ltl2tgba_fm.cc 45.6 KB
Newer Older
1
2
3
// Copyright (C) 2008, 2009, 2010 Laboratoire de Recherche et
// Dveloppement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire
4
5
// d'Informatique de Paris 6 (LIP6), dpartement Systmes Rpartis
// Coopratifs (SRC), Universit Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

24
#include "misc/hash.hh"
25
#include "misc/bddalloc.hh"
26
#include "misc/bddlt.hh"
27
#include "misc/minato.hh"
28
29
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
30
31
32
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/tostring.hh"
33
#include "ltlvisit/postfix.hh"
34
#include "ltlvisit/apcollect.hh"
35
36
#include "ltlvisit/mark.hh"
#include "ltlvisit/tostring.hh"
37
#include <cassert>
38
#include <memory>
39
#include "ltl2tgba_fm.hh"
40
#include "ltlvisit/contain.hh"
41
42
#include "ltlvisit/consterm.hh"
#include "tgba/bddprint.hh"
43
44
45
46
47
48
49
50

namespace spot
{
  using namespace ltl;

  namespace
  {

51
52
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
53
54
55
56
57
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
58
    class translate_dict
59
60
61
    {
    public:

62
63
      translate_dict(bdd_dict* dict)
	: dict(dict),
64
65
66
67
68
69
70
71
72
73
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
74
	  i->first->destroy();
75
	dict->unregister_all_my_variables(this);
76
77
      }

78
79
      bdd_dict* dict;

80
81
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
82
83
84
85
86
87
88
89
90

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
91
      register_proposition(const formula* f)
92
      {
93
	int num = dict->register_proposition(f, this);
94
95
96
97
98
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
99
      register_a_variable(const formula* f)
100
      {
101
	int num = dict->register_acceptance_variable(f, this);
102
103
104
105
106
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
107
      register_next_variable(const formula* f)
108
109
110
111
112
113
114
115
116
117
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
118
	    f = f->clone();
119
	    num = dict->register_anonymous_variables(1, this);
120
121
122
123
124
125
126
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
	return os;
      }

142
      formula*
143
144
145
146
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
147
	  return isi->second->clone();
148
149
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
150
	  return isi->second->clone();
151
152
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
153
	  return isi->second->clone();
154
	assert(0);
155
156
157
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
158
159
      }

160
      formula*
161
      conj_bdd_to_formula(bdd b, multop::type op = multop::And) const
162
163
      {
	if (b == bddfalse)
164
165
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
166
167
168
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
169
	    formula* res = var_to_formula(var);
170
171
172
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
173
		res = unop::instance(unop::Not, res);
174
175
176
177
		b = bdd_low(b);
	      }
	    else
	      {
178
		assert(bdd_low(b) == bddfalse);
179
180
181
182
183
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
184
	return multop::instance(op, v);
185
186
      }

187
      formula*
188
      bdd_to_formula(bdd f)
189
      {
190
	if (f == bddfalse)
191
	  return constant::false_instance();
192

193
194
195
196
197
198
199
200
201
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
202
203

      void
204
      conj_bdd_to_acc(tgba_explicit_formula* a, bdd b,
Pierre PARUTTO's avatar
Pierre PARUTTO committed
205
		      state_explicit_formula::transition* t)
206
207
208
209
210
211
212
213
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
214
		// Simply ignore negated acceptance variables.
215
216
217
218
		b = bdd_low(b);
	      }
	    else
	      {
219
		formula* ac = var_to_formula(var);
220

221
		if (!a->has_acceptance_condition(ac))
222
		  a->declare_acceptance_condition(ac->clone());
223
		a->add_acceptance_condition(t, ac);
224
225
226
227
228
229
230
231
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


232
233
234
235
    // Debugging function.
    std::ostream&
    trace_ltl_bdd(const translate_dict& d, bdd f)
    {
236
237
238
      std::cerr << "Displaying BDD ";
      bdd_print_set(std::cerr, d.dict, f) << ":" << std::endl;

239
240
241
242
243
244
245
      minato_isop isop(f);
      bdd cube;
      while ((cube = isop.next()) != bddfalse)
	{
	  bdd label = bdd_exist(cube, d.next_set);
	  bdd dest_bdd = bdd_existcomp(cube, d.next_set);
	  const formula* dest = d.conj_bdd_to_formula(dest_bdd);
246
247
248
249
	  bdd_print_set(std::cerr, d.dict, label) << " => ";
	  bdd_print_set(std::cerr, d.dict, dest_bdd) << " = "
						     << to_string(dest)
						     << std::endl;
250
251
252
253
254
255
	  dest->destroy();
	}
      return std::cerr;
    }


