ltl2tgba_fm.cc 37.8 KB
Newer Older
1
2
3
// Copyright (C) 2008, 2009, 2010 Laboratoire de Recherche et
// Dveloppement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire
4
5
// d'Informatique de Paris 6 (LIP6), dpartement Systmes Rpartis
// Coopratifs (SRC), Universit Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

24
#include "misc/hash.hh"
25
#include "misc/bddalloc.hh"
26
#include "misc/bddlt.hh"
27
#include "misc/minato.hh"
28
29
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
30
31
32
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/tostring.hh"
33
#include "ltlvisit/postfix.hh"
34
#include "ltlvisit/apcollect.hh"
35
36
#include "ltlvisit/mark.hh"
#include "ltlvisit/tostring.hh"
37
#include <cassert>
38
#include <memory>
39
#include "ltl2tgba_fm.hh"
40
#include "ltlvisit/contain.hh"
41
42
#include "ltlvisit/consterm.hh"
#include "tgba/bddprint.hh"
43
44
45
46
47
48
49
50

namespace spot
{
  using namespace ltl;

  namespace
  {

51
52
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
53
54
55
56
57
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
58
    class translate_dict
59
60
61
    {
    public:

62
63
      translate_dict(bdd_dict* dict)
	: dict(dict),
64
65
66
67
68
69
70
71
72
73
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
74
	  i->first->destroy();
75
	dict->unregister_all_my_variables(this);
76
77
      }

78
79
      bdd_dict* dict;

80
81
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
82
83
84
85
86
87
88
89
90

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
91
      register_proposition(const formula* f)
92
      {
93
	int num = dict->register_proposition(f, this);
94
95
96
97
98
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
99
      register_a_variable(const formula* f)
100
      {
101
	int num = dict->register_acceptance_variable(f, this);
102
103
104
105
106
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
107
      register_next_variable(const formula* f)
108
109
110
111
112
113
114
115
116
117
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
118
	    f = f->clone();
119
	    num = dict->register_anonymous_variables(1, this);
120
121
122
123
124
125
126
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
	return os;
      }

142
      formula*
143
144
145
146
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
147
	  return isi->second->clone();
148
149
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
150
	  return isi->second->clone();
151
152
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
153
	  return isi->second->clone();
154
	assert(0);
155
156
157
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
158
159
      }

160
      formula*
161
      conj_bdd_to_formula(bdd b) const
162
163
      {
	if (b == bddfalse)
164
165
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
166
167
168
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
169
	    formula* res = var_to_formula(var);
170
171
172
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
173
		res = unop::instance(unop::Not, res);
174
175
176
177
		b = bdd_low(b);
	      }
	    else
	      {
178
		assert(bdd_low(b) == bddfalse);
179
180
181
182
183
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
184
	return multop::instance(multop::And, v);
185
186
      }

187
188
      const formula*
      bdd_to_formula(bdd f)
189
      {
190
	if (f == bddfalse)
191
	  return constant::false_instance();
192

193
194
195
196
197
198
199
200
201
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
202
203

      void
204
      conj_bdd_to_acc(tgba_explicit_formula* a, bdd b,
Pierre PARUTTO's avatar
Pierre PARUTTO committed
205
		      state_explicit_formula::transition* t)
206
207
208
209
210
211
212
213
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
214
		// Simply ignore negated acceptance variables.
215
216
217
218
		b = bdd_low(b);
	      }
	    else
	      {
219
		formula* ac = var_to_formula(var);
220

221
		if (!a->has_acceptance_condition(ac))
222
		  a->declare_acceptance_condition(ac->clone());
223
		a->add_acceptance_condition(t, ac);
224
225
226
227
228
229
230
231
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    // Debugging function.
    std::ostream&
    trace_ltl_bdd(const translate_dict& d, bdd f)
    {
      minato_isop isop(f);
      bdd cube;
      while ((cube = isop.next()) != bddfalse)
	{
	  bdd label = bdd_exist(cube, d.next_set);
	  bdd dest_bdd = bdd_existcomp(cube, d.next_set);
	  const formula* dest = d.conj_bdd_to_formula(dest_bdd);
	  bdd_print_set(std::cerr, d.dict, label) << " => "
						  << to_string(dest)
						  << std::endl;
	  dest->destroy();
	}
      return std::cerr;
    }


