num)
    {
      if (num < acc_.num_sets())
832
833
834
835
        {
          acc_.~acc_cond();
          new (&acc_) acc_cond;
        }
836
837
838
      acc_.add_sets(num - acc_.num_sets());
    }

839
  public:
840
    /// Number of acceptance sets used by the automaton.
841
842
843
844
845
    unsigned num_sets() const
    {
      return acc_.num_sets();
    }

846
    /// Acceptance formula used by the automaton.
847
    const acc_cond::acc_code& get_acceptance() const
848
849
850
    {
      return acc_.get_acceptance();
    }
851

852
853
854
855
    /// \brief Set the acceptance condition of the automaton.
    ///
    /// \param num the number of acceptance sets used
    /// \param c the acceptance formula
856
857
    void set_acceptance(unsigned num, const acc_cond::acc_code& c)
    {
858
      set_num_sets_(num);
859
860
      acc_.set_acceptance(c);
      if (num == 0)
861
        prop_state_acc(true);
862
863
    }

864
    /// Copy the acceptance condition of another TωA.
865
    void copy_acceptance_of(const const_twa_ptr& a)
866
867
868
869
    {
      acc_ = a->acc();
      unsigned num = acc_.num_sets();
      if (num == 0)
870
        prop_state_acc(true);
871
872
    }

873
    /// Copy the atomic propositions of another TωA
874
    void copy_ap_of(const const_twa_ptr& a)
875
    {
876
      for (auto f: a->ap())
877
        this->register_ap(f);
878
879
    }

880
881
882
883
884
885
886
887
888
889
890
891
    /// \brief Set generalized Büchi acceptance
    ///
    /// \param num the number of acceptance sets to used
    ///
    /// The acceptance formula of the form
    /// \code
    /// Inf(0)&Inf(1)&...&Inf(num-1)
    /// \endcode
    /// is generated.
    ///
    /// In the case where \a num is null, the state-acceptance
    /// property is automatically turned on.
892
893
894
895
896
    void set_generalized_buchi(unsigned num)
    {
      set_num_sets_(num);
      acc_.set_generalized_buchi();
      if (num == 0)
897
        prop_state_acc(true);
898
899
    }

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
    /// \brief Set Büchi acceptance.
    ///
    /// This declares a single acceptance set, and \c Inf(0)
    /// acceptance.  The returned mark \c {0} can be used to tag
    /// accepting transition.
    ///
    /// Note that this does not make the automaton as using
    /// state-based acceptance.  If you want to create a Büchi
    /// automaton with state-based acceptance, call
    /// \code
    /// prop_state_acc(true)
    /// \endcode
    /// in addition.
    ///
    /// \see prop_state_acc
915
916
917
918
919
920
    acc_cond::mark_t set_buchi()
    {
      set_generalized_buchi(1);
      return acc_.mark(0);
    }

921
  private:
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
922
    std::vector<formula> aps_;
923
    bdd bddaps_;
924

925
    /// Helper structure used to store property flags.
926
927
    struct bprop
    {
928
929
      trival::repr_t state_based_acc:2;   // State-based acceptance.
      trival::repr_t inherently_weak:2;   // Inherently Weak automaton.
930
931
      trival::repr_t weak:2;               // Weak automaton.
      trival::repr_t terminal:2;               // Terminal automaton.
932
933
934
      trival::repr_t deterministic:2;     // Deterministic automaton.
      trival::repr_t unambiguous:2;       // Unambiguous automaton.
      trival::repr_t stutter_invariant:2; // Stutter invariant language.
935
936
937
938
939
940
941
    };
    union
    {
      unsigned props;
      bprop is;
    };

942
943
944
#ifndef SWIG
    // Dynamic properties, are given with a name and a destructor function.
    std::unordered_map<std::string,
945
946
                       std::pair<void*,
                                 std::function<void(void*)>>> named_prop_;
947
#endif
948
949
    void* get_named_prop_(std::string s) const;

950
951
  public:

952
#ifndef SWIG
953
954
955
956
957
958
959
960
961
962
963
    /// \brief Declare a named property
    ///
    /// Arbitrary object can be attached to automata.  Those are called
    /// named properties.  They are used for instance to name all the
    /// state of an automaton.
    ///
    /// This function attaches the object \a val to the current automaton,
    /// under the name \a s.
    ///
    /// When the automaton is destroyed, the \a destructor function will
    /// be called to destroy the attached object.
964
965
966
    ///
    /// See https://spot.lrde.epita.fr/concepts.html#named-properties
    /// for a list of named properties used by Spot.
967
    void set_named_prop(std::string s,
968
                        void* val, std::function<void(void*)> destructor);
969

