tgbasafracomplement.cc 35.2 KB
Newer Older
1
// -*- coding: utf-8 -*-
2 3
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire
// de Recherche et Développement de l'Epita (LRDE).
4 5 6 7 8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10 11 12 13 14 15 16 17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19 20 21 22 23 24

#include <set>
#include <map>
#include <deque>
#include <cassert>
#include <sstream>
25 26
#include <algorithm>
#include "misc/bitvect.hh"
27
#include <bddx.h>
28
#include "misc/hash.hh"
29 30
#include "misc/bddlt.hh"
#include "tgba/bdddict.hh"
31
#include "tgba/tgba.hh"
32 33 34 35
#include "misc/hashfunc.hh"
#include "ltlast/formula.hh"
#include "ltlast/constant.hh"
#include "tgbaalgos/dotty.hh"
36
#include "tgba/tgbasafracomplement.hh"
37
#include "tgbaalgos/degen.hh"
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

namespace spot
{
  namespace
  {
    // forward decl.
    struct safra_tree;
    struct safra_tree_ptr_less_than:
      public std::binary_function<const safra_tree*, const safra_tree*, bool>
    {
      bool
      operator()(const safra_tree* left,
                 const safra_tree* right) const;
    };

53 54 55
    /// \brief Automaton with Safra's tree as states.
    struct safra_tree_automaton
    {
56
      safra_tree_automaton(const const_tgba_digraph_ptr& sba);
57 58 59 60 61 62 63 64 65 66 67 68
      ~safra_tree_automaton();
      typedef std::map<bdd, const safra_tree*, bdd_less_than> transition_list;
      typedef
      std::map<safra_tree*, transition_list, safra_tree_ptr_less_than>
      automaton_t;
      automaton_t automaton;

      /// \brief The number of acceptance pairs of this Rabin (Streett)
      /// automaton.
      int get_nb_acceptance_pairs() const;
      safra_tree* get_initial_state() const;
      void set_initial_state(safra_tree* s);
69
      const const_tgba_digraph_ptr& get_sba(void) const
70 71 72
      {
	return a_;
      }
73 74 75
    private:
      mutable int max_nb_pairs_;
      safra_tree* initial_state;
76
      const_tgba_digraph_ptr a_;
77
    };
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

    /// \brief A Safra tree, used as state during the determinization
    /// of a Büchi automaton
    ///
    /// It is the key structure of the construction.
    /// Each node of the tree has:
    ///  - A \a name,
    ///  - A subset of states of the original Büchi automaton (\a nodes),
    ///  - A flag that is \a marked to denote vertical merge of nodes,
    ///  - A list of \a children.
    ///
    /// This class implements operations:
    ///  - To compute the successor of this tree,
    ///  - To retrive acceptance condition on this tree.
    /// \see safra_determinisation.
    struct safra_tree
    {
      typedef std::set<const state*, state_ptr_less_than> subset_t;
      typedef std::list<safra_tree*> child_list;
      typedef std::multimap<bdd, const state*, bdd_less_than> tr_cache_t;
      typedef std::map<const state*, tr_cache_t,
                       state_ptr_less_than> cache_t;

      safra_tree();
      safra_tree(const safra_tree& other);
      safra_tree(const subset_t& nodes, safra_tree* p, int n);
      ~safra_tree();

106
      safra_tree& operator=(const safra_tree& other);
107
      int compare(const safra_tree* other) const;
108
      size_t hash() const;
109 110 111 112 113

      void add_node(const state* s);
      int max_name() const;

      // Operations to get successors of a tree.
114
      safra_tree* branch_accepting(const tgba_digraph& a);
115 116 117 118 119 120 121
      safra_tree* succ_create(const bdd& condition,
                              cache_t& cache_transition);
      safra_tree* normalize_siblings();
      safra_tree* remove_empty();
      safra_tree* mark();

      // To get Rabin/Streett acceptance conditions.
122 123
      void getL(bitvect& bitset) const;
      void getU(bitvect& bitset) const;
124