252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    // Rewrite rule for rational operators.
    class ratexp_trad_visitor: public const_visitor
    {
    public:
      ratexp_trad_visitor(translate_dict& dict,
			  formula* to_concat = 0)
	: dict_(dict), to_concat_(to_concat)
      {
      }

      virtual
      ~ratexp_trad_visitor()
      {
	if (to_concat_)
	  to_concat_->destroy();
      }

      bdd
      result() const
      {
	return res_;
      }

      bdd next_to_concat()
      {
	if (!to_concat_)
	  to_concat_ = constant::empty_word_instance();
	int x = dict_.register_next_variable(to_concat_);
	return bdd_ithvar(x);
      }

      bdd now_to_concat()
      {
	if (to_concat_)
	  {
	    if (to_concat_ == constant::empty_word_instance())
	      return bddfalse;
	    bdd n = recurse(to_concat_);
	    return n;
	  }
	else
	  {
	    return bddfalse;
	  }
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = (bdd_ithvar(dict_.register_proposition(node))
		& next_to_concat());
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = next_to_concat();
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  case constant::EmptyWord:
	    res_ = now_to_concat();
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	  case unop::G:
	  case unop::Not:
	  case unop::X:
	  case unop::Finish:
	    assert(!"not a rational operator");
	    return;
	  case unop::Star:
	    {
	      formula* f;
	      if (to_concat_)
		f = multop::instance(multop::Concat, node->clone(),
				     to_concat_->clone());
	      else
		f = node->clone();

	      res_ = recurse(node->child(), f) | now_to_concat();
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const automatop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const multop* node)
      {
	switch (node->op())
	  {
	  case multop::And:
	    {
	      res_ = bddtrue;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
	      {
		bdd res = recurse(node->nth(n));
		// trace_ltl_bdd(dict_, res);
		res_ &= res;
	      }

	      //std::cerr << "Pre-Concat:" << std::endl;
	      //trace_ltl_bdd(dict_, res_);

	      if (to_concat_)
		{
		  // If we have translated (a* & b*) in (a* & b*);c, we
		  // have to append ";c" to all destinations.

		  minato_isop isop(res_);
		  bdd cube;
		  res_ = bddfalse;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
		      formula* dest2;
		      int x;
		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & next_to_concat();
			}
		      else
			{
			  dest2 = multop::instance(multop::Concat, dest,
						   to_concat_->clone());
			  if (dest2 != constant::false_instance())
			    {
			      x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(node))
			    res_ |= label & next_to_concat();
			}
		    }
		}

	      break;
	    }
	  case multop::Or:
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
	      if (to_concat_)
		for (unsigned n = 0; n < s; ++n)
		  res_ |= recurse(node->nth(n), to_concat_->clone());
	      else
		for (unsigned n = 0; n < s; ++n)
		  res_ |= recurse(node->nth(n));
	      break;
	    }
	  case multop::Concat:
	    {
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      if (to_concat_)
		v->push_back(to_concat_->clone());
	      res_ = recurse(node->nth(0),
			     multop::instance(multop::Concat, v));
	      break;
	    }
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
	  case multop::Fusion:
	    {
	      assert(node->size() >= 2);

	      // the head
	      bdd res = recurse(node->nth(0));

	      // the tail
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s - 1);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      formula* tail = multop::instance(multop::Fusion, v);
	      bdd tail_bdd;
	      bool tail_computed = false;