256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };

299
300
301
302
    // Rewrite rule for rational operators.
    class ratexp_trad_visitor: public const_visitor
    {
    public:
303
304
      ratexp_trad_visitor(translate_dict& dict, formula* to_concat = 0)
	: dict_(dict), to_concat_(to_concat)
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
      {
      }

      virtual
      ~ratexp_trad_visitor()
      {
	if (to_concat_)
	  to_concat_->destroy();
      }

      bdd
      result() const
      {
	return res_;
      }

      bdd next_to_concat()
      {
	if (!to_concat_)
324
	  return bddtrue;
325
326
327
328
329
330
	int x = dict_.register_next_variable(to_concat_);
	return bdd_ithvar(x);
      }

      bdd now_to_concat()
      {
331
332
333
	if (to_concat_ && to_concat_ != constant::empty_word_instance())
	  return recurse(to_concat_);

334
	return bddfalse;
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = (bdd_ithvar(dict_.register_proposition(node))
		& next_to_concat());
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = next_to_concat();
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  case constant::EmptyWord:
	    res_ = now_to_concat();
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	  case unop::G:
	  case unop::X:
	  case unop::Finish:
372
373
	  case unop::Closure:
	  case unop::NegClosure:
374
375
	    assert(!"not a rational operator");
	    return;
376
377
378
379
380
381
382
383
384
385
	  case unop::Not:
	    {
	      // Not can only appear in front of constants or atomic
	      // propositions.
	      const formula* f = node->child();
	      assert(dynamic_cast<const atomic_prop*>(f)
		     || dynamic_cast<const constant*>(f));
	      res_ = !recurse(f) & next_to_concat();
	      return;
	    }
386
387
388
389
	  }
	/* Unreachable code.  */
	assert(0);
      }
390

391
392
393
394
395
396
      void
      visit(const bunop* bo)
      {
	formula* f;
	unsigned min = bo->min();
	unsigned max = bo->max();
397
398
399

	assert(max > 0);

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
	unsigned min2 = (min == 0) ? 0 : (min - 1);
	unsigned max2 =
	  (max == bunop::unbounded) ? bunop::unbounded : (max - 1);

	bunop::type op = bo->op();
	switch (op)
	  {
	  case bunop::Star:
	    f = bunop::instance(op, bo->child()->clone(), min2, max2);

	    if (to_concat_)
	      f = multop::instance(multop::Concat, f, to_concat_->clone());

	    res_ = recurse(bo->child(), f);
	    if (min == 0)
	      res_ |= now_to_concat();
416

417
	    return;
418
	  case bunop::Equal:
419
	  case bunop::Goto:
420
421
422
423
424
425
	    {
	      // b[=min..max] == (!b;b[=min..max]) | (b;b[=min-1..max-1])
	      // b[=0..max]   == [*0] | (!b;b[=0..max]) | (b;b[=0..max-1])
	      // Note: b[=0] == (!b)[*] is a trivial identity, so it will
	      // never occur here.

426
427
428
429
430
431
	      // b[->min..max] == (!b;b[->min..max]) | (b;b[->min-1..max-1])
	      // b[->0..max]   == [*0] | (!b;b[->0..max]) | (b;b[->0..max-1])
	      // Note: b[->0] == [*0] is a trivial identity, so it will
	      // never occur here.

	      formula* f1 = // !b;b[=min..max]  or  !b;b[->min..max]
432
433
434
435
436
		multop::instance(multop::Concat,
				 unop::instance(unop::Not,
						bo->child()->clone()),
				 bo->clone());