125 126
      /// \brief Is this node the root of the tree?
      bool is_root() const
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
      {
        return parent == 0;
      }

      bool marked;
      int name;
      subset_t nodes;
      child_list children;
    private:
      void remove_node_from_children(const state* state);
      int get_new_name() const;
      mutable std::deque<int> free_names_; // Some free names.
      safra_tree* parent;
    };

    safra_tree::safra_tree()
      : marked(false), name(0)
    {
      parent = 0;
    }

    /// \brief Copy the tree \a other, and set \c marked to false.
    safra_tree::safra_tree(const safra_tree& other)
150
      : marked(false), name(other.name), nodes(other.nodes)
151 152
    {
      parent = 0;
153
      for (auto i: other.children)
154
      {
155
        safra_tree* c = new safra_tree(*i);
156 157 158 159 160 161 162 163 164 165 166 167 168
        c->parent = this;
        children.push_back(c);
      }
    }

    safra_tree::safra_tree(const subset_t& nodes, safra_tree* p, int n)
      : marked(false), name(n), nodes(nodes)
    {
      parent = p;
    }

    safra_tree::~safra_tree()
    {
169 170 171 172
      for (auto c: children)
        delete c;
      for (auto n: nodes)
        n->destroy();
173 174
    }

175
    safra_tree&
176 177 178 179 180 181 182 183 184 185 186 187
    safra_tree::operator=(const safra_tree& other)
    {
      if (this != &other)
      {
        this->~safra_tree();
        new (this) safra_tree(other);
      }
      return *this;
    }

    /// \brief Compare two safra trees.
    ///
188
    /// \param other the tree to compare too.
189 190 191 192 193
    ///
    /// \return 0 if the trees are the same. Otherwise
    /// a signed value.
    int safra_tree::compare(const safra_tree* other) const
    {
194 195 196
      int res = name - other->name;
      if (res != 0)
	return res;
197

198 199
      if (marked != other->marked)
        return (marked) ? -1 : 1;
200

201 202 203
      res = nodes.size() - other->nodes.size();
      if (res != 0)
	return res;
204

205 206 207
      res = children.size() - other->children.size();
      if (res != 0)
      	return res;
208

209 210 211 212 213 214 215
      // Call compare() only as a last resort, because it takes time.

      subset_t::const_iterator in1 = nodes.begin();
      subset_t::const_iterator in2 = other->nodes.begin();
      for (; in1 != nodes.end(); ++in1, ++in2)
        if ((res = (*in1)->compare(*in2)) != 0)
	  return res;
216 217 218

      child_list::const_iterator ic1 = children.begin();
      child_list::const_iterator ic2 = other->children.begin();
219 220 221
      for (; ic1 != children.end(); ++ic1, ++ic2)
	if ((res = (*ic1)->compare(*ic2)) != 0)
	  return res;
222 223 224 225

      return 0;
    }

226 227 228 229 230 231 232 233 234

    /// \brief Hash a safra tree.
    size_t
    safra_tree::hash() const
    {
      size_t hash = 0;
      hash ^= wang32_hash(name);
      hash ^= wang32_hash(marked);

235 236 237 238
      for (auto n: nodes)
        hash ^= n->hash();
      for (auto c: children)
        hash ^= c->hash();
239 240 241 242

      return hash;
    }

243 244 245 246 247 248 249 250 251 252 253 254 255 256
    void
    safra_tree::add_node(const state* s)
    {
      nodes.insert(s);
    }

    /*---------------------------------.
    | Operations to compute successors |
    `---------------------------------*/

    int
    safra_tree::max_name() const
    {
      int max_name = name;
257 258
      for (auto c: children)
        max_name = std::max(max_name, c->max_name());
259 260 261
      return max_name;
    }