	      //trace_ltl_bdd(dict_, res);

	      minato_isop isop(res);
	      bdd cube;
	      res_ = bddfalse;
	      while ((cube = isop.next()) != bddfalse)
		{
		  bdd label = bdd_exist(cube, dict_.next_set);
		  bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		  formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		  if (constant_term_as_bool(dest))
		    {
		      // The destination is a final state.  Make sure we
		      // can also exit if tail is satisfied.
		      if (!tail_computed)
			{
			  tail_bdd = recurse(tail,
					     to_concat_ ?
					     to_concat_->clone() : 0);
			  tail_computed = true;
			}
		      res_ |= label & tail_bdd;
		    }

		  if (dynamic_cast<constant*>(dest) == 0)
		    {
		      // If the destination is not a constant, it
		      // means it can have successors.  Fusion the
		      // tail and append anything to concatenate.
		      formula* dest2 = multop::instance(multop::Fusion, dest,
							tail->clone());
		      if (to_concat_)
			 dest2 = multop::instance(multop::Concat, dest2,
						 to_concat_->clone());
		      if (dest2 != constant::false_instance())
			{
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}

	      tail->destroy();
	      break;
	    }
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
	  }
      }

      bdd
      recurse(const formula* f, formula* to_concat = 0)
      {
	ratexp_trad_visitor v(dict_, to_concat);
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
      formula* to_concat_;
    };

571

572
    // The rewrite rules used here are adapted from Jean-Michel
573
    // Couvreur's FM paper, augmented to support rational operators.
574
575
576
    class ltl_trad_visitor: public const_visitor
    {
    public:
577
578
      ltl_trad_visitor(translate_dict& dict, bool mark_all = false)
	: dict_(dict), rat_seen_(false), has_marked_(false), mark_all_(mark_all)
579
580
581
582
583
584
585
586
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

587
588
589
590
591
592
593
594
      void
      reset(bool mark_all)
      {
	rat_seen_ = false;
	has_marked_ = false;
	mark_all_ = mark_all;
      }

595
596
      bdd
      result() const
597
598
599
600
      {
	return res_;
      }

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
      const translate_dict&
      get_dict() const
      {
	return dict_;
      }

      bool
      has_rational() const
      {
	return rat_seen_;
      }

      bool
      has_marked() const
      {
	return has_marked_;
      }

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
636
	  case constant::EmptyWord:
637
638
	    assert(!"Not an LTL operator");
	    return;
639
640
641
642
643
644
645
646
647
648
649
650
651
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
652
653
654
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
655
656
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
657
	      break;
658
659
660
	    }
	  case unop::G:
	    {
661
662
663
664
665
666
667
668
669
670
671
672
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
673
	      const formula* child = node->child();
674
	      int x = dict_.register_next_variable(node);
675
676
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
677
	      break;
678
679
680
	    }
	  case unop::Not:
	    {
681
	      // r(!y) = !r(y)
682
	      res_ = bdd_not(recurse(node->child()));
683
	      break;
684
685
686
	    }
	  case unop::X:
	    {
687
	      // r(Xy) = Next[y]
688
689
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
690
	      break;
691
	    }
692
693
	  case unop::Finish:
	    assert(!"unsupported operator");
694
695
696
697
	    break;
	  case unop::Star:
	    assert(!"Not an LTL operator");
	    break;
698
699
700
701
702
703
	  }
      }

      void
      visit(const binop* node)
      {
704
	binop::type op = node->op();
705

706
	switch (op)
707
	  {
708
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
709
	  case binop::Xor:
710
711
712
713
714
715
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_xor);
	      return;
	    }
716
	  case binop::Implies:
717
718
719
720
721
722
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_imp);
	      return;
	    }
723
	  case binop::Equiv:
724
725
726
727
728
729
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_biimp);
	      return;
	    }
730
731
	  case binop::U:
	    {
732
733
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
734
735
736
737
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
738
	      break;
739
	    }
740
741
	  case binop::W:
	    {
742
743
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
744
745
746
	      // r(f1 W f2) = r(f2) + r(f1)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (f1 & bdd_ithvar(x));
747
	      break;
748
	    }
749
750
	  case binop::R:
	    {
751
752
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
753
754
755
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
756
	      break;
757
	    }
758
759
	  case binop::M:
	    {
760
761
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
762
763
764
765
	      // r(f1 M f2) = r(f1)r(f2) + a(f1)r(f2)r(X(f1 M f2))
	      int a = dict_.register_a_variable(node->first());
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (bdd_ithvar(a) & f2 & bdd_ithvar(x));
766
	      break;
767
	    }
768
769
770
	  case binop::EConcatMarked:
	    has_marked_ = true;
	    /* fall through */
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
771
	  case binop::EConcat:
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
	    rat_seen_ = true;
	    {
	      bdd f2 = recurse(node->second());
	      ratexp_trad_visitor v(dict_);
	      node->first()->accept(v);
	      bdd f1 = v.result();

