minimize.cc 18.2 KB
Newer Older
1
// Copyright (C) 2010, 2011, 2012 Laboratoire de Recherche et Développement
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

21
22
23
24
25
26
27
28
29

//#define TRACE

#ifdef TRACE
#  define trace std::cerr
#else
#  define trace while (0) std::cerr
#endif

30
#include <queue>
31
32
33
#include <deque>
#include <set>
#include <list>
34
#include <vector>
35
#include <sstream>
36
37
38
#include "minimize.hh"
#include "ltlast/allnodes.hh"
#include "misc/hash.hh"
39
#include "misc/bddlt.hh"
40
41
#include "tgba/tgbaproduct.hh"
#include "tgba/tgbatba.hh"
42
#include "tgba/wdbacomp.hh"
43
#include "tgbaalgos/powerset.hh"
44
45
46
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/sccfilter.hh"
47
#include "tgbaalgos/scc.hh"
48
#include "tgbaalgos/ltl2tgba_fm.hh"
49
#include "tgbaalgos/bfssteps.hh"
50
51
52
53
54
55
56
57

namespace spot
{
  typedef Sgi::hash_set<const state*,
                        state_ptr_hash, state_ptr_equal> hash_set;
  typedef Sgi::hash_map<const state*, unsigned,
                        state_ptr_hash, state_ptr_equal> hash_map;

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  namespace
  {
    static std::ostream&
    dump_hash_set(const hash_set* hs, const tgba* aut, std::ostream& out)
    {
      out << "{";
      const char* sep = "";
      for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
	{
	  out << sep << aut->format_state(*i);
	  sep = ", ";
	}
      out << "}";
      return out;
    }

    static std::string
    format_hash_set(const hash_set* hs, const tgba* aut)
    {
      std::ostringstream s;
      dump_hash_set(hs, aut, s);
      return s.str();
    }
  }

83
84
  // Find all states of an automaton.
  void state_set(const tgba* a, hash_set* seen)
85
  {
Felix Abecassis's avatar
Felix Abecassis committed
86
    std::queue<const state*> tovisit;
87
    // Perform breadth-first traversal.
Felix Abecassis's avatar
Felix Abecassis committed
88
    const state* init = a->get_init_state();
89
    tovisit.push(init);
90
    seen->insert(init);
91
92
    while (!tovisit.empty())
    {
Felix Abecassis's avatar
Felix Abecassis committed
93
      const state* src = tovisit.front();
94
      tovisit.pop();
95

96
97
98
      tgba_succ_iterator* sit = a->succ_iter(src);
      for (sit->first(); !sit->done(); sit->next())
      {
Felix Abecassis's avatar
Felix Abecassis committed
99
        const state* dst = sit->current_state();
100
        // Is it a new state ?
101
102
103
104
105
106
        if (seen->find(dst) == seen->end())
	  {
	    // Register the successor for later processing.
	    tovisit.push(dst);
	    seen->insert(dst);
	  }
107
        else
108
          dst->destroy();
109
      }
Felix Abecassis's avatar
Felix Abecassis committed
110
      delete sit;
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    }
  }

  // From the base automaton and the list of sets, build the minimal
  // resulting automaton
  tgba_explicit_number* build_result(const tgba* a,
                                     std::list<hash_set*>& sets,
                                     hash_set* final)
  {
    // For each set, create a state in the resulting automaton.
    // For a state s, state_num[s] is the number of the state in the minimal
    // automaton.
    hash_map state_num;
    std::list<hash_set*>::iterator sit;
    unsigned num = 0;
    for (sit = sets.begin(); sit != sets.end(); ++sit)
    {
      hash_set::iterator hit;
      hash_set* h = *sit;
      for (hit = h->begin(); hit != h->end(); ++hit)
        state_num[*hit] = num;
      ++num;
    }
Pierre PARUTTO's avatar
Pierre PARUTTO committed
134
    typedef state_explicit_number::transition trs;
135
136
137
    tgba_explicit_number* res = new tgba_explicit_number(a->get_dict());
    // For each transition in the initial automaton, add the corresponding
    // transition in res.
138
139
    if (!final->empty())
      res->declare_acceptance_condition(ltl::constant::true_instance());
140
141
142
143
    for (sit = sets.begin(); sit != sets.end(); ++sit)
    {
      hash_set::iterator hit;
      hash_set* h = *sit;
144
145
146
147
148
149
150
151
152