437
	      formula* f2 = // b;b[=min-1..max-1]  or  b;b[->min-1..max-1]
438
439
		multop::instance(multop::Concat,
				 bo->child()->clone(),
440
				 bunop::instance(op,
441
442
443
444
445
446
447
448
449
						 bo->child()->clone(),
						 min2, max2));
	      f = multop::instance(multop::Or, f1, f2);
	      res_ = recurse_and_concat(f);
	      f->destroy();
	      if (min == 0)
		res_ |= now_to_concat();
	      return;
	    }
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const automatop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const multop* node)
      {
470
471
	multop::type op = node->op();
	switch (op)
472
	  {
473
	  case multop::AndNLM:
474
475
476
	  case multop::And:
	    {
	      unsigned s = node->size();
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

	      if (op == multop::AndNLM)
		{
		  multop::vec* final = new multop::vec;
		  multop::vec* non_final = new multop::vec;

		  for (unsigned n = 0; n < s; ++n)
		    {
		      const formula* f = node->nth(n);
		      if (constant_term_as_bool(f))
			final->push_back(f->clone());
		      else
			non_final->push_back(f->clone());
		    }

		  if (non_final->empty())
		    {
		      delete non_final;
		      // (a* & b*);c = (a*|b*);c
		      formula* f = multop::instance(multop::Or, final);
		      res_ = recurse_and_concat(f);
		      f->destroy();
		      break;
		    }
		  if (!final->empty())
		    {
		      // let F_i be final formulae
		      //     N_i be non final formula
		      // (F_1 & ... & F_n & N_1 & ... & N_m)
		      // =   (F_1 | ... | F_n);[*] && (N_1 & ... & N_m)
		      //   | (F_1 | ... | F_n) && (N_1 & ... & N_m);[*]
		      formula* f = multop::instance(multop::Or, final);
		      formula* n = multop::instance(multop::AndNLM, non_final);
510
511
		      formula* t = bunop::instance(bunop::Star,
						   constant::true_instance());
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
		      formula* ft = multop::instance(multop::Concat,
						     f->clone(), t->clone());
		      formula* nt = multop::instance(multop::Concat,
						     n->clone(), t);
		      formula* ftn = multop::instance(multop::And, ft, n);
		      formula* fnt = multop::instance(multop::And, f, nt);
		      formula* all = multop::instance(multop::Or, ftn, fnt);
		      res_ = recurse_and_concat(all);
		      all->destroy();
		      break;
		    }
		  // No final formula.
		  // Apply same rule as &&, until we reach a point where
		  // we have final formulae.
		  delete final;
		  for (unsigned n = 0; n < s; ++n)
		    (*non_final)[n]->destroy();
		  delete non_final;
		}

	      res_ = bddtrue;
533
	      for (unsigned n = 0; n < s; ++n)
534
535
536
537
538
		{
		  bdd res = recurse(node->nth(n));
		  // trace_ltl_bdd(dict_, res);
		  res_ &= res;
		}
539
540
541
542
543
544

	      //std::cerr << "Pre-Concat:" << std::endl;
	      //trace_ltl_bdd(dict_, res_);

	      if (to_concat_)
		{
545
		  // If we have translated (a* && b*) in (a* && b*);c, we
546
547
548
549
550
551
552
553
554
		  // have to append ";c" to all destinations.

		  minato_isop isop(res_);
		  bdd cube;
		  res_ = bddfalse;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
555
556
		      formula* dest =
			dict_.conj_bdd_to_formula(dest_bdd, op);
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
		      formula* dest2;
		      int x;
		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & next_to_concat();
			}
		      else
			{
			  dest2 = multop::instance(multop::Concat, dest,
						   to_concat_->clone());
			  if (dest2 != constant::false_instance())
			    {
			      x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(node))
			    res_ |= label & next_to_concat();
			}
		    }
		}
578
579
	      if (constant_term_as_bool(node))
		res_ |= now_to_concat();
580
581
582
583
584
585
586

	      break;
	    }
	  case multop::Or:
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
587
588
	      for (unsigned n = 0; n < s; ++n)
		res_ |= recurse_and_concat(node->nth(n));
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
	      break;
	    }
	  case multop::Concat:
	    {
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      if (to_concat_)
		v->push_back(to_concat_->clone());
	      res_ = recurse(node->nth(0),
			     multop::instance(multop::Concat, v));
	      break;
	    }
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
	  case multop::Fusion:
	    {
	      assert(node->size() >= 2);

	      // the head
	      bdd res = recurse(node->nth(0));

	      // the tail
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s - 1);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      formula* tail = multop::instance(multop::Fusion, v);
	      bdd tail_bdd;
	      bool tail_computed = false;