	      if (mark_all_)
		{
		  op = binop::EConcatMarked;
		  has_marked_ = true;
		}

	      // Recognize f2 on transitions going to destinations
	      // that accept the empty word.
	      minato_isop isop(f1);
	      bdd cube;
	      res_ = bddfalse;
	      while ((cube = isop.next()) != bddfalse)
		{
		  bdd label = bdd_exist(cube, dict_.next_set);
		  bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		  formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
		  formula* dest2;
		  int x;
		  if (dest == constant::empty_word_instance())
		    {
		      res_ |= label & f2;
		    }
		  else
		    {
		      dest2 = binop::instance(op, dest,
					      node->second()->clone());
		      if (dest2 != constant::false_instance())
			{
			  x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		      if (constant_term_as_bool(dest))
			res_ |= label & f2;
		    }
		}
	    }
	    break;

	  case binop::UConcat:
	    {
	      bdd f2 = recurse(node->second());
	      ratexp_trad_visitor v(dict_);
	      node->first()->accept(v);
	      bdd f1 = v.result();

	      // Transitions going to destinations accepting the empty
	      // word should recognize f2, and the automaton should be
	      // understood as universal.
	      minato_isop isop(f1);
	      bdd cube;
	      res_ = bddtrue;
	      while ((cube = isop.next()) != bddfalse)
		{
		  bdd label = bdd_exist(cube, dict_.next_set);
		  bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		  formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
		  formula* dest2;
		  bdd udest;

		  dest2 = binop::instance(op, dest,
					  node->second()->clone());
		  udest = bdd_ithvar(dict_.register_next_variable(dest2));

		  if (constant_term_as_bool(dest))
		    udest &= f2;

		  dest2->destroy();
		  label = bdd_apply(label, udest, bddop_imp);

		  res_ &= label;
		}
	    }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
852
	    break;
853
854
855
	  }
      }

856
857
858
859
860
861
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

862
863
864
865
866
867
      void
      visit(const multop* node)
      {
	switch (node->op())
	  {
	  case multop::And:
868
869
870
871
872
873
874
875
876
877
878
879
	    {
	      res_ = bddtrue;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		{
		  bdd res = recurse(node->nth(n));
		  //std::cerr << "=== in And" << std::endl;
		  //trace_ltl_bdd(dict_, res);
		  res_ &= res;
		}
	      break;
	    }
880
	  case multop::Or:
881
882
883
884
885
886
887
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		res_ |= recurse(node->nth(n));
	      break;
	    }
888
	  case multop::Concat:
889
	  case multop::Fusion:
890
891
	    assert(!"Not an LTL operator");
	    break;
892
	  }
893

894
895
896
897
898
      }

      bdd
      recurse(const formula* f)
      {
899
	ltl_trad_visitor v(dict_, mark_all_);
900
	f->accept(v);
901
902
	rat_seen_ |= v.has_rational();
	has_marked_ |= v.has_marked();
903
904
905
906
907
908
909
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
910
911
912
      bool rat_seen_;
      bool has_marked_;
      bool mark_all_;
913
914
    };