262
    /// \brief Get a unused name in the tree for a new node.
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    ///
    /// The root of the tree maintains a list of unused names.
    /// When this list is empty, new names are computed.
    int
    safra_tree::get_new_name() const
    {
      if (parent == 0)
      {
        if (free_names_.empty())
        {
          std::set<int> used_names;
          std::deque<const safra_tree*> queue;
          queue.push_back(this);
          while (!queue.empty())
          {
            const safra_tree* current = queue.front();
            queue.pop_front();
            used_names.insert(current->name);
281 282
	    for (auto c: current->children)
              queue.push_back(c);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
          }

          int l = 0;
          int nb_found = 0;
          std::set<int>::const_iterator i = used_names.begin();
          while (i != used_names.end() && nb_found != 3)
          {
            if (l != *i)
            {
              free_names_.push_back(l);
              ++nb_found;
            }
            else
              ++i;
            ++l;
          }

          while (nb_found++ < 3)
            free_names_.push_back(l++);
        }

        int result = free_names_.front();
        free_names_.pop_front();
        return result;
      }
      else
        return parent->get_new_name();
    }

    /// If the node has an accepting state in its label, a new child
    /// is inserted with the set of all accepting states of \c nodes
    /// as label and an unused name.
    safra_tree*
316
    safra_tree::branch_accepting(const tgba_digraph& a)
317
    {
318 319
      for (auto c: children)
        c->branch_accepting(a);
320 321

      subset_t subset;
322 323 324
      for (auto n: nodes)
        if (a.state_is_accepting(n))
          subset.insert(n);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

      if (!subset.empty())
        children.push_back(new safra_tree(subset, this, get_new_name()));

      return this;
    }

    /// \brief A powerset construction.
    ///
    /// The successors of each state in \c nodes with \a condition
    /// as atomic property remplace the current \c nodes set.
    ///
    /// @param cache_transition is a map of the form: state -> bdd -> state.
    ///        Only states present in \c nodes are keys of the map.
    /// @param condition is an atomic property. We are looking for successors
    ///        of this atomic property.
    safra_tree*
    safra_tree::succ_create(const bdd& condition,
                            cache_t& cache_transition)
    {
      subset_t new_subset;

347
      for (auto n: nodes)
348
      {
349
	cache_t::const_iterator it = cache_transition.find(n);
350
        if (it == cache_transition.end())
351 352
          continue;

353
        const tr_cache_t& transitions = it->second;
354
        for (auto t: transitions)
355
        {
356
          if ((t.first & condition) != bddfalse)
357
          {
358
            if (new_subset.find(t.second) == new_subset.end())
359
            {
360
              const state* s = t.second->clone();
361 362 363 364 365
              new_subset.insert(s);
            }
          }
        }
      }
366
      std::swap(nodes, new_subset);
367

368 369
      for (auto c: children)
        c->succ_create(condition, cache_transition);
370 371 372 373 374 375 376 377 378 379 380 381

      return this;
    }

    /// \brief Horizontal Merge
    ///
    /// If many children share the same state in their labels, we must keep
    /// only one occurrence (in the older node).
    safra_tree*
    safra_tree::normalize_siblings()
    {
      std::set<const state*, state_ptr_less_than> node_set;
382
      for (auto c: children)
383
      {
384 385
        subset_t::iterator node_it = c->nodes.begin();
        while (node_it != c->nodes.end())
386
        {
387 388
	  if (!node_set.insert(*node_it).second)
	  {
389
            const state* s = *node_it;
390 391
            c->remove_node_from_children(*node_it);
            c->nodes.erase(node_it++);
392
            s->destroy();
393
          }
394 395 396 397
	  else
	  {
	    ++node_it;
	  }
398 399
        }

400
        c->normalize_siblings();
401 402 403 404 405 406 407 408 409
      }

      return this;
    }

    /// \brief Remove recursively all the occurrences of \c state in the label.
    void
    safra_tree::remove_node_from_children(const state* state)
    {
410
      for (auto c: children)
411
      {
412 413
        subset_t::iterator it = c->nodes.find(state);
        if (it != c->nodes.end())
414 415
        {
          const spot::state* s = *it;
416
	  c->nodes.erase(it);
417
          s->destroy();
418
        }
419
        c->remove_node_from_children(state);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
      }
    }