      // Pick one state.
      const state* src = *h->begin();
      unsigned src_num = state_num[src];
      bool accepting = (final->find(src) != final->end());

      // Connect it to all destinations.
      tgba_succ_iterator* succit = a->succ_iter(src);
      for (succit->first(); !succit->done(); succit->next())
153
        {
Felix Abecassis's avatar
Felix Abecassis committed
154
          const state* dst = succit->current_state();
155
	  hash_map::const_iterator i = state_num.find(dst);
156
          dst->destroy();
157
158
159
	  if (i == state_num.end()) // Ignore useless destinations.
	    continue;
          trs* t = res->create_transition(src_num, i->second);
160
161
162
163
          res->add_conditions(t, succit->current_condition());
          if (accepting)
            res->add_acceptance_condition(t, ltl::constant::true_instance());
        }
164
      delete succit;
165
166
167
168
    }
    res->merge_transitions();
    const state* init_state = a->get_init_state();
    unsigned init_num = state_num[init_state];
169
    init_state->destroy();
170
171
172
173
    res->set_init_state(init_num);
    return res;
  }

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

  namespace
  {

    struct wdba_search_acc_loop : public bfs_steps
    {
      wdba_search_acc_loop(const tgba* det_a,
			   unsigned scc_n, scc_map& sm,
			   power_map& pm, const state* dest)
	: bfs_steps(det_a), scc_n(scc_n), sm(sm), pm(pm), dest(dest)
      {
	seen.insert(dest);
      }

      virtual
      ~wdba_search_acc_loop()
      {
	hash_set::const_iterator i = seen.begin();
	while (i != seen.end())
	  {
	    hash_set::const_iterator old = i;
	    ++i;
196
	    (*old)->destroy();
197
198
199
200
201
202
203
204
205
206
207
208
209
210
	  }
      }

      virtual const state*
      filter(const state* s)
      {
	// Use the state from seen.
	hash_set::const_iterator i = seen.find(s);
	if (i == seen.end())
	  {
	    seen.insert(s);
	  }
	else
	  {
211
	    s->destroy();
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
	    s = *i;
	  }
	// Ignore states outside SCC #n.
	if (sm.scc_of_state(s) != scc_n)
	  return 0;
	return s;
      }

      virtual bool
      match(tgba_run::step&, const state* to)
      {
	return to == dest;
      }

      unsigned scc_n;
      scc_map& sm;
      power_map& pm;
      const state* dest;
      hash_set seen;
    };


    bool
    wdba_scc_is_accepting(const tgba_explicit_number* det_a, unsigned scc_n,
			  const tgba* orig_a, scc_map& sm, power_map& pm)
    {
      // Get some state from the SCC #n.
      const state* start = sm.one_state_of(scc_n)->clone();

      // Find a loop around START in SCC #n.
      wdba_search_acc_loop wsal(det_a, scc_n, sm, pm, start);
      tgba_run::steps loop;
      const state* reached = wsal.search(start, loop);
      assert(reached == start);
      (void)reached;

      // Build an automaton representing this loop.
      tgba_explicit_number loop_a(det_a->get_dict());
      tgba_run::steps::const_iterator i;
      int loop_size = loop.size();
      int n;
      for (n = 1, i = loop.begin(); n < loop_size; ++n, ++i)
	{
	  loop_a.create_transition(n - 1, n)->condition = i->label;
256
	  i->s->destroy();
257
258
259
	}
      assert(i != loop.end());
      loop_a.create_transition(n - 1, 0)->condition = i->label;
260
      i->s->destroy();
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
      assert(++i == loop.end());

      const state* loop_a_init = loop_a.get_init_state();
      assert(loop_a.get_label(loop_a_init) == 0);

      // Check if the loop is accepting in the original automaton.
      bool accepting = false;

      // Iterate on each original state corresponding to start.
      const power_map::power_state& ps = pm.states_of(det_a->get_label(start));
      for (power_map::power_state::const_iterator it = ps.begin();
	   it != ps.end() && !accepting; ++it)
	{
	  // Contrustruct a product between
	  // LOOP_A, and ORIG_A starting in *IT.