915

916
917
    // Check whether a formula has a R, W, or G operator at its
    // top-level (preceding logical operators do not count).
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
968
	  case binop::M:
969
970
	    return;
	  case binop::R:
971
	  case binop::W:
972
973
	    res_ = true;
	    return;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
974
975
	  case binop::UConcat:
	  case binop::EConcat:
976
	  case binop::EConcatMarked:
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
977
	    node->second()->accept(*this);
978
	    // FIXME: we might need to add Acc[1]
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
979
	    return;
980
981
982
983
984
	  }
	/* Unreachable code.  */
	assert(0);
      }

985
986
987
988
989
990
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
1013
1014
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
1015
1016
1017
1018
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
1019
	pfl_[f] = rel;
1020
1021
1022
1023
	return rel;
      }

    private:
1024
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
1025
      pfl_map pfl_;
1026
1027
    };

1028
1029
1030
    class formula_canonizer
    {
    public:
1031
      formula_canonizer(translate_dict& d,
1032
			bool fair_loop_approx, bdd all_promises)
1033
1034
	: v_(d),
	  fair_loop_approx_(fair_loop_approx),
1035
1036
	  all_promises_(all_promises),
	  d_(d)
1037
1038
1039
1040
1041
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
1042

1043
1044
      ~formula_canonizer()
      {
1045
	while (!f2b_.empty())
1046
	  {
1047
1048
1049
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
1050
	    f->destroy();
1051
	  }
1052
1053
      }

1054
1055
1056
1057
1058
1059
1060
1061
      struct translated
      {
	bdd symbolic;
	bool has_rational:1;
	bool has_marked:1;
      };

      const translated&
1062
      translate(const formula* f, bool* new_flag = 0)
1063
1064
1065
1066
1067
1068
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

1069
1070
1071
	if (new_flag)
	  *new_flag = true;

1072
	// Perform the actual translation.
1073
	v_.reset(!has_mark(f));
1074
	f->accept(v_);
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
	translated t;
	t.symbolic = v_.result();
	t.has_rational = v_.has_rational();
	t.has_marked = v_.has_marked();

//	std::cerr << "-----" << std::endl;
//	std::cerr << "Formula: " << to_string(f) << std::endl;
//	std::cerr << "Rational: " << t.has_rational << std::endl;
//	std::cerr << "Marked: " << t.has_marked << std::endl;
//	std::cerr << "Mark all: " << !has_mark(f) << std::endl;
//	std::cerr << "Transitions:" << std::endl;
//	trace_ltl_bdd(v_.get_dict(), t.symbolic);

	if (t.has_rational)
	  {
	    bdd res = bddfalse;

	    minato_isop isop(t.symbolic);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
	      {
		bdd label = bdd_exist(cube, d_.next_set);
		bdd dest_bdd = bdd_existcomp(cube, d_.next_set);
		formula* dest =
		  d_.conj_bdd_to_formula(dest_bdd);

		// Handle a Miyano-Hayashi style unrolling for
		// rational operators.  Marked nodes correspond to
		// subformulae in the Miyano-Hayashi set.
		if (simplify_mark(dest))
		  {
		    // Make the promise that we will exit marked sets.
		    int a =
		      d_.register_a_variable(constant::true_instance());
		    label &= bdd_ithvar(a);
		  }
		else
		  {
		    // We have left marked operators, but still
		    // have other rational operator to check.
		    // Start a new marked cycle.
		    formula* dest2 = mark_concat_ops(dest);
		    dest->destroy();
		    dest = dest2;
		  }
		// Note that simplify_mark may have changed dest.
		dest_bdd = bdd_ithvar(d_.register_next_variable(dest));
		dest->destroy();
		res |= label & dest_bdd;
	      }
	    t.symbolic = res;
//	    std::cerr << "Marking rewriting:" << std::endl;
//	    trace_ltl_bdd(v_.get_dict(), t.symbolic);
	  }
1129
1130
1131
1132
1133
1134
1135
1136
1137