    /// \brief Remove empty nodes
    ///
    /// If a child of the node has an empty label, we remove this child.
    safra_tree*
    safra_tree::remove_empty()
    {
      child_list::iterator child_it = children.begin();
      while (child_it != children.end())
      {
        if ((*child_it)->nodes.empty())
        {
          safra_tree* to_delete = *child_it;
          child_it = children.erase(child_it);
          delete to_delete;
        }
        else
        {
          (*child_it)->remove_empty();
          ++child_it;
        }
      }

      return this;
    }

    /// \brief Vertical merge
    ///
    /// If a parent has the same states as its childen in its label,
    /// All the children a deleted and the node is marked. This mean
    /// an accepting infinite run is found.
    safra_tree*
    safra_tree::mark()
    {
      std::set<const state*, state_ptr_less_than> node_set;
457
      for (auto c: children)
458
      {
459 460
        node_set.insert(c->nodes.begin(), c->nodes.end());
        c->mark();
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
      }

      char same = node_set.size() == nodes.size();

      if (same)
      {
        subset_t::const_iterator i = node_set.begin();
        subset_t::const_iterator j = nodes.begin();

        while (i != node_set.end() && j != nodes.end())
        {
          if ((*i)->compare(*j) != 0)
          {
            same = 0;
            break;
          }
          ++i;
          ++j;
        }
      }

      if (same)
      {
        marked = true;
485 486
        for (auto c: children)
          delete c;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        children = child_list();
      }

      return this;
    }

    /*-----------------------.
    | Acceptances conditions |
    `-----------------------*/

    /// Returns in which sets L (the semantic differs according to Rabin or
    /// Streett) the state-tree is included.
    ///
    /// \param bitset a bitset of size \c this->get_nb_acceptance_pairs()
    /// filled with FALSE bits.
502
    /// On return bitset[i] will be set if this state-tree is included in L_i.
503
    void
504
    safra_tree::getL(bitvect& bitset) const
505 506 507
    {
      assert(bitset.size() > static_cast<unsigned>(name));
      if (marked && !nodes.empty())
508
        bitset.set(name);
509 510
      for (auto c: children)
        c->getL(bitset);
511 512 513 514 515 516 517
    }

    /// Returns in which sets U (the semantic differs according to Rabin or
    /// Streett) the state-tree is included.
    ///
    /// \param bitset a bitset of size \c this->get_nb_acceptance_pairs()
    /// filled with TRUE bits.
518
    /// On return bitset[i] will be set if this state-tree is included in U_i.
519
    void
520
    safra_tree::getU(bitvect& bitset) const
521 522 523
    {
      assert(bitset.size() > static_cast<unsigned>(name));
      if (!nodes.empty())
524
        bitset.clear(name);
525 526
      for (auto c: children)
        c->getU(bitset);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    }

    bool
    safra_tree_ptr_less_than::operator()(const safra_tree* left,
                                         const safra_tree* right) const
    {
      assert(left);
      return left->compare(right) < 0;
    }

    struct safra_tree_ptr_equal:
      public std::unary_function<const safra_tree*, bool>
    {
      safra_tree_ptr_equal(const safra_tree* left)
        : left_(left) {}

      bool
      operator()(const safra_tree* right) const
      {
        return left_->compare(right) == 0;
      }
    private:
      const safra_tree* left_;
    };

    /// \brief Algorithm to determinize Büchi automaton.
    ///
    /// Determinization of a Büchi automaton into a Rabin automaton
    /// using the Safra's construction.
    ///
    /// This construction is presented in:
    /// @PhDThesis{      safra.89.phd,
    ///     author     = {Shmuel Safra},
    ///     title      = {Complexity of Automata on Infinite Objects},
    ///     school     = {The Weizmann Institute of Science},
    ///     year       = {1989},
    ///     address    = {Rehovot, Israel},
    ///     month      = mar
    /// }
    ///
    class safra_determinisation
    {
    public:
570
      static safra_tree_automaton*
571
      create_safra_automaton(const const_tgba_digraph_ptr& a);
572 573 574
    private:
      typedef std::set<int> atomic_list_t;
      typedef std::set<bdd, bdd_less_than> conjunction_list_t;
575
      static void retrieve_atomics(const safra_tree* node,
576
				   tgba_digraph_ptr sba_aut,
577 578 579 580 581 582 583 584 585
                                   safra_tree::cache_t& cache,
                                   atomic_list_t& atomic_list);
      static void set_atomic_list(atomic_list_t& list, bdd condition);
      static conjunction_list_t
      get_conj_list(const atomic_list_t& atomics);
    };