	  tgba* p = new tgba_product_init(&loop_a, orig_a,
					  loop_a_init, *it);

	  emptiness_check* ec = couvreur99(p);
	  emptiness_check_result* res = ec->check();

	  if (res)
	    accepting = true;
	  delete res;
	  delete ec;
	  delete p;
	}

290
      loop_a_init->destroy();
291
292
293
294
295
      return accepting;
    }

  }

296
  tgba_explicit_number* minimize_dfa(const tgba_explicit_number* det_a,
297
				     hash_set* final, hash_set* non_final)
298
  {
299
300
301
    typedef std::list<hash_set*> partition_t;
    partition_t cur_run;
    partition_t next_run;
302

303
304
    // The list of equivalent states.
    partition_t done;
305

306
    hash_map state_set_map;
307

308
309
    // Size of det_a
    unsigned size = final->size() + non_final->size();
310
311
    // Use bdd variables to number sets.  set_num is the first variable
    // available.
312
313
    unsigned set_num =
      det_a->get_dict()->register_anonymous_variables(size, det_a);
314
315
316
317
318
319

    std::set<int> free_var;
    for (unsigned i = set_num; i < set_num + size; ++i)
      free_var.insert(i);
    std::map<int, int> used_var;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
320
321
    hash_set* final_copy;

322
323
324
325
326
327
    if (!final->empty())
      {
	unsigned s = final->size();
	used_var[set_num] = s;
	free_var.erase(set_num);
	if (s > 1)
328
	  cur_run.push_back(final);
329
330
331
332
333
	else
	  done.push_back(final);
	for (hash_set::const_iterator i = final->begin();
	     i != final->end(); ++i)
	  state_set_map[*i] = set_num;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
334
335

	final_copy = new hash_set(*final);
336
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
337
338
339
340
341
    else
      {
	final_copy = final;
      }

342
343
344
345
346
347
348
    if (!non_final->empty())
      {
	unsigned s = non_final->size();
	unsigned num = set_num + 1;
	used_var[num] = s;
	free_var.erase(num);
	if (s > 1)
349
	  cur_run.push_back(non_final);
350
351
352
353
354
355
	else
	  done.push_back(non_final);
	for (hash_set::const_iterator i = non_final->begin();
	     i != non_final->end(); ++i)
	  state_set_map[*i] = num;
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
356
357
358
359
    else
      {
	delete non_final;
      }
360

361
362
    // A bdd_states_map is a list of formulae (in a BDD form) associated with a
    // destination set of states.
363
364
365
366
367
    typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;

    bool did_split = true;

    while (did_split)
368
      {
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
	did_split = false;
	while (!cur_run.empty())
	  {
	    // Get a set to process.
	    hash_set* cur = cur_run.front();
	    cur_run.pop_front();

	    trace << "processing " << format_hash_set(cur, det_a) << std::endl;

	    hash_set::iterator hi;
	    bdd_states_map bdd_map;
	    for (hi = cur->begin(); hi != cur->end(); ++hi)
	      {
		const state* src = *hi;
		bdd f = bddfalse;
		tgba_succ_iterator* si = det_a->succ_iter(src);
		for (si->first(); !si->done(); si->next())
		  {
		    const state* dst = si->current_state();
388
		    hash_map::const_iterator i = state_set_map.find(dst);
389
		    dst->destroy();
390
391
392
393
394
395
396
397
398
		    if (i == state_set_map.end())
		      // The destination state is not in our
		      // partition.  This can happen if the initial
		      // FINAL and NON_FINAL supplied to the algorithm
		      // do not cover the whole automaton (because we
		      // want to ignore some useless states).  Simply
		      // ignore these states here.
		      continue;
		    f |= (bdd_ithvar(i->second) & si->current_condition());
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
		  }
		delete si;