	// Apply the fair-loop approximation if requested.
	if (fair_loop_approx_)
	  {
	    // If the source cannot possibly be part of a fair
	    // loop, make all possible promises.
	    if (fair_loop_approx_
		&& f != constant::true_instance()
		&& !pflc_.check(f))
1138
	      t.symbolic &= all_promises_;
1139
1140
	  }

1141
	// Register the reverse mapping if it is not already done.
1142
1143
1144
1145
	if (b2f_.find(t.symbolic) == b2f_.end())
	  b2f_[t.symbolic] = f;

	return f2b_[f->clone()] = t;
1146
1147
1148
1149
1150
      }

      const formula*
      canonize(const formula* f)
      {
1151
	bool new_variable = false;
1152
	bdd b = translate(f, &new_variable).symbolic;
1153
1154

	bdd_to_formula_map::iterator i = b2f_.find(b);
1155
1156
	// Since we have just translated the formula, it is
	// necessarily in b2f_.
1157
1158
1159
	assert(i != b2f_.end());

	if (i->second != f)
1160
	  {
1161
	    // The translated bdd maps to an already seen formula.
1162
	    f->destroy();
1163
	    f = i->second->clone();
1164
	  }
1165
	return f;
1166
1167
      }

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;
      bdd_to_formula_map b2f_;
      // Map a representation of successors to a canonical formula.
      // We do this because many formulae (such as `aR(bRc)' and
      // `aR(bRc).(bRc)') are equivalent, and are trivially identified
      // by looking at the set of successors.
1179
      typedef std::map<const formula*, translated> formula_to_bdd_map;
1180
      formula_to_bdd_map f2b_;
1181
1182
1183
1184

      possible_fair_loop_checker pflc_;
      bool fair_loop_approx_;
      bdd all_promises_;
1185
      translate_dict& d_;
1186
1187
1188
1189
1190
    };

  }

  typedef std::map<bdd, bdd, bdd_less_than> prom_map;
1191
  typedef Sgi::hash_map<const formula*, prom_map, formula_ptr_hash> dest_map;
1192
1193
1194
1195

  static void
  fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
  {
1196
    bdd conds = bdd_existcomp(label, d.var_set);
1197
1198
    bdd promises = bdd_existcomp(label, d.a_set);

1199
1200
1201
1202
1203
1204
1205
1206
    dest_map::iterator i = dests.find(dest);
    if (i == dests.end())
      {
	dests[dest][promises] = conds;
      }
    else
      {
	i->second[promises] |= conds;
1207
	dest->destroy();
1208
1209
1210
1211
      }
  }


Pierre PARUTTO's avatar
Pierre PARUTTO committed
1212
  tgba_explicit_formula*
1213
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
1214
		 bool exprop, bool symb_merge, bool branching_postponement,
1215
		 bool fair_loop_approx, const atomic_prop_set* unobs,
1216
		 int reduce_ltl)
1217
1218
1219
1220
1221
  {
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
1222
1223
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
1224
    f1->destroy();
1225

1226
1227
1228
1229
    // Simplify the formula, if requested.
    if (reduce_ltl)
      {
	formula* tmp = reduce(f2, reduce_ltl);
1230
	f2->destroy();
1231
1232
1233
	f2 = tmp;
      }

1234
1235
    typedef std::set<const formula*, formula_ptr_less_than> set_type;
    set_type formulae_to_translate;
1236

1237
    translate_dict d(dict);
1238

1239
1240
    // Compute the set of all promises that can possibly occurre
    // inside the formula.
1241
    bdd all_promises = bddtrue;
1242
    if (fair_loop_approx || unobs)
1243
1244
1245
1246
1247
1248
      {
	ltl_promise_visitor pv(d);
	f2->accept(pv);
	all_promises = pv.result();
      }