970
971
972
973
974
975
976
977
978
979
980
    /// \brief Declare a named property
    ///
    /// Arbitrary object can be attached to automata.  Those are called
    /// named properties.  They are used for instance to name all the
    /// state of an automaton.
    ///
    /// This function attaches the object \a val to the current automaton,
    /// under the name \a s.
    ///
    /// The object will be automatically destroyed when the automaton
    /// is destroyed.
981
982
983
    ///
    /// See https://spot.lrde.epita.fr/concepts.html#named-properties
    /// for a list of named properties used by Spot.
984
985
986
987
988
989
    template<typename T>
    void set_named_prop(std::string s, T* val)
    {
      set_named_prop(s, val, [](void *p) { delete static_cast<T*>(p); });
    }

990
991
992
993
994
995
996
997
998
999
1000
1001
    /// \brief Retrieve a named property
    ///
    /// Because named property can be object of any type, retrieving
    /// the object requires knowing its type.
    ///
    /// \param s the name of the object to retrieve
    /// \tparam T the type of the object to retrieve
    ///
    /// Note that the return is a pointer to \c T, so the type should
    /// not include the pointer.
    ///
    /// Returns a nullptr if no such named property exists.
1002
1003
1004
    ///
    /// See https://spot.lrde.epita.fr/concepts.html#named-properties
    /// for a list of named properties used by Spot.
1005
1006
1007
1008
1009
    template<typename T>
    T* get_named_prop(std::string s) const
    {
      void* p = get_named_prop_(s);
      if (!p)
1010
        return nullptr;
1011
1012
      return static_cast<T*>(p);
    }
1013
1014
#endif

1015
1016
1017
1018
    /// \brief Destroy all named properties.
    ///
    /// This is used by the automaton destructor, but it could be used
    /// by any algorithm that want to get rid of all named properties.
1019
1020
1021
1022
    void release_named_properties()
    {
      // Destroy all named properties.
      for (auto& np: named_prop_)
1023
        np.second.second(np.second.first);
1024
1025
1026
      named_prop_.clear();
    }

1027
1028
1029
1030
1031
1032
    /// \brief Whether the automaton uses state-based acceptance.
    ///
    /// From the point of view of Spot, this means that all
    /// transitions leaving a state belong to the same acceptance
    /// sets.  Then it is equivalent to pretend that the state is in
    /// the acceptance set.
1033
    trival prop_state_acc() const
1034
1035
1036
1037
    {
      return is.state_based_acc;
    }

1038
1039
1040
1041
    /// \brief Set the state-based-acceptance property.
    ///
    /// If this property is set to true, then all transitions leaving
    /// a state must belong to the same acceptance sets.
1042
    void prop_state_acc(trival val)
1043
    {
1044
      is.state_based_acc = val.val();
1045
1046
    }

1047
1048
1049
1050
    /// \brief Whether this is a state-based Büchi automaton.
    ///
    /// An SBA has a Büchi acceptance, and should have its
    /// state-based acceptance property set.
1051
    trival is_sba() const
1052
    {
1053
      return prop_state_acc() && acc().is_buchi();
1054
1055
    }

1056
1057
1058
1059
1060
1061
1062
1063
    /// \brief Whether the automaton is inherently weak.
    ///
    /// An automaton is inherently weak if accepting cycles and
    /// rejecting cycles are never mixed in the same strongly
    /// connected component.
    ///
    /// \see prop_weak()
    /// \see prop_terminal()
1064
    trival prop_inherently_weak() const
1065
1066
1067
1068
    {
      return is.inherently_weak;
    }

1069
1070
1071
1072
1073
1074
1075
    /// \brief Set the "inherently weak" proeprty.
    ///
    /// Setting "inherently weak" to false automatically
    /// disables "terminal" and "weak".
    ///
    /// \see prop_weak()
    /// \see prop_terminal()
1076
    void prop_inherently_weak(trival val)
1077
    {
1078
1079
      is.inherently_weak = val.val();
      if (!val)
1080
        is.terminal = is.weak = val.val();
1081
1082
    }

1083
1084
1085
1086
1087
1088
1089
1090
1091
    /// \brief Whether the automaton is terminal.
    ///
    /// An automaton is terminal if it is weak, no non-accepting cycle
    /// can be reached from an accepting cycle, and the accepting
    /// strongly components are complete (i.e., any suffix is accepted
    /// as soon as we enter an accepting component).
    ///
    /// \see prop_weak()
    /// \see prop_inherently_weak()
1092
    trival prop_terminal() const
1093
1094
1095
1096
    {
      return is.terminal;
    }