		// Have we already seen this formula ?
		bdd_states_map::iterator bsi = bdd_map.find(f);
		if (bsi == bdd_map.end())
		  {
		    // No, create a new set.
		    hash_set* new_set = new hash_set;
		    new_set->insert(src);
		    bdd_map[f] = new_set;
		  }
		else
		  {
		    // Yes, add the current state to the set.
		    bsi->second->insert(src);
		  }
	      }

	    bdd_states_map::iterator bsi = bdd_map.begin();
	    if (bdd_map.size() == 1)
	      {
		// The set was not split.
		trace << "set " << format_hash_set(bsi->second, det_a)
		      << " was not split" << std::endl;
		next_run.push_back(bsi->second);
	      }
	    else
	      {
428
		did_split = true;
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
		for (; bsi != bdd_map.end(); ++bsi)
		  {
		    hash_set* set = bsi->second;
		    // Free the number associated to these states.
		    unsigned num = state_set_map[*set->begin()];
		    assert(used_var.find(num) != used_var.end());
		    unsigned left = (used_var[num] -= set->size());
		    // Make sure LEFT does not become negative (hence bigger
		    // than SIZE when read as unsigned)
		    assert(left < size);
		    if (left == 0)
		      {
			used_var.erase(num);
			free_var.insert(num);
		      }
		    // Pick a free number
		    assert(!free_var.empty());
		    num = *free_var.begin();
		    free_var.erase(free_var.begin());
		    used_var[num] = set->size();
		    for (hash_set::iterator hit = set->begin();
			 hit != set->end(); ++hit)
		      state_set_map[*hit] = num;
		    // Trivial sets can't be splitted any further.
		    if (set->size() == 1)
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " is minimal" << std::endl;
			done.push_back(set);
		      }
		    else
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " should be processed further" << std::endl;
			next_run.push_back(set);
		      }
		  }
	      }
	    delete cur;
	  }
	if (did_split)
	  trace << "splitting did occur during this pass." << std::endl;
	else
	  trace << "splitting did not occur during this pass." << std::endl;
	std::swap(cur_run, next_run);
474
      }
475
476
477
478
479
480
481
482
483

    done.splice(done.end(), cur_run);

#ifdef TRACE
    trace << "Final partition: ";
    for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
      trace << format_hash_set(*i, det_a) << " ";
    trace << std::endl;
#endif
Felix Abecassis's avatar
Felix Abecassis committed
484
485
486
487
488
489
490

    // Build the result.
    tgba_explicit_number* res = build_result(det_a, done, final_copy);

    // Free all the allocated memory.
    delete final_copy;
    hash_map::iterator hit;
491
492
493
    for (hit = state_set_map.begin(); hit != state_set_map.end();)
      {
	hash_map::iterator old = hit++;
494
	old->first->destroy();
495
      }
Felix Abecassis's avatar
Felix Abecassis committed
496
497
498
499
500
    std::list<hash_set*>::iterator it;
    for (it = done.begin(); it != done.end(); ++it)
      delete *it;
    delete det_a;

501
502
    return res;
  }
503

504

505
506
507
  tgba_explicit_number* minimize_monitor(const tgba* a)
  {
    hash_set* final = new hash_set;
508
    hash_set* non_final = new hash_set;
509
510
511
512
513
514
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);
    }
515
516

    // non_final contain all states.
517
    // final is empty: there is no acceptance condition
518
    state_set(det_a, non_final);
519
520

    return minimize_dfa(det_a, final, non_final);
521
522
523
  }

  tgba_explicit_number* minimize_wdba(const tgba* a)
524
525
  {
    hash_set* final = new hash_set;
526
527
    hash_set* non_final = new hash_set;

528
529
530
531
532
533
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);

534
535
536
537
538
539
540
541
542
543
544
      // For each SCC of the deterministic automaton, determine if it
      // is accepting or not.

      // This corresponds to the algorithm in Fig. 1 of "Efficient
      // minimization of deterministic weak omega-automata" written by
      // Christof Löding and published in Information Processing
      // Letters 79 (2001) pp 105--109.

      // We also keep track of whether an SCC is useless
      // (i.e., it is not the start of any accepting word).

545
546
547
      scc_map sm(det_a);
      sm.build_map();
      unsigned scc_count = sm.scc_count();
548
549
      // SCC that have been marked as useless.
      std::vector<bool> useless(scc_count);
550
551
552
553
554
555
556
      // The "color".  Even number correspond to
      // accepting SCCs.
      std::vector<unsigned> d(scc_count);

      // An even number larger than scc_count.
      unsigned k = (scc_count | 1) + 1;

557
      // SCC are numbered in topological order
558
559
      // (but in the reverse order as Löding's)
      for (unsigned m = 0; m < scc_count; ++m)
560
	{
561
	  bool is_useless = true;
562
563
	  bool transient = sm.trivial(m);
	  const scc_map::succ_type& succ = sm.succ(m);
564