1249
    formula_canonizer fc(d, fair_loop_approx, all_promises);
1250

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
    // These are used when atomic propositions are interpreted as
    // events.  There are two kinds of events: observable events are
    // those used in the formula, and unobservable events or other
    // events that can occur at anytime.  All events exclude each
    // other.
    bdd observable_events = bddfalse;
    bdd unobservable_events = bddfalse;
    if (unobs)
      {
	bdd neg_events = bddtrue;
1261
1262
	std::auto_ptr<atomic_prop_set> aps(atomic_prop_collect(f));
	for (atomic_prop_set::const_iterator i = aps->begin();
1263
1264
1265
1266
1267
1268
1269
1270
	     i != aps->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    observable_events = (observable_events & neg) | (neg_events & pos);
	    neg_events &= neg;
	  }
1271
	for (atomic_prop_set::const_iterator i = unobs->begin();
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
	     i != unobs->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    unobservable_events = ((unobservable_events & neg)
				   | (neg_events & pos));
	    observable_events &= neg;
	    neg_events &= neg;
	  }
      }
    bdd all_events = observable_events | unobservable_events;

1285

1286
    tgba_explicit_formula* a = new tgba_explicit_formula(dict);
1287

1288
1289
1290
1291
    // This is in case the initial state is equivalent to true...
    if (symb_merge)
      f2 = const_cast<formula*>(fc.canonize(f2));

1292
1293
    formulae_to_translate.insert(f2);
    a->set_init_state(f2);
1294
1295
1296
1297

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
1298
	const formula* now = *formulae_to_translate.begin();
1299
1300
1301
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
1302
1303
	const formula_canonizer::translated& t = fc.translate(now);
	bdd res = t.symbolic;
1304

1305
1306
1307
1308
	// Handle exclusive events.
	if (unobs)
	  {
	    res &= observable_events;
1309
	    int n = d.register_next_variable(now);
1310
1311
1312
	    res |= unobservable_events & bdd_ithvar(n) & all_promises;
	  }

1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
	// We used to factor only Next and A variables while computing
	// prime implicants, with
	//    minato_isop isop(res, d.next_set & d.a_set);
	// in order to obtain transitions with formulae of atomic
	// proposition directly, but unfortunately this led to strange
	// factorizations.  For instance f U g was translated as
	//     r(f U g) = g + a(g).r(X(f U g)).(f + g)
	// instead of just
	//     r(f U g) = g + a(g).r(X(f U g)).f
	// Of course both formulae are logically equivalent, but the
	// latter is "more deterministic" than the former, so it should
	// be preferred.
	//
	// Therefore we now factor all variables.  This may lead to more
	// transitions than necessary (e.g.,  r(f + g) = f + g  will be
1328
1329
1330
	// coded as two transitions), but we later merge all transitions
	// with same source/destination and acceptance conditions.  This
	// is the goal of the `dests' hash.
1331
	//
1332
	// Note that this is still not optimal.  For instance it is
1333
	// better to encode `f U g' as
1334
	//     r(f U g) = g + a(g).r(X(f U g)).f.!g
1335
1336
1337
1338
	// because that leads to a deterministic automaton.  In order
	// to handle this, we take the conditions of any transition
	// going to true (it's `g' here), and remove it from the other
	// transitions.
1339
1340
1341
	//
	// In `exprop' mode, considering all possible combinations of
	// outgoing propositions generalizes the above trick.
1342
	dest_map dests;
1343

1344
	// Compute all outgoing arcs.
1345
1346
1347
1348
1349

	// If EXPROP is set, we will refine the symbolic
	// representation of the successors for all combinations of
	// the atomic properties involved in the formula.
	// VAR_SET is the set of these properties.
1350
	bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
1351
1352
1353
1354
1355
	// ALL_PROPS is the combinations we have yet to consider.
	// We used to start with `all_props = bddtrue', but it is
	// more efficient to start with the set of all satisfiable
	// variables combinations.
	bdd all_props = bdd_existcomp(res, d.var_set);
1356
	while (all_props != bddfalse)
1357
	  {
1358
1359
1360
	    bdd one_prop_set = bddtrue;
	    if (exprop)
	      one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
1361
	    all_props -= one_prop_set;
1362

1363
	    typedef std::map<bdd, const formula*, bdd_less_than> succ_map;
1364
1365
	    succ_map succs;

