dualize.cc 13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
// -*- coding: utf-8 -*-
// Copyright (C) 2017 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

#include <spot/misc/minato.hh>
#include <spot/twa/twagraph.hh>
#include <spot/twaalgos/alternation.hh>
#include <spot/twaalgos/cleanacc.hh>
#include <spot/twaalgos/complete.hh>
#include <spot/twaalgos/dualize.hh>
#include <spot/twaalgos/isdet.hh>

namespace spot
{
  namespace
  {
    class dualizer final
    {
    private:
      // Input automaton
      const const_twa_graph_ptr aut_;
      // State id to bdd variable association
      // [id] == bddtrue means the state will be accepting everything
      // (true state) in the dual automaton.
      // [id] == bddfalse means the state will be rejecting everything
      // (sink) in the dual automaton, which can lead to the removal of
      // the transitions going into that state and therefore to the removal
      // of the state when applying purge_unreachable_states().
      // When [id] != bddtrue/bddfalse, the value correspond to the state
      // bdd variable.
      std::vector<bdd> state_to_var_;
      // bdd variable to state id association
      std::map<int, unsigned> var_to_state_;
      // Acceptance mark to bdd variable association
      std::vector<int> mark_to_var_;
      // bdd variable to acceptance mark association
      std::map<int, unsigned> var_to_mark_;
      // bdd representing all the state variables
      bdd all_states_;
      // bdd representing all the marks variables
      bdd all_marks_;
      // bdd representing states & marks variables
      bdd all_vars_;
      // Id of the true state sink. -1U if none.
      unsigned true_state_;
      // In case the acceptance condition is never unsatisfied, but the
      // automaton is not complete, we do transform the acceptance condition
      // to Büchi, and need to mark all the existing transitions with the
      // proper mark, that will be stored in acc_. 0U if not used.
      acc_cond::mark_t acc_;
      // Whether aut_ has a state accepting all.
      bool has_sink;

      // Any sink state in the input automaton will become a true state in the
      // output. Knowing those allows us to simplify some universal transitions.
      // There could be more than one sink state in the input automaton, and in
      // this case they will be squashed into a single true state in the output
      // automaton.
      void find_sink_states(acc_cond::mark_t& second)
      {
        // Loop over the states and search a state that has no outgoing
        // transitions, or only self-loops labeled by the same non-accepting
        // mark. A similar test is done in complete_here().
        unsigned n = aut_->num_states();
        for (unsigned i = 0; i < n; ++i)
          {
            bool sinkable = true;
            bool first = true;
            acc_cond::mark_t commonacc = second;
            for (auto& t: aut_->out(i))
              {
                if (t.dst != i)
                  {
                    sinkable = false;
                    break;
                  }
                if (first)
                  {
                    commonacc = t.acc;
                    first = false;
                  }
                else if (t.acc != commonacc)
                  {
                    sinkable = false;
                    break;
                  }
              }
            if (sinkable && !aut_->acc().accepting(commonacc))
              {
                second = commonacc;
                state_to_var_[i] = bddtrue;
                true_state_ = i;
                has_sink = true;
              }
          }
      }
      // Any true state in the input automaton will become a sink state in the
      // output. Knowing those allow us to simplify some universal transitions.
      // There could be more than one true state in the input automaton. All
      // true states from the input automaton will be removed in the output
      // and the transitions leading to those states will be removed as well.
      void find_true_states()
      {
        // Loop over the states and search a state that has a self-loop on
        // any letter (bddtrue), with an accepting mark.
        unsigned n = aut_->num_states();
        for (unsigned i = 0; i < n; ++i)
          {
            bool acc_all = false;
            for (auto& t: aut_->out(i))
              {
                if (t.dst == i && t.cond == bddtrue
                               && aut_->acc().accepting(t.acc))
                  {
                    acc_all = true;
                    break;
                  }
              }
            if (acc_all)
              {
                state_to_var_[i] = bddfalse;
                has_sink = true;
              }
          }
      }