    /// \brief The body of Safra's construction.
    safra_tree_automaton*
586 587
    safra_determinisation::create_safra_automaton
    (const const_tgba_digraph_ptr& a)
588 589
    {
      // initialization.
590
      auto sba_aut = degeneralize(a);
591

592
      safra_tree_automaton* st = new safra_tree_automaton(sba_aut);
593 594 595

      std::deque<safra_tree*> queue;
      safra_tree* q0 = new safra_tree();
596
      q0->add_node(sba_aut->get_init_state());
597 598 599 600 601 602 603 604 605 606 607 608
      queue.push_back(q0);
      st->set_initial_state(q0);

      // main loop
      while (!queue.empty())
      {
        safra_tree* current = queue.front();
        // safra_tree* node = new safra_tree(*current);

        // Get conjunction list and save successors.
        safra_tree::cache_t cache;
        atomic_list_t atomic_list;
609
        retrieve_atomics(current, sba_aut, cache, atomic_list);
610 611 612 613
        conjunction_list_t conjunction = get_conj_list(atomic_list);

        // Create successors of the Safra's tree.
        safra_tree_automaton::transition_list transitions;
614
        for (auto i: conjunction)
615 616
        {
          safra_tree* successor = new safra_tree(*current);
617
          successor->branch_accepting(*sba_aut); // Step 2
618
          successor->succ_create(i, cache); // Step 3
619 620 621 622 623 624 625 626
          successor->normalize_siblings(); // Step 4
          successor->remove_empty(); // Step 5
          successor->mark(); // Step 6

          bool delete_this_successor = true;
          safra_tree_ptr_equal comparator(successor);
          if (st->automaton.find(successor) != st->automaton.end())
          {
627
            transitions[i] = st->automaton.find(successor)->first;
628 629 630 631 632 633 634
          }
          else
          {
            std::deque<safra_tree*>::iterator item_in_queue =
              std::find_if(queue.begin(), queue.end(), comparator);
            if (item_in_queue != queue.end())
            {
635
              transitions[i] = *item_in_queue;
636 637 638 639
            }
            else
            {
              delete_this_successor = false;
640
              transitions[i] = successor;
641 642 643 644 645 646 647 648 649 650 651 652
              queue.push_back(successor);
            }
          }
          if (delete_this_successor)
            delete successor;
        }

        if (st->automaton.find(current) == st->automaton.end())
          st->automaton[current] = transitions;

        queue.pop_front();

653 654 655
        for (auto i: cache)
          for (auto j: i.second)
            j.second->destroy();
656 657 658
        // delete node;
      }

659
      // delete sba_aut;
660 661 662 663 664 665 666
      return st;
    }

    /// Retrieve all atomics properties that are in successors formulae
    /// of the states in the label of the node.
    void
    safra_determinisation::retrieve_atomics(const safra_tree* node,
667
                                            tgba_digraph_ptr sba_aut,
668 669 670
                                            safra_tree::cache_t& cache,
                                            atomic_list_t& atomic_list)
    {
671
      for (auto n: node->nodes)
672 673
      {
        safra_tree::tr_cache_t transitions;
674
	for (auto iterator: sba_aut->succ(n))
675 676 677 678 679 680
        {
          bdd condition = iterator->current_condition();
          typedef std::pair<bdd, const state*> bdd_state;
          transitions.insert(bdd_state(condition, iterator->current_state()));
          set_atomic_list(atomic_list, condition);
        }
681
        cache[n] = transitions;
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
      }
    }

    /// Insert in \a list atomic properties of the formula \a c.
    void
    safra_determinisation::set_atomic_list(atomic_list_t& list, bdd c)
    {
      bdd current = bdd_satone(c);
      while (current != bddtrue && current != bddfalse)
      {
        list.insert(bdd_var(current));
        bdd high = bdd_high(current);
        if (high == bddfalse)
          current = bdd_low(current);
        else
          current = high;
      }
    }