	      //trace_ltl_bdd(dict_, res);

	      minato_isop isop(res);
	      bdd cube;
	      res_ = bddfalse;
	      while ((cube = isop.next()) != bddfalse)
		{
		  bdd label = bdd_exist(cube, dict_.next_set);
		  bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		  formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		  if (constant_term_as_bool(dest))
		    {
		      // The destination is a final state.  Make sure we
		      // can also exit if tail is satisfied.
		      if (!tail_computed)
			{
638
			  tail_bdd = recurse_and_concat(tail);
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
			  tail_computed = true;
			}
		      res_ |= label & tail_bdd;
		    }

		  if (dynamic_cast<constant*>(dest) == 0)
		    {
		      // If the destination is not a constant, it
		      // means it can have successors.  Fusion the
		      // tail and append anything to concatenate.
		      formula* dest2 = multop::instance(multop::Fusion, dest,
							tail->clone());
		      if (to_concat_)
			 dest2 = multop::instance(multop::Concat, dest2,
						 to_concat_->clone());
		      if (dest2 != constant::false_instance())
			{
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}

	      tail->destroy();
	      break;
	    }
666
667
668
669
670
671
	  }
      }

      bdd
      recurse(const formula* f, formula* to_concat = 0)
      {
672
	ratexp_trad_visitor v(dict_, to_concat);
673
674
675
676
	f->accept(v);
	return v.result();
      }

677
678
679
680
681
      bdd
      recurse_and_concat(const formula* f)
      {
	return recurse(f, to_concat_ ? to_concat_->clone() : 0);
      }
682
683
684
685
686
687
688

    private:
      translate_dict& dict_;
      bdd res_;
      formula* to_concat_;
    };

689

690
    // The rewrite rules used here are adapted from Jean-Michel
691
    // Couvreur's FM paper, augmented to support rational operators.
692
693
694
    class ltl_trad_visitor: public const_visitor
    {
    public:
695
696
697
698
      ltl_trad_visitor(translate_dict& dict, bool mark_all = false,
		       bool exprop = false)
	: dict_(dict), rat_seen_(false), has_marked_(false),
	  mark_all_(mark_all), exprop_(exprop)
699
700
701
702
703
704
705
706
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

707
708
709
710
711
712
713
714
      void
      reset(bool mark_all)
      {
	rat_seen_ = false;
	has_marked_ = false;
	mark_all_ = mark_all;
      }

715
716
      bdd
      result() const
717
718
719
720
      {
	return res_;
      }

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
      const translate_dict&
      get_dict() const
      {
	return dict_;
      }

      bool
      has_rational() const
      {
	return rat_seen_;
      }

      bool
      has_marked() const
      {
	return has_marked_;
      }

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
756
	  case constant::EmptyWord:
757
758
	    assert(!"Not an LTL operator");
	    return;
759
760
761
762
763
764
765
766
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
767
768
769
	unop::type op = node->op();

	switch (op)
770
771
772
773
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
774
775
776
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
777
778
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
779
	      break;
780
781
782
	    }
	  case unop::G:
	    {
783
784
785
786
787
788
789
790
791
792
793
794
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
795
	      const formula* child = node->child();
796
	      int x = dict_.register_next_variable(node);
797
798
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
799
	      break;
800
801
802
	    }
	  case unop::Not:
	    {
803
	      // r(!y) = !r(y)
804
	      res_ = bdd_not(recurse(node->child()));
805
	      break;
806
807
808
	    }
	  case unop::X:
	    {
809
	      // r(Xy) = Next[y]
810
811
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
812
	      break;
813
	    }
814
815
816
	  case unop::Closure:
	    {
	      rat_seen_ = true;
817
818
819
820
821
822
823
	      if (constant_term_as_bool(node->child()))
		{
		  res_ = bddtrue;
		  return;
		}

	      ratexp_trad_visitor v(dict_);
824
825
826
827
	      node->child()->accept(v);
	      bdd f1 = v.result();
	      res_ = bddfalse;

828

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
	      if (exprop_)
		{
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
		    {
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		      all_props -= label;