      void copy_edges(const twa_graph_ptr &res)
      {
        std::vector<unsigned> st;
        unsigned n = aut_->num_states();
        for (unsigned i = 0; i < n; ++i)
          {
            bdd delta = dualized_transition_function(i);
            bdd ap = bdd_exist(bdd_support(delta), all_vars_);
            bdd letters = bdd_exist(delta, all_vars_);

            while (letters != bddfalse)
              {
                bdd oneletter = bdd_satoneset(letters, ap, bddtrue);
                letters -= oneletter;

                minato_isop isop(delta & oneletter);
                bdd cube;

                while ((cube = isop.next()) != bddfalse)
                  {
                    bdd cond = bdd_exist(cube, all_vars_);
                    bdd dest = bdd_existcomp(cube, all_vars_);

                    st.clear();
                    acc_cond::mark_t m = bdd_to_state(dest, st);
                    if  (st.empty())
                      {
                        st.push_back(true_state_);
                        if (aut_->prop_state_acc())
                          m = aut_->state_acc_sets(i);
                      }
                    res->new_univ_edge(i, st.begin(), st.end(), cond, m);
                  }
              }
          }
      }

      // Handles the dualization of a universal initial transition.
      // In theory the transition would be split into several existential 
      // initial transitions, but since spot does not allow multiple initial 
      // states, we rather use a trick: We add a new initial state, and then
      // copy all exiting transitions from each of the state of the universal
      // initial transition.
      void univ_init(const twa_graph_ptr& res)
      {
        bdd comb = bddfalse;
        outedge_combiner oe(res);
        for (unsigned c : aut_->univ_dests(aut_->get_init_state_number()))
          comb |= oe(c);

        auto s = res->new_state();
        res->set_init_state(s);
        oe.new_dests(s, comb);
      }

      // Allocates the states and marks as variables into the bdd dictionary.
      // Also adds the corresponding mapping, and sets all_states_, all_marks_,
      // and all_vars_ to hold those variables as bdds.
      void allocate_dict_vars(const twa_graph_ptr& res)
      {
        auto dict = aut_->get_dict();

        unsigned numstates = aut_->num_states();
        all_states_ = bddtrue;
        for (unsigned i = 0; i < numstates; ++i)
          {
            int v = dict->register_anonymous_variables(1, this);
            if (state_to_var_[i] != bddtrue)
              state_to_var_[i] = bdd_ithvar(v);
            var_to_state_[v] = i;
            all_states_ &= bdd_ithvar(v);
          }

        unsigned numsets = res->num_sets();
        all_marks_ = bddtrue;
        for (unsigned i = 0; i < numsets; ++i)
          {
            int v = dict->register_anonymous_variables(1, this);
            mark_to_var_.push_back(v);
            var_to_mark_.emplace(v, i);
            all_marks_ &= bdd_ithvar(v);
          }
        all_vars_ = all_states_ & all_marks_;
      }

      // Returns the dualized transition function of any input state as a bdd.
      bdd dualized_transition_function(unsigned state_id)
      {
        if (state_to_var_[state_id] == bddtrue)
          return bddfalse;

        bdd res = bddtrue;
        for (auto& e : aut_->out(state_id))
          {
            bdd dest = bddfalse;
            for (unsigned d : aut_->univ_dests(e))
              dest |= state_to_var_[d];

            bdd mark_bdd = bddtrue;
            acc_cond::mark_t m = acc_ ? acc_ : e.acc;
            for (unsigned s: m.sets())
              mark_bdd &= bdd_ithvar(mark_to_var_[s]);

            res &= bdd_imp(e.cond, mark_bdd & dest);
          }
        return res;
      }

      // Given the bdd representation b of a transition, adds destination states
      // to s, and returns the marks on the transition. s being empty means the 
      // transition goes toward a "forever true" state. s with size one
      // represents an existential transition, while size over one represents 
      // a universal transition.
      acc_cond::mark_t bdd_to_state(