minimize.cc 19 KB
Newer Older
1
2
3
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2011, 2012, 2013 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19

20
21
22
23
24
25
26
27
28

//#define TRACE

#ifdef TRACE
#  define trace std::cerr
#else
#  define trace while (0) std::cerr
#endif

29
#include <queue>
30
31
32
#include <deque>
#include <set>
#include <list>
33
#include <vector>
34
#include <sstream>
35
36
37
#include "minimize.hh"
#include "ltlast/allnodes.hh"
#include "misc/hash.hh"
38
#include "misc/bddlt.hh"
39
40
#include "tgba/tgbaproduct.hh"
#include "tgba/tgbatba.hh"
41
#include "tgba/wdbacomp.hh"
42
#include "tgbaalgos/powerset.hh"
43
44
45
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/sccfilter.hh"
46
#include "tgbaalgos/scc.hh"
47
#include "tgbaalgos/ltl2tgba_fm.hh"
48
#include "tgbaalgos/bfssteps.hh"
49
#include "tgbaalgos/isdet.hh"
50
#include "tgbaalgos/dtgbacomp.hh"
51
#include "priv/countstates.hh"
52
53
54

namespace spot
{
55
56
57
58
  typedef std::unordered_set<const state*,
			     state_ptr_hash, state_ptr_equal> hash_set;
  typedef std::unordered_map<const state*, unsigned,
			     state_ptr_hash, state_ptr_equal> hash_map;
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  namespace
  {
    static std::ostream&
    dump_hash_set(const hash_set* hs, const tgba* aut, std::ostream& out)
    {
      out << "{";
      const char* sep = "";
      for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
	{
	  out << sep << aut->format_state(*i);
	  sep = ", ";
	}
      out << "}";
      return out;
    }

    static std::string
    format_hash_set(const hash_set* hs, const tgba* aut)
    {
      std::ostringstream s;
      dump_hash_set(hs, aut, s);
      return s.str();
    }
  }

85
  // Find all states of an automaton.
86
  void build_state_set(const tgba* a, hash_set* seen)
87
  {
Felix Abecassis's avatar
Felix Abecassis committed
88
    std::queue<const state*> tovisit;
89
    // Perform breadth-first traversal.
Felix Abecassis's avatar
Felix Abecassis committed
90
    const state* init = a->get_init_state();
91
    tovisit.push(init);
92
    seen->insert(init);
93
94
    while (!tovisit.empty())
    {
Felix Abecassis's avatar
Felix Abecassis committed
95
      const state* src = tovisit.front();
96
      tovisit.pop();
97

98
99
100
      tgba_succ_iterator* sit = a->succ_iter(src);
      for (sit->first(); !sit->done(); sit->next())
      {
Felix Abecassis's avatar
Felix Abecassis committed
101
        const state* dst = sit->current_state();
102
        // Is it a new state ?
103
104
105
106
107
108
        if (seen->find(dst) == seen->end())
	  {
	    // Register the successor for later processing.
	    tovisit.push(dst);
	    seen->insert(dst);
	  }
109
        else
110
          dst->destroy();
111
      }
Felix Abecassis's avatar
Felix Abecassis committed
112
      delete sit;
113
114
115
116
117
    }
  }

  // From the base automaton and the list of sets, build the minimal
  // resulting automaton
118
  sba_explicit_number* build_result(const tgba* a,
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
                                     std::list<hash_set*>& sets,
                                     hash_set* final)
  {
    // For each set, create a state in the resulting automaton.
    // For a state s, state_num[s] is the number of the state in the minimal
    // automaton.
    hash_map state_num;
    std::list<hash_set*>::iterator sit;
    unsigned num = 0;
    for (sit = sets.begin(); sit != sets.end(); ++sit)
    {
      hash_set::iterator hit;
      hash_set* h = *sit;
      for (hit = h->begin(); hit != h->end(); ++hit)
        state_num[*hit] = num;
      ++num;
    }
Pierre PARUTTO's avatar
Pierre PARUTTO committed
136
    typedef state_explicit_number::transition trs;
137
    sba_explicit_number* res = new sba_explicit_number(a->get_dict());
138
139
    // For each transition in the initial automaton, add the corresponding
    // transition in res.
140
141
    if (!final->empty())
      res->declare_acceptance_condition(ltl::constant::true_instance());
142
143
144
145
    for (sit = sets.begin(); sit != sets.end(); ++sit)
    {
      hash_set::iterator hit;
      hash_set* h = *sit;
146
147
148
149
150
151
152
153
154