		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));

		      const formula* dest2;
		      if (constant_term_as_bool(dest))
			{
			  dest->destroy();
			  res_ |= label;
			}
		      else
			{
			  dest2 = unop::instance(op, dest);
			  if (dest2 == constant::false_instance())
			    continue;
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		      const formula* dest2;
		      if (constant_term_as_bool(dest))
			{
			  dest->destroy();
			  res_ |= label;
			}
		      else
			{
			  dest2 = unop::instance(op, dest);
			  if (dest2 == constant::false_instance())
			    continue;
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}
	    }
	    break;

	  case unop::NegClosure:
	    {
	      rat_seen_ = true;
	      has_marked_ = true;
893
894
895
896
897
898
899
900

	      if (constant_term_as_bool(node->child()))
		{
		  res_ = bddfalse;
		  return;
		}

	      ratexp_trad_visitor v(dict_);
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
	      node->child()->accept(v);
	      bdd f1 = v.result();

	      // trace_ltl_bdd(dict_, f1);

	      bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
	      bdd all_props = bdd_existcomp(f1, dict_.var_set);

	      res_ = !all_props &
		// stick X(1) to preserve determinism.
		bdd_ithvar(dict_.register_next_variable
			   (constant::true_instance()));

	      while (all_props != bddfalse)
		{
		  bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		  all_props -= label;

		  formula* dest =
		    dict_.bdd_to_formula(bdd_exist(f1 & label,
						   dict_.var_set));

		  // !{ Exp } is false if Exp accepts the empty word.
		  if (constant_term_as_bool(dest))
		    {
		      dest->destroy();
		      continue;
		    }

		  const formula* dest2 = unop::instance(op, dest);

		  if (dest == constant::false_instance())
		    continue;

		  int x = dict_.register_next_variable(dest2);
		  dest2->destroy();
		  res_ |= label & bdd_ithvar(x);
		}
	    }
	    break;

942
943
	  case unop::Finish:
	    assert(!"unsupported operator");
944
	    break;
945
946
947
	  }
      }

948
949
950
951
952
953
      void
      visit(const bunop*)
      {
	assert(!"Not an LTL operator");
      }

954
955
956
      void
      visit(const binop* node)
      {
957
	binop::type op = node->op();
958

959
	switch (op)
960
	  {
961
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
962
	  case binop::Xor:
963
964
965
966
967
968
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_xor);
	      return;
	    }
969
	  case binop::Implies:
970
971
972
973
974
975
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_imp);
	      return;
	    }
976
	  case binop::Equiv:
977
978
979
980
981
982
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_biimp);
	      return;
	    }
983
984
	  case binop::U:
	    {
985
986
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
987
988
989
990
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
991
	      break;
992
	    }
993
994
	  case binop::W:
	    {
995
996
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
997
998
999
	      // r(f1 W f2) = r(f2) + r(f1)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (f1 & bdd_ithvar(x));
1000
	      break;
1001
	    }
1002
1003
	  case binop::R:
	    {
1004
1005
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
1006
1007
1008
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
1009
	      break;
1010
	    }
1011
1012
	  case binop::M:
	    {
1013
1014
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
1015
1016
1017
1018
	      // r(f1 M f2) = r(f1)r(f2) + a(f1)r(f2)r(X(f1 M f2))
	      int a = dict_.register_a_variable(node->first());
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (bdd_ithvar(a) & f2 & bdd_ithvar(x));
1019
	      break;
1020
	    }
1021
1022
1023
	  case binop::EConcatMarked:
	    has_marked_ = true;
	    /* fall through */
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1024
	  case binop::EConcat:
1025
1026
	    rat_seen_ = true;
	    {
1027
1028
	      // Recognize f2 on transitions going to destinations
	      // that accept the empty word.
1029
	      bdd f2 = recurse(node->second());
1030
	      ratexp_trad_visitor v(dict_);
1031
1032
	      node->first()->accept(v);
	      bdd f1 = v.result();
1033
	      res_ = bddfalse;
1034
1035
1036
1037
1038
1039
1040

	      if (mark_all_)
		{
		  op = binop::EConcatMarked;
		  has_marked_ = true;
		}

1041
	      if (exprop_)
1042
		{
1043
1044
1045
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
1046
		    {
1047
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
1048
1049
1050
1051
1052
1053
1054
1055
1056
		      all_props -= label;

		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));

		      const formula* dest2 =
			binop::instance(op, dest, node->second()->clone());