565
	  if (transient && succ.empty())
566
	    {
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
	      // A trivial SCC without successor is useless.
	      useless[m] = true;
	      d[m] = k - 1;
	      continue;
	    }

	  // Compute the minimum color l of the successors.
	  // Also SCCs are useless if all their successor are
	  // useless.
	  unsigned l = k;
	  for (scc_map::succ_type::const_iterator j = succ.begin();
	       j != succ.end(); ++j)
	    {
	      is_useless &= useless[j->first];
	      unsigned dj = d[j->first];
	      if (dj < l)
		l = dj;
	    }

	  if (transient)
	    {
	      d[m] = l;
589
590
591
592
	    }
	  else
	    {
	      // Regular SCCs are accepting if any of their loop
593
594
	      // corresponds to an accepted word in the original
	      // automaton.
595
	      if (wdba_scc_is_accepting(det_a, m, a, sm, pm))
596
597
		{
		  is_useless = false;
598
		  d[m] = (l | 1) - 1; // largest even number inferior or equal
599
600
601
		}
	      else
		{
602
		  d[m] = (l - 1) | 1; // largest odd number inferior or equal
603
		}
604
	    }
605

606
	  useless[m] = is_useless;
607

608
609
	  if (!is_useless)
	    {
610
611
	      hash_set* dest_set = (d[m]&1) ? non_final : final;
	      const std::list<const state*>& l = sm.states_of(m);
612
613
614
615
	      std::list<const state*>::const_iterator il;
	      for (il = l.begin(); il != l.end(); ++il)
		dest_set->insert((*il)->clone());
	    }
616
617
618
	}
    }

619
    return minimize_dfa(det_a, final, non_final);
620
621
  }

622
623
624
625
  const tgba*
  minimize_obligation(const tgba* aut_f,
		      const ltl::formula* f, const tgba* aut_neg_f)
  {
626
    tgba_explicit_number* min_aut_f = minimize_wdba(aut_f);
627

628
    // If aut_f is a guarantee automaton, the WDBA minimization must be
629
    // correct.
630
    if (is_guarantee_automaton(aut_f))
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
      {
	return min_aut_f;
      }

    if (!f && !aut_neg_f)
      {
	// We do not now if the minimization is safe.
	return 0;
      }

    const tgba* to_free = 0;

    // Build negation automaton if not supplied.
    if (!aut_neg_f)
      {
	assert(f);

	ltl::formula* neg_f = ltl::unop::instance(ltl::unop::Not, f->clone());
	aut_neg_f = ltl_to_tgba_fm(neg_f, aut_f->get_dict());
	neg_f->destroy();

	// Remove useless SCCs.
	const tgba* tmp = scc_filter(aut_neg_f, true);
	delete aut_neg_f;
	to_free = aut_neg_f = tmp;
      }

658
    // If the negation is a guarantee automaton, then the
659
    // minimization is correct.
660
    if (is_guarantee_automaton(aut_neg_f))
661
662
663
664
665
666
667
668
669
670
671
672
673
674
      {
	delete to_free;
	return min_aut_f;
      }

    bool ok = false;

    tgba* p = new tgba_product(min_aut_f, aut_neg_f);
    emptiness_check* ec = couvreur99(p);
    emptiness_check_result* res = ec->check();
    if (!res)
      {
	delete ec;
	delete p;
675

676
	// Complement the minimized WDBA.
677
678
679
	tgba* neg_min_aut_f = wdba_complement(min_aut_f);

	tgba* p = new tgba_product(aut_f, neg_min_aut_f);
680
681
682
683
	emptiness_check* ec = couvreur99(p);
	res = ec->check();

	if (!res)
684
685
686
687
688
	  {
	    // Finally, we are now sure that it was safe
	    // to minimize the automaton.
	    ok = true;
	  }
689
690
691
692

	delete res;
	delete ec;
	delete p;
693
	delete neg_min_aut_f;
694
695
696
697
698
699
700
701
702
703
704
705
706
707
      }
    else
      {
	delete res;
	delete ec;
	delete p;
      }
    delete to_free;

    if (ok)
      return min_aut_f;
    delete min_aut_f;
    return aut_f;
  }
708
}