      // Pick one state.
      const state* src = *h->begin();
      unsigned src_num = state_num[src];
      bool accepting = (final->find(src) != final->end());

      // Connect it to all destinations.
      tgba_succ_iterator* succit = a->succ_iter(src);
      for (succit->first(); !succit->done(); succit->next())
155
        {
Felix Abecassis's avatar
Felix Abecassis committed
156
          const state* dst = succit->current_state();
157
	  hash_map::const_iterator i = state_num.find(dst);
158
          dst->destroy();
159
160
161
	  if (i == state_num.end()) // Ignore useless destinations.
	    continue;
          trs* t = res->create_transition(src_num, i->second);
162
163
164
165
          res->add_conditions(t, succit->current_condition());
          if (accepting)
            res->add_acceptance_condition(t, ltl::constant::true_instance());
        }
166
      delete succit;
167
168
169
170
    }
    res->merge_transitions();
    const state* init_state = a->get_init_state();
    unsigned init_num = state_num[init_state];
171
    init_state->destroy();
172
173
174
175
    res->set_init_state(init_num);
    return res;
  }

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

  namespace
  {

    struct wdba_search_acc_loop : public bfs_steps
    {
      wdba_search_acc_loop(const tgba* det_a,
			   unsigned scc_n, scc_map& sm,
			   power_map& pm, const state* dest)
	: bfs_steps(det_a), scc_n(scc_n), sm(sm), pm(pm), dest(dest)
      {
	seen.insert(dest);
      }

      virtual
      ~wdba_search_acc_loop()
      {
	hash_set::const_iterator i = seen.begin();
	while (i != seen.end())
	  {
	    hash_set::const_iterator old = i;
	    ++i;
198
	    (*old)->destroy();
199
200
201
202
203
204
205
206
207
208
209
210
211
212
	  }
      }

      virtual const state*
      filter(const state* s)
      {
	// Use the state from seen.
	hash_set::const_iterator i = seen.find(s);
	if (i == seen.end())
	  {
	    seen.insert(s);
	  }
	else
	  {
213
	    s->destroy();
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
	    s = *i;
	  }
	// Ignore states outside SCC #n.
	if (sm.scc_of_state(s) != scc_n)
	  return 0;
	return s;
      }

      virtual bool
      match(tgba_run::step&, const state* to)
      {
	return to == dest;
      }

      unsigned scc_n;
      scc_map& sm;
      power_map& pm;
      const state* dest;
      hash_set seen;
    };


    bool
    wdba_scc_is_accepting(const tgba_explicit_number* det_a, unsigned scc_n,
			  const tgba* orig_a, scc_map& sm, power_map& pm)
    {
      // Get some state from the SCC #n.
      const state* start = sm.one_state_of(scc_n)->clone();

      // Find a loop around START in SCC #n.
      wdba_search_acc_loop wsal(det_a, scc_n, sm, pm, start);
      tgba_run::steps loop;
      const state* reached = wsal.search(start, loop);
      assert(reached == start);
      (void)reached;

      // Build an automaton representing this loop.
      tgba_explicit_number loop_a(det_a->get_dict());
      tgba_run::steps::const_iterator i;
      int loop_size = loop.size();
      int n;
      for (n = 1, i = loop.begin(); n < loop_size; ++n, ++i)
	{
	  loop_a.create_transition(n - 1, n)->condition = i->label;
258
	  i->s->destroy();
259
260
261
	}
      assert(i != loop.end());
      loop_a.create_transition(n - 1, 0)->condition = i->label;
262
      i->s->destroy();
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
      assert(++i == loop.end());

      const state* loop_a_init = loop_a.get_init_state();
      assert(loop_a.get_label(loop_a_init) == 0);

      // Check if the loop is accepting in the original automaton.
      bool accepting = false;

      // Iterate on each original state corresponding to start.
      const power_map::power_state& ps = pm.states_of(det_a->get_label(start));
      for (power_map::power_state::const_iterator it = ps.begin();
	   it != ps.end() && !accepting; ++it)
	{
	  // Contrustruct a product between
	  // LOOP_A, and ORIG_A starting in *IT.

	  tgba* p = new tgba_product_init(&loop_a, orig_a,
					  loop_a_init, *it);

	  emptiness_check* ec = couvreur99(p);
	  emptiness_check_result* res = ec->check();

	  if (res)
	    accepting = true;
	  delete res;
	  delete ec;
	  delete p;
	}

292
      loop_a_init->destroy();
293
294
295
296
297
      return accepting;
    }