1057
1058
		      if (dest2 != constant::false_instance())
			{
1059
			  int x = dict_.register_next_variable(dest2);
1060
1061
1062
1063
1064
1065
1066
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		      if (constant_term_as_bool(dest))
			res_ |= label & f2;
		    }
		}
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & f2;
			}
		      else
			{
			  formula* dest2 = binop::instance(op, dest,
						  node->second()->clone());
			  if (dest2 != constant::false_instance())
			    {
			      int x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(dest))
			    res_ |= label & f2;
			}
		    }
		}
1096
1097
1098
1099
1100
	    }
	    break;

	  case binop::UConcat:
	    {
1101
1102
1103
	      // Transitions going to destinations accepting the empty
	      // word should recognize f2, and the automaton for f1
	      // should be understood as universal.
1104
	      bdd f2 = recurse(node->second());
1105
	      ratexp_trad_visitor v(dict_);
1106
1107
1108
	      node->first()->accept(v);
	      bdd f1 = v.result();
	      res_ = bddtrue;
1109

1110
1111
1112
	      bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
	      bdd all_props = bdd_existcomp(f1, dict_.var_set);
	      while (all_props != bddfalse)
1113
1114
		{

1115
1116
1117
1118
		  bdd one_prop_set = bddtrue;
		  if (exprop_)
		    one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
		  all_props -= one_prop_set;
1119

1120
		  minato_isop isop(f1 & one_prop_set);
1121
1122
1123
1124
1125
1126
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
1127
1128
		      formula* dest2 =
			binop::instance(op, dest, node->second()->clone());
1129

1130
1131
		      bdd udest =
			bdd_ithvar(dict_.register_next_variable(dest2));
1132
1133
1134
1135
1136
1137

		      if (constant_term_as_bool(dest))
			udest &= f2;

		      dest2->destroy();

1138
		      res_ &= bdd_apply(label, udest, bddop_imp);
1139
		    }
1140
1141
		}
	    }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1142
	    break;
1143
1144
1145
	  }
      }

1146
1147
1148
1149
1150
1151
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

1152
1153
1154
1155
1156
1157
      void
      visit(const multop* node)
      {
	switch (node->op())
	  {
	  case multop::And:
1158
1159
1160
1161
1162
1163
	    {
	      res_ = bddtrue;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		{
		  bdd res = recurse(node->nth(n));
1164
1165
1166
		  //std::cerr << "== in And (" << to_string(node->nth(n))
		  // << ")" << std::endl;
		  // trace_ltl_bdd(dict_, res);
1167
1168
		  res_ &= res;
		}
1169
1170
	      //std::cerr << "=== And final" << std::endl;
	      // trace_ltl_bdd(dict_, res_);
1171
1172
	      break;
	    }
1173
	  case multop::Or:
1174
1175
1176
1177
1178
1179
1180
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		res_ |= recurse(node->nth(n));
	      break;
	    }
1181
	  case multop::Concat:
1182
	  case multop::Fusion:
1183
	  case multop::AndNLM:
1184
1185
	    assert(!"Not an LTL operator");
	    break;
1186
	  }
1187

1188
1189
1190
1191
1192
      }

      bdd
      recurse(const formula* f)
      {
1193
	ltl_trad_visitor v(dict_, mark_all_, exprop_);
1194
	f->accept(v);
1195
1196
	rat_seen_ |= v.has_rational();
	has_marked_ |= v.has_marked();
1197
1198
1199
1200
1201
1202
1203
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
1204
1205
1206
      bool rat_seen_;
      bool has_marked_;
      bool mark_all_;
1207
      bool exprop_;
1208
1209
    };

1210

1211
1212
    // Check whether a formula has a R, W, or G operator at its
    // top-level (preceding logical operators do not count).
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
1263
	  case binop::M:
1264
1265
	    return;
	  case binop::R:
1266
	  case binop::W:
1267
1268
	    res_ = true;
	    return;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1269
1270
	  case binop::UConcat:
	  case binop::EConcat:
1271
	  case binop::EConcatMarked:
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1272
	    node->second()->accept(*this);
1273
	    // FIXME: we might need to add Acc[1]
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1274
	    return;
1275
1276
1277
1278
1279
	  }
	/* Unreachable code.  */
	assert(0);
      }

1280
1281
1282
1283
1284
1285
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

1286
1287
1288
1289
1290
1291
      void
      visit(const bunop*)
      {
	assert(!"unsupported operator");
      }

1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
1314
1315
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
1316
1317
1318
1319
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
1320
	pfl_[f] = rel;
1321
1322
1323
1324
	return rel;
      }

    private:
1325
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
1326
      pfl_map pfl_;
1327
1328
    };