1097
1098
1099
1100
1101
1102
1103
    /// \brief Set the terminal property.
    ///
    /// Marking an automaton as "terminal" automatically marks it as
    /// "weak" and "inherently weak".
    ///
    /// \see prop_weak()
    /// \see prop_inherently_weak()
1104
    void prop_terminal(trival val)
1105
    {
1106
      is.terminal = val.val();
1107
      if (val)
1108
        is.inherently_weak = is.weak = val.val();
1109
1110
    }

1111
1112
1113
1114
1115
1116
1117
    /// \brief Whether the automaton is weak.
    ///
    /// An automaton is weak if inside each strongly connected
    /// component, all transitions belong to the same acceptance sets.
    ///
    /// \see prop_terminal()
    /// \see prop_inherently_weak()
1118
    trival prop_weak() const
1119
1120
1121
1122
    {
      return is.weak;
    }

1123
1124
1125
1126
1127
1128
1129
1130
    /// \brief Set the weak property.
    ///
    /// Marking an automaton as "weak" automatically marks it as
    /// "inherently weak".  Marking an automaton as "not weak"
    /// automatically marks are as "not terminal".
    ///
    /// \see prop_terminal()
    /// \see prop_inherently_weak()
1131
    void prop_weak(trival val)
1132
    {
1133
      is.weak = val.val();
1134
      if (val)
1135
        is.inherently_weak = val.val();
1136
      if (!val)
1137
        is.terminal = val.val();
1138
1139
    }

1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
    /// \brief Whether the automaton is deterministic.
    ///
    /// An automaton is deterministic if the conjunction between the
    /// labels of two transitions leaving a state is always false.
    ///
    /// Note that this method may return trival::maybe() when it is
    /// unknown whether the automaton is deterministic or not.  If you
    /// need a true/false answer, prefer the is_deterministic() function.
    ///
    /// \see prop_unambiguous()
    /// \see is_deterministic()
1151
    trival prop_deterministic() const
1152
1153
1154
1155
    {
      return is.deterministic;
    }

1156
1157
1158
1159
1160
1161
    /// \brief Set the deterministic property.
    ///
    /// Setting the "deterministic" property automatically
    /// sets the "unambiguous" property.
    ///
    /// \see prop_unambiguous()
1162
    void prop_deterministic(trival val)
1163
    {
1164
      is.deterministic = val.val();
1165
      if (val)
1166
1167
        // deterministic implies unambiguous
        is.unambiguous = val.val();
1168
1169
    }

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
    /// \brief Whether the automaton is unambiguous
    ///
    /// An automaton is unambiguous if any accepted word is recognized
    /// by exactly one accepting path in the automaton.  Any word
    /// (accepted or not) may be recognized by several rejecting paths
    /// in the automaton.
    ///
    /// Note that this method may return trival::maybe() when it is
    /// unknown whether the automaton is unambiguous or not.  If you
    /// need a true/false answer, prefer the is_unambiguous() function.
    ///
    /// \see prop_deterministic()
    /// \see is_unambiguous()
1183
    trival prop_unambiguous() const
1184
1185
1186
1187
    {
      return is.unambiguous;
    }

1188
1189
1190
1191
1192
1193
    /// \brief Sets the unambiguous property
    ///
    /// Marking an automaton as "non unambiguous" automatically
    /// marks it as "non deterministic".
    ///
    /// \see prop_deterministic()
1194
    void prop_unambiguous(trival val)
1195
    {
1196
1197
      is.unambiguous = val.val();
      if (!val)
1198
        is.deterministic = val.val();
1199
1200
    }

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
    /// \brief Whether the automaton is stutter-invariant.
    ///
    /// An automaton is stutter-invariant iff any accepted word
    /// remains accepted after removing a finite number of duplicate
    /// letters, or after duplicating finite number of letters.
    ///
    /// Note that this method may return trival::maybe() when it is
    /// unknown whether the automaton is stutter-invariant or not.  If
    /// you need a true/false answer, prefer one using of the the
    /// is_stutter_invariant() function.
    ///
    /// \see is_stutter_invariant
1213
    trival prop_stutter_invariant() const
1214
    {
1215
1216
1217
      return is.stutter_invariant;
    }