  }

298
299
  sba_explicit_number* minimize_dfa(const tgba_explicit_number* det_a,
				    hash_set* final, hash_set* non_final)
300
  {
301
302
303
    typedef std::list<hash_set*> partition_t;
    partition_t cur_run;
    partition_t next_run;
304

305
306
    // The list of equivalent states.
    partition_t done;
307

308
    hash_map state_set_map;
309

310
311
    // Size of det_a
    unsigned size = final->size() + non_final->size();
312
313
    // Use bdd variables to number sets.  set_num is the first variable
    // available.
314
315
    unsigned set_num =
      det_a->get_dict()->register_anonymous_variables(size, det_a);
316
317
318
319
320
321

    std::set<int> free_var;
    for (unsigned i = set_num; i < set_num + size; ++i)
      free_var.insert(i);
    std::map<int, int> used_var;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
322
323
    hash_set* final_copy;

324
325
326
327
328
329
    if (!final->empty())
      {
	unsigned s = final->size();
	used_var[set_num] = s;
	free_var.erase(set_num);
	if (s > 1)
330
	  cur_run.push_back(final);
331
332
333
334
335
	else
	  done.push_back(final);
	for (hash_set::const_iterator i = final->begin();
	     i != final->end(); ++i)
	  state_set_map[*i] = set_num;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
336
337

	final_copy = new hash_set(*final);
338
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
339
340
341
342
343
    else
      {
	final_copy = final;
      }

344
345
346
347
348
349
350
    if (!non_final->empty())
      {
	unsigned s = non_final->size();
	unsigned num = set_num + 1;
	used_var[num] = s;
	free_var.erase(num);
	if (s > 1)
351
	  cur_run.push_back(non_final);
352
353
354
355
356
357
	else
	  done.push_back(non_final);
	for (hash_set::const_iterator i = non_final->begin();
	     i != non_final->end(); ++i)
	  state_set_map[*i] = num;
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
358
359
360
361
    else
      {
	delete non_final;
      }
362

363
364
    // A bdd_states_map is a list of formulae (in a BDD form) associated with a
    // destination set of states.
365
366
367
368
369
    typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;

    bool did_split = true;

    while (did_split)
370
      {
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
	did_split = false;
	while (!cur_run.empty())
	  {
	    // Get a set to process.
	    hash_set* cur = cur_run.front();
	    cur_run.pop_front();

	    trace << "processing " << format_hash_set(cur, det_a) << std::endl;

	    hash_set::iterator hi;
	    bdd_states_map bdd_map;
	    for (hi = cur->begin(); hi != cur->end(); ++hi)
	      {
		const state* src = *hi;
		bdd f = bddfalse;
		tgba_succ_iterator* si = det_a->succ_iter(src);
		for (si->first(); !si->done(); si->next())
		  {
		    const state* dst = si->current_state();
390
		    hash_map::const_iterator i = state_set_map.find(dst);
391
		    dst->destroy();
392
393
394
395
396
397
398
399
400
		    if (i == state_set_map.end())
		      // The destination state is not in our
		      // partition.  This can happen if the initial
		      // FINAL and NON_FINAL supplied to the algorithm
		      // do not cover the whole automaton (because we
		      // want to ignore some useless states).  Simply
		      // ignore these states here.
		      continue;
		    f |= (bdd_ithvar(i->second) & si->current_condition());
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
		  }
		delete si;

		// Have we already seen this formula ?
		bdd_states_map::iterator bsi = bdd_map.find(f);
		if (bsi == bdd_map.end())
		  {
		    // No, create a new set.
		    hash_set* new_set = new hash_set;
		    new_set->insert(src);
		    bdd_map[f] = new_set;
		  }
		else
		  {
		    // Yes, add the current state to the set.
		    bsi->second->insert(src);
		  }
	      }