1329
1330
1331
    class formula_canonizer
    {
    public:
1332
      formula_canonizer(translate_dict& d,
1333
1334
			bool fair_loop_approx, bdd all_promises, bool exprop)
	: v_(d, false, exprop),
1335
	  fair_loop_approx_(fair_loop_approx),
1336
1337
	  all_promises_(all_promises),
	  d_(d)
1338
1339
1340
1341
1342
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
1343

1344
1345
      ~formula_canonizer()
      {
1346
	while (!f2b_.empty())
1347
	  {
1348
1349
1350
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
1351
	    f->destroy();
1352
	  }
1353
1354
      }

1355
1356
1357
1358
1359
1360
1361
1362
      struct translated
      {
	bdd symbolic;
	bool has_rational:1;
	bool has_marked:1;
      };

      const translated&
1363
      translate(const formula* f, bool* new_flag = 0)
1364
1365
1366
1367
1368
1369
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

1370
1371
1372
	if (new_flag)
	  *new_flag = true;

1373
	// Perform the actual translation.
1374
	v_.reset(!has_mark(f));
1375
	f->accept(v_);
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
	translated t;
	t.symbolic = v_.result();
	t.has_rational = v_.has_rational();
	t.has_marked = v_.has_marked();

//	std::cerr << "-----" << std::endl;
//	std::cerr << "Formula: " << to_string(f) << std::endl;
//	std::cerr << "Rational: " << t.has_rational << std::endl;
//	std::cerr << "Marked: " << t.has_marked << std::endl;
//	std::cerr << "Mark all: " << !has_mark(f) << std::endl;
//	std::cerr << "Transitions:" << std::endl;
//	trace_ltl_bdd(v_.get_dict(), t.symbolic);

	if (t.has_rational)
	  {
	    bdd res = bddfalse;

	    minato_isop isop(t.symbolic);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
	      {
		bdd label = bdd_exist(cube, d_.next_set);
		bdd dest_bdd = bdd_existcomp(cube, d_.next_set);
		formula* dest =
		  d_.conj_bdd_to_formula(dest_bdd);

		// Handle a Miyano-Hayashi style unrolling for
		// rational operators.  Marked nodes correspond to
		// subformulae in the Miyano-Hayashi set.
		if (simplify_mark(dest))
		  {
		    // Make the promise that we will exit marked sets.
		    int a =
		      d_.register_a_variable(constant::true_instance());
		    label &= bdd_ithvar(a);
		  }
		else
		  {
		    // We have left marked operators, but still
		    // have other rational operator to check.
		    // Start a new marked cycle.
		    formula* dest2 = mark_concat_ops(dest);
		    dest->destroy();
		    dest = dest2;
		  }
		// Note that simplify_mark may have changed dest.
		dest_bdd = bdd_ithvar(d_.register_next_variable(dest));
		dest->destroy();
		res |= label & dest_bdd;
	      }
	    t.symbolic = res;
//	    std::cerr << "Marking rewriting:" << std::endl;
//	    trace_ltl_bdd(v_.get_dict(), t.symbolic);
	  }
1430
1431
1432
1433
1434
1435
1436
1437
1438

	// Apply the fair-loop approximation if requested.
	if (fair_loop_approx_)
	  {
	    // If the source cannot possibly be part of a fair
	    // loop, make all possible promises.
	    if (fair_loop_approx_
		&& f != constant::true_instance()
		&& !pflc_.check(f))
1439
	      t.symbolic &= all_promises_;
1440
1441
	  }

1442
	// Register the reverse mapping if it is not already done.
1443
1444
1445
1446
	if (b2f_.find(t.symbolic) == b2f_.end())
	  b2f_[t.symbolic] = f;

	return f2b_[f->clone()] = t;
1447
1448
1449
1450
1451
      }

      const formula*
      canonize(const formula* f)
      {
1452
	bool new_variable = false;
1453
	bdd b = translate(f, &new_variable).symbolic;
1454
1455

	bdd_to_formula_map::iterator i = b2f_.find(b);
1456
1457
	// Since we have just translated the formula, it is
	// necessarily in b2f_.
1458
1459
1460
	assert(i != b2f_.end());

	if (i->second != f)
1461
	  {
1462
	    // The translated bdd maps to an already seen formula.
1463
	    f->destroy();
1464
	    f = i->second->clone();
1465
	  }
1466
	return f;
1467
1468
      }

1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;