1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
	    // Compute prime implicants.
	    // The reason we use prime implicants and not bdd_satone()
	    // is that we do not want to get any negation in front of Next
	    // or Acc variables.  We wouldn't know what to do with these.
	    // We never added negations in front of these variables when
	    // we built the BDD, so prime implicants will not "invent" them.
	    //
	    // FIXME: minato_isop is quite expensive, and I (=adl)
	    // don't think we really care that much about getting the
	    // smalled sum of products that minato_isop strives to
	    // compute.  Given that Next and Acc variables should
	    // always be positive, maybe there is a faster way to
	    // compute the successors?  E.g. using bdd_satone() and
	    // ignoring negated Next and Acc variables.
1380
1381
1382
	    minato_isop isop(res & one_prop_set);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
1383
	      {
1384
		bdd label = bdd_exist(cube, d.next_set);
1385
		bdd dest_bdd = bdd_existcomp(cube, d.next_set);
1386
1387
		const formula* dest = d.conj_bdd_to_formula(dest_bdd);

1388
1389
1390
1391
		// Simplify the formula, if requested.
		if (reduce_ltl)
		  {
		    formula* tmp = reduce(dest, reduce_ltl);
1392
		    dest->destroy();
1393
1394
1395
1396
1397
1398
		    dest = tmp;
		    // Ignore the arc if the destination reduces to false.
		    if (dest == constant::false_instance())
		      continue;
		  }

1399
1400
1401
1402
		// If we already know a state with the same
		// successors, use it in lieu of the current one.
		if (symb_merge)
		  dest = fc.canonize(dest);
1403

1404
1405
1406
1407
1408
1409
		// If we are not postponing the branching, we can
		// declare the outgoing transitions immediately.
		// Otherwise, we merge transitions with identical
		// label, and declare the outgoing transitions in a
		// second loop.
		if (!branching_postponement)
1410
		  {
1411
		    fill_dests(d, dests, label, dest);
1412
1413
1414
		  }
		else
		  {
1415
1416
1417
1418
		    succ_map::iterator si = succs.find(label);
		    if (si == succs.end())
		      succs[label] = dest;
		    else
1419
1420
1421
1422
		      si->second =
			multop::instance(multop::Or,
					 const_cast<formula*>(si->second),
					 const_cast<formula*>(dest));
1423
1424
		  }
	      }
1425
1426
1427
	    if (branching_postponement)
	      for (succ_map::const_iterator si = succs.begin();
		   si != succs.end(); ++si)
1428
		fill_dests(d, dests, si->first, si->second);
1429
	  }
1430

1431
	// Check for an arc going to 1 (True).  Register it first, that
1432
	// way it will be explored before others during model checking.
1433
	dest_map::const_iterator i = dests.find(constant::true_instance());
1434
	// COND_FOR_TRUE is the conditions of the True arc, so we
1435
1436
1437
	// can remove them from all other arcs.  It might sounds that
	// this is not needed when exprop is used, but in fact it is
	// complementary.
1438
1439
	//
	// Consider
1440
	//   f = r(X(1) R p) = p.(1 + r(X(1) R p))
1441
	// with exprop the two outgoing arcs would be
1442
1443
        //         p               p
	//     f ----> 1       f ----> f
1444
1445
	//
	// where in fact we could output
1446
1447
        //         p
	//     f ----> 1
1448
	//
1449
	// because there is no point in looping on f if we can go to 1.
1450
	bdd cond_for_true = bddfalse;
1451
1452
	if (i != dests.end())
	  {
1453
	    // When translating LTL for an event-based logic with
1454
1455
	    // unobservable events, the 1 state should accept all events,
	    // even unobservable events.
1456
	    if (unobs && now == constant::true_instance())
1457
	      cond_for_true = all_events;
1458
1459
1460
1461
1462
	    else
	      {
		// There should be only one transition going to 1 (true) ...
		assert(i->second.size() == 1);
		prom_map::const_iterator j = i->second.begin();