	    bdd_states_map::iterator bsi = bdd_map.begin();
	    if (bdd_map.size() == 1)
	      {
		// The set was not split.
		trace << "set " << format_hash_set(bsi->second, det_a)
		      << " was not split" << std::endl;
		next_run.push_back(bsi->second);
	      }
	    else
	      {
430
		did_split = true;
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
		for (; bsi != bdd_map.end(); ++bsi)
		  {
		    hash_set* set = bsi->second;
		    // Free the number associated to these states.
		    unsigned num = state_set_map[*set->begin()];
		    assert(used_var.find(num) != used_var.end());
		    unsigned left = (used_var[num] -= set->size());
		    // Make sure LEFT does not become negative (hence bigger
		    // than SIZE when read as unsigned)
		    assert(left < size);
		    if (left == 0)
		      {
			used_var.erase(num);
			free_var.insert(num);
		      }
		    // Pick a free number
		    assert(!free_var.empty());
		    num = *free_var.begin();
		    free_var.erase(free_var.begin());
		    used_var[num] = set->size();
		    for (hash_set::iterator hit = set->begin();
			 hit != set->end(); ++hit)
		      state_set_map[*hit] = num;
		    // Trivial sets can't be splitted any further.
		    if (set->size() == 1)
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " is minimal" << std::endl;
			done.push_back(set);
		      }
		    else
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " should be processed further" << std::endl;
			next_run.push_back(set);
		      }
		  }
	      }
	    delete cur;
	  }
	if (did_split)
	  trace << "splitting did occur during this pass." << std::endl;
	else
	  trace << "splitting did not occur during this pass." << std::endl;
	std::swap(cur_run, next_run);
476
      }
477
478
479
480
481
482
483
484
485

    done.splice(done.end(), cur_run);

#ifdef TRACE
    trace << "Final partition: ";
    for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
      trace << format_hash_set(*i, det_a) << " ";
    trace << std::endl;
#endif
Felix Abecassis's avatar
Felix Abecassis committed
486
487

    // Build the result.
488
    sba_explicit_number* res = build_result(det_a, done, final_copy);
Felix Abecassis's avatar
Felix Abecassis committed
489
490
491
492

    // Free all the allocated memory.
    delete final_copy;
    hash_map::iterator hit;
493
494
495
    for (hit = state_set_map.begin(); hit != state_set_map.end();)
      {
	hash_map::iterator old = hit++;
496
	old->first->destroy();
497
      }
Felix Abecassis's avatar
Felix Abecassis committed
498
499
500
501
502
    std::list<hash_set*>::iterator it;
    for (it = done.begin(); it != done.end(); ++it)
      delete *it;
    delete det_a;

503
504
    return res;
  }
505

506

507
  sba_explicit_number* minimize_monitor(const tgba* a)
508
509
  {
    hash_set* final = new hash_set;
510
    hash_set* non_final = new hash_set;
511
512
513
514
515
516
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);
    }
517
518

    // non_final contain all states.
519
    // final is empty: there is no acceptance condition
520
    build_state_set(det_a, non_final);
521
522

    return minimize_dfa(det_a, final, non_final);
523
524
  }

525
  sba_explicit_number* minimize_wdba(const tgba* a)
526
527
  {
    hash_set* final = new hash_set;
528
529
    hash_set* non_final = new hash_set;

530
531
532
533
534
535
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);

536
537
538
539
540
      // For each SCC of the deterministic automaton, determine if it
      // is accepting or not.

      // This corresponds to the algorithm in Fig. 1 of "Efficient
      // minimization of deterministic weak omega-automata" written by
541
      // Christof Löding and published in Information Processing
542
543
544
545
546
      // Letters 79 (2001) pp 105--109.

      // We also keep track of whether an SCC is useless
      // (i.e., it is not the start of any accepting word).

547
548
549
      scc_map sm(det_a);
      sm.build_map();
      unsigned scc_count = sm.scc_count();
550
551
      // SCC that have been marked as useless.
      std::vector<bool> useless(scc_count);
552
553
554
555
556
557
558
      // The "color".  Even number correspond to
      // accepting SCCs.
      std::vector<unsigned> d(scc_count);

      // An even number larger than scc_count.
      unsigned k = (scc_count | 1) + 1;

559
      // SCC are numbered in topological order
560
      // (but in the reverse order as Löding's)
561
      for (unsigned m = 0; m < scc_count; ++m)
562
	{
563
	  bool is_useless = true;
564
565
	  bool transient = sm.trivial(m);
	  const scc_map::succ_type& succ = sm.succ(m);
566

567
	  if (transient && succ.empty())
568
	    {
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
	      // A trivial SCC without successor is useless.
	      useless[m] = true;
	      d[m] = k - 1;
	      continue;
	    }