    /// From the list of atomic properties \a atomics, create the list
    /// of all the conjunctions of properties.
    safra_determinisation::conjunction_list_t
    safra_determinisation::get_conj_list(const atomic_list_t& atomics)
    {
      conjunction_list_t list;
      unsigned atomics_size = atomics.size();

      assert(atomics_size < 32);
      for (unsigned i = 1; i <= static_cast<unsigned>(1 << atomics_size); ++i)
      {
        bdd result = bddtrue;
        unsigned position = 1;
714
        for (auto a: atomics)
715 716 717
        {
          bdd this_atomic;
          if (position & i)
718
            this_atomic = bdd_ithvar(a);
719
          else
720 721 722
            this_atomic = bdd_nithvar(a);
          result &= this_atomic;
	  position <<= 1;
723 724 725 726 727 728 729 730 731 732 733
        }
        list.insert(result);
      }

      return list;
    }

    // Safra's test part. Dot output.
    //////////////////////////////
    namespace test
    {
734 735
      typedef std::unordered_map<const state*, int,
				 state_ptr_hash, state_ptr_equal> stnum_t;
736

737
      void print_safra_tree(const safra_tree* this_node,
738
                            stnum_t& node_names,
739 740 741 742
                            int& current_node,
                            int nb_accepting_conditions)
      {
        std::string conditions;
743
        if (this_node->is_root())
744
        {
745 746 747 748 749
          bitvect* l = make_bitvect(nb_accepting_conditions);
	  bitvect* u = make_bitvect(nb_accepting_conditions);
          u->set_all();
          this_node->getL(*l);
          this_node->getU(*u);
750
          std::stringstream s;
751
          s << "\\nL:" << *l << ", U:" << *u;
752
          conditions = s.str();
753 754
	  delete u;
	  delete l;
755 756 757
        }

        std::cout << "node" << this_node << "[label=\"";
758
        std::cout << this_node->name << '|';
759
        for (auto j: this_node->nodes)
760
        {
761
	  stnum_t::const_iterator it = node_names.find(j);
762 763
	  int name;
          if (it == node_names.end())
764
	    name = node_names[j] = current_node++;
765 766 767
	  else
	    name = it->second;
          std::cout << name << ", ";
768 769 770
        }
        std::cout << conditions;
        if (this_node->marked)
771
          std::cout << "\", style=filled, fillcolor=\"gray";
772 773 774 775 776 777 778 779 780

        std::cout << "\"];" << std::endl;

        safra_tree::child_list::const_iterator i = this_node->children.begin();
        for (; i != this_node->children.end(); ++i)
        {
          print_safra_tree(*i, node_names, current_node,
                           nb_accepting_conditions);
          std::cout << "node" << this_node << " -> node" << *i
781
                    << "[color=\"red\", arrowhead=\"none\"];"
782 783 784 785 786 787
                    << std::endl;
        }
      }

      void print_safra_automaton(safra_tree_automaton* a)
      {
788
        typedef safra_tree_automaton::automaton_t::reverse_iterator
789
          automaton_cit;
790
        stnum_t node_names;
791 792 793 794 795
        int current_node = 0;
        int nb_accepting_conditions = a->get_nb_acceptance_pairs();

        std::cout << "digraph A {" << std::endl;

796 797
	/// GCC 3.3 complains if a const_reverse_iterator is used.
	/// error: no match for 'operator!='
798 799 800 801
        for (automaton_cit i = a->automaton.rbegin();
             i != a->automaton.rend();
             ++i)
        {
802
          std::cout << "subgraph sg" << i->first << '{' << std::endl;
803 804
          print_safra_tree(i->first, node_names, current_node,
                           nb_accepting_conditions);
805
          std::cout << "}\n";
806 807

          // Successors.
808
          for (const auto& j: i->second)
809
            std::cout << "node" << i->first << "->"
810
                      << "node" << j.second <<
811
              " [label=\"" << bddset << j.first << "\"];\n";
812 813
        }