1218
    /// \brief Set the stutter-invariant property
1219
    void prop_stutter_invariant(trival val)
1220
    {
1221
      is.stutter_invariant = val.val();
1222
1223
    }

1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
    /// \brief A structure for selecting a set of automaton properties
    /// to copy.
    ///
    /// When an algorithm copies an automaton before making some
    /// modification on that automaton, it should use a \c prop_set
    /// structure to indicate which properties should be copied from
    /// the original automaton.
    ///
    /// This structure does not list all supported properties, because
    /// properties are copied by groups of related properties.  For
    /// instance if an algorithm breaks the "inherent_weak"
    /// properties, it usually also breaks the "weak" and "terminal"
    /// properties.
    ///
    /// Set the flags to true to copy the value of the original
    /// property, and to false to ignore the original property
    /// (leaving the property of the new automaton to its default
    /// value, which is trival::maybe()).
    ///
    /// This can be used for instance as:
    /// \code
    ///    aut->prop_copy(other_aut, {true, false, false, true});
    /// \endcode
    /// This would copy the "state-based acceptance" and
    /// "stutter invariant" properties from \c other_aut to \c code.
    ///
    /// The reason there is no default value for these flags is that
    /// whenever we add a new property that do not fall into any of
    /// these groups, we will be forced to review all algorithm to
    /// decide if the property should be preserved or not.
    ///
    /// \see make_twa_graph_ptr
    /// \see prop_copy
1257
    struct prop_set
1258
    {
1259
1260
1261
1262
      bool state_based;     ///< preserve state-based acceptnace
      bool inherently_weak; ///< preserve inherently weak, weak, & terminal
      bool deterministic;   ///< preserve deterministic and unambiguous
      bool stutter_inv;     ///< preserve stutter invariance
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

      /// \brief An all-true \c prop_set
      ///
      /// Use that only in algorithms that copy an automaton without
      /// performing any modification.
      ///
      /// If an algorithm X does modifications, but preserves all the
      /// properties currently implemented, use an explicit
      ///
      /// \code
      ///    {true, true, true, true}
      /// \endcode
      ///
      /// instead of calling \c all().  This way, the day a new
      /// property is added, we will still be forced to review
      /// algorithm X, in case that new property is not preserved.
1279
1280
      static prop_set all()
      {
1281
        return { true, true, true, true };
1282
1283
1284
      }
    };

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
    /// \brief Copy the properties of another automaton.
    ///
    /// Copy the property speciefied with \a p from \a other to the
    /// current automaton.
    ///
    /// There is no default value for \a p on purpose.  This way any
    /// time we add a new property we have to update every call to
    /// prop_copy().
    ///
    /// \see prop_set
1295
    void prop_copy(const const_twa_ptr& other, prop_set p)
1296
1297
    {
      if (p.state_based)
1298
        prop_state_acc(other->prop_state_acc());
1299
      if (p.inherently_weak)
1300
1301
1302
1303
1304
        {
          prop_terminal(other->prop_terminal());
          prop_weak(other->prop_weak());
          prop_inherently_weak(other->prop_inherently_weak());
        }
1305
      if (p.deterministic)
1306
1307
1308
1309
        {
          prop_deterministic(other->prop_deterministic());
          prop_unambiguous(other->prop_unambiguous());
        }
1310
      if (p.stutter_inv)
1311
        prop_stutter_invariant(other->prop_stutter_invariant());
1312
1313
    }

1314
1315
1316
1317
1318
    /// \brief Keep only a subset of properties of the current
    /// automaton.
    ///
    /// All properties part of a group set to \c false in \a p are reset
    /// to their default value of trival::maybe().
1319
1320
1321
    void prop_keep(prop_set p)
    {
      if (!p.state_based)
1322
        prop_state_acc(trival::maybe());
1323
      if (!p.inherently_weak)
1324
1325
1326
1327
1328
        {
          prop_terminal(trival::maybe());
          prop_weak(trival::maybe());
          prop_inherently_weak(trival::maybe());
        }
1329
      if (!p.deterministic)
1330
1331
1332
1333
        {
          prop_deterministic(trival::maybe());
          prop_unambiguous(trival::maybe());
        }
1334
      if (!p.stutter_inv)
1335
        prop_stutter_invariant(trival::maybe());
1336
1337
    }

1338
  };
1339

1340
  /// \addtogroup twa_representation TωA representations
1341
  /// \ingroup twa
1342

1343
  /// \addtogroup twa_algorithms TωA algorithms
1344
  /// \ingroup twa