	  // Compute the minimum color l of the successors.
	  // Also SCCs are useless if all their successor are
	  // useless.
	  unsigned l = k;
	  for (scc_map::succ_type::const_iterator j = succ.begin();
	       j != succ.end(); ++j)
	    {
	      is_useless &= useless[j->first];
	      unsigned dj = d[j->first];
	      if (dj < l)
		l = dj;
	    }

	  if (transient)
	    {
	      d[m] = l;
591
592
593
594
	    }
	  else
	    {
	      // Regular SCCs are accepting if any of their loop
595
596
	      // corresponds to an accepted word in the original
	      // automaton.
597
	      if (wdba_scc_is_accepting(det_a, m, a, sm, pm))
598
599
		{
		  is_useless = false;
600
		  d[m] = l & ~1; // largest even number inferior or equal
601
602
603
		}
	      else
		{
604
		  d[m] = (l - 1) | 1; // largest odd number inferior or equal
605
		}
606
	    }
607

608
	  useless[m] = is_useless;
609

610
611
	  if (!is_useless)
	    {
612
	      hash_set* dest_set = (d[m] & 1) ? non_final : final;
613
	      const std::list<const state*>& l = sm.states_of(m);
614
615
616
617
	      std::list<const state*>::const_iterator il;
	      for (il = l.begin(); il != l.end(); ++il)
		dest_set->insert((*il)->clone());
	    }
618
619
620
	}
    }

621
    return minimize_dfa(det_a, final, non_final);
622
623
  }

624
  tgba*
625
  minimize_obligation(const tgba* aut_f,
626
627
		      const ltl::formula* f, const tgba* aut_neg_f,
		      bool reject_bigger)
628
  {
629
    sba_explicit_number* min_aut_f = minimize_wdba(aut_f);
630

631
632
633
    if (reject_bigger)
      {
	// Abort if min_aut_f has more states than aut_f.
634
635
	unsigned orig_states = count_states(aut_f);
	if (orig_states < min_aut_f->num_states())
636
637
638
639
640
641
	  {
	    delete min_aut_f;
	    return const_cast<tgba*>(aut_f);
	  }
      }

642
643
644
645
646
    // if f is a syntactic obligation formula, the WDBA minimization
    // must be correct.
    if (f && f->is_syntactic_obligation())
      return min_aut_f;

647
    // If aut_f is a guarantee automaton, the WDBA minimization must be
648
    // correct.
649
    if (is_guarantee_automaton(aut_f))
650
      return min_aut_f;
651
652
653
654
655
656

    const tgba* to_free = 0;

    // Build negation automaton if not supplied.
    if (!aut_neg_f)
      {
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
	if (f)
	  {
	    // If we know the formula, simply build the automaton for
	    // its negation.
	    const ltl::formula* neg_f =
	      ltl::unop::instance(ltl::unop::Not, f->clone());
	    aut_neg_f = ltl_to_tgba_fm(neg_f, aut_f->get_dict());
	    neg_f->destroy();

	    // Remove useless SCCs.
	    const tgba* tmp = scc_filter(aut_neg_f, true);
	    delete aut_neg_f;
	    to_free = aut_neg_f = tmp;
	  }
	else if (is_deterministic(aut_f))
	  {
	    // If the automaton is deterministic, complementing is
	    // easy.
675
	    to_free = aut_neg_f = dtgba_complement(aut_f);
676
677
678
679
680
681
682
	  }
	else
	  {
	    // Otherwise, we cannot check if the minimization is safe.
	    delete min_aut_f;
	    return 0;
	  }
683
684
      }

685
    // If the negation is a guarantee automaton, then the
686
    // minimization is correct.
687
    if (is_guarantee_automaton(aut_neg_f))
688
689
690
691
692
693
694
695
696
697
698
699
700
701
      {
	delete to_free;
	return min_aut_f;
      }

    bool ok = false;

    tgba* p = new tgba_product(min_aut_f, aut_neg_f);
    emptiness_check* ec = couvreur99(p);
    emptiness_check_result* res = ec->check();
    if (!res)
      {
	delete ec;
	delete p;
702

703
	// Complement the minimized WDBA.
704
705
706
	tgba* neg_min_aut_f = wdba_complement(min_aut_f);

	tgba* p = new tgba_product(aut_f, neg_min_aut_f);
707
708
709
710
	emptiness_check* ec = couvreur99(p);
	res = ec->check();

	if (!res)
711
712
713
714
715
	  {
	    // Finally, we are now sure that it was safe
	    // to minimize the automaton.
	    ok = true;
	  }
716
717
718
719

	delete res;
	delete ec;
	delete p;
720
	delete neg_min_aut_f;
721
722
723
724
725
726
727
728
729
730
731
732
      }
    else
      {
	delete res;
	delete ec;
	delete p;
      }
    delete to_free;

    if (ok)
      return min_aut_f;
    delete min_aut_f;
733
    return const_cast<tgba*>(aut_f);
734
  }
735
}