814 815 816 817
	// Output the real name of all states.
	std::cout << "{ rank=sink; legend [shape=none,margin=0,label=<\n"
		  << "<TABLE BORDER='1' CELLBORDER='0' CELLSPACING='0'>\n";

818 819 820
	for (const auto& nn: node_names)
	  std::cout << "<TR><TD>" << nn.second << "</TD><TD>"
		    << a->get_sba()->format_state(nn.first)
821
		    << "</TD></TR>\n";
822
	std::cout << "</TABLE>\n>]}\n}\n";
823 824 825 826 827 828
      }
    } // test

    ////////////////////////////////////////
    // state_complement

829
    /// States used by spot::tgba_safra_complement.
830 831 832 833
    /// \ingroup tgba_representation
    class state_complement : public state
    {
    public:
834
      state_complement(bitvect* U, bitvect* L, const safra_tree* tree,
835 836
                       bool use_bitset = true);
      state_complement(const state_complement& other);
837
      virtual ~state_complement();
838 839 840 841 842 843 844 845

      /// \return the safra tree associated to this state.
      const safra_tree* get_safra() const
      {
        return tree;
      }

      /// \return in which sets U this state is included.
846
      const bitvect& get_U() const
847
      {
848
        return *U;
849 850 851
      }

      /// \return in which sets L this state is included.
852
      const bitvect& get_L() const
853
      {
854
        return *L;
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
      }

      /// \return whether this state track an infinite run.
      bool get_use_bitset() const
      {
        return use_bitset;
      }

      virtual int compare(const state* other) const;
      virtual size_t hash() const;
      virtual state_complement* clone() const;

      std::string to_string() const;
      const state* get_state() const;
    private:
870 871
      bitvect* U;
      bitvect* L;
872 873 874 875
      const safra_tree* tree;
      bool use_bitset;
    };

876
    state_complement::state_complement(bitvect* L, bitvect* U,
877 878
                                       const safra_tree* tree,
                                       bool use_bitset)
879
      : state(), U(U), L(L), tree(tree), use_bitset(use_bitset)
880 881 882 883
    {
    }

    state_complement::state_complement(const state_complement& other)
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
884
      : state()
885
    {
886 887
      U = other.U->clone();
      L = other.L->clone();
888 889 890 891
      tree = other.tree;
      use_bitset = other.use_bitset;
    }

892 893 894 895 896 897
    state_complement::~state_complement()
    {
      delete U;
      delete L;
    }

898 899 900 901 902
    int
    state_complement::compare(const state* other) const
    {
      if (other == this)
        return 0;
903
      const state_complement* s = down_cast<const state_complement*>(other);
904
      assert(s);
905 906
#if TRANSFORM_TO_TBA
      // When we transform to TBA instead of TGBA, states depend on the U set.
907 908
      if (*U != *s->U)
        return (*U < *s->U) ? -1 : 1;
909
#endif
910 911
      if (*L != *s->L)
        return (*L < *s->L) ? -1 : 1;
912 913 914 915 916 917 918 919
      if (use_bitset != s->use_bitset)
        return use_bitset - s->use_bitset;
      return tree->compare(s->tree);
    }

    size_t
    state_complement::hash() const
    {
920 921
      size_t hash = tree->hash();
      hash ^= wang32_hash(use_bitset);
922
      hash ^= L->hash();
923
#if TRANSFORM_TO_TBA
924
      hash ^= U->hash();
925
#endif
926
      return hash;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
    }

    state_complement*
    state_complement::clone() const
    {
      return new state_complement(*this);
    }

    const state*
    state_complement::get_state() const
    {
      return this;
    }

    std::string
    state_complement::to_string() const
    {
      std::stringstream ss;
      ss << tree;
      if (use_bitset)
947
      {
948
        ss << " - I:" << *L;
949
#if TRANSFORM_TO_TBA
950
        ss << " J:" << *U;
951 952
#endif
      }
953 954 955
      return ss.str();
    }

956
    /// Successor iterators used by spot::tgba_safra_complement.
957
    /// \ingroup tgba_representation
958
    class tgba_safra_complement_succ_iterator: public tgba_succ_iterator
959 960 961 962
    {
    public:
      typedef std::multimap<bdd, state_complement*, bdd_less_than> succ_list_t;

963
      tgba_safra_complement_succ_iterator(const succ_list_t& list,
964
                                          acc_cond::mark_t the_acceptance_cond)
965 966 967 968 969
        : list_(list), the_acceptance_cond_(the_acceptance_cond)
      {
      }

      virtual
970
      ~tgba_safra_complement_succ_iterator()
971
      {
972 973
        for (auto& p: list_)
          delete p.second;
974 975
      }

976 977
      virtual bool first();
      virtual bool next();
978 979 980
      virtual bool done() const;
      virtual state_complement* current_state() const;
      virtual bdd current_condition() const;
981
      virtual acc_cond::mark_t current_acceptance_conditions() const;
982 983
    private:
      succ_list_t list_;
984
      acc_cond::mark_t the_acceptance_cond_;
985 986 987
      succ_list_t::const_iterator it_;
    };

988
    bool
989
    tgba_safra_complement_succ_iterator::first()
990 991
    {
      it_ = list_.begin();
992
      return it_ != list_.end();
993 994
    }

995
    bool
996
    tgba_safra_complement_succ_iterator::next()
997 998
    {
      ++it_;
999
      return it_ != list_.end();
1000 1001 1002
    }

    bool
1003
    tgba_safra_complement_succ_iterator::done() const
1004 1005 1006 1007 1008
    {
      return it_ == list_.end();
    }

    state_complement*
1009
    tgba_safra_complement_succ_iterator::current_state() const
1010 1011 1012 1013 1014 1015
    {
      assert(!done());
      return new state_complement(*(it_->second));
    }

    bdd
1016
    tgba_safra_complement_succ_iterator::current_condition() const
1017 1018 1019 1020 1021
    {
      assert(!done());
      return it_->first;
    }

1022
    acc_cond::mark_t
1023
    tgba_safra_complement_succ_iterator::current_acceptance_conditions() const
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    {
      assert(!done());
      return the_acceptance_cond_;
    }

  } // anonymous

  // safra_tree_automaton
  ////////////////////////

1034
  safra_tree_automaton::safra_tree_automaton(const const_tgba_digraph_ptr& a)
1035 1036 1037 1038 1039 1040 1041
    : max_nb_pairs_(-1), initial_state(0), a_(a)
  {
    a->get_dict()->register_all_variables_of(a, this);
  }

  safra_tree_automaton::~safra_tree_automaton()
  {
1042 1043
    for (auto& p: automaton)
      delete p.first;
1044 1045 1046 1047 1048 1049 1050 1051 1052
  }

  int
  safra_tree_automaton::get_nb_acceptance_pairs() const
  {
    if (max_nb_pairs_ != -1)
      return max_nb_pairs_;

    int max = -1;
1053 1054
    for (auto& p: automaton)
      max = std::max(max, p.first->max_name());
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
    return max_nb_pairs_ = max + 1;
  }

  safra_tree*
  safra_tree_automaton::get_initial_state() const
  {
    return initial_state;
  }

  void
  safra_tree_automaton::set_initial_state(safra_tree* s)
  {
    initial_state = s;
  }

  // End of the safra construction
  //////////////////////////////////////////

1073
  // tgba_safra_complement
1074 1075
  //////////////////////////

1076
  tgba_safra_complement::tgba_safra_complement(const const_tgba_digraph_ptr& a)
1077
    : twa(a->get_dict()), automaton_(a),
1078
      safra_(safra_determinisation::create_safra_automaton(a))
1079
  {
1080
    assert(safra_ || !"safra construction fails");
1081

1082
#if TRANSFORM_TO_TBA
1083
    the_acceptance_cond_ = acc_.mark(acc_.add_set());
1084 1085 1086
#endif

#if TRANSFORM_TO_TGBA
1087 1088
    unsigned nb_acc =
      static_cast<safra_tree_automaton*>(safra_)->get_nb_acceptance_pairs();
1089

1090 1091
    acceptance_cond_vec_.reserve(nb_acc);
    for (unsigned i = 0; i < nb_acc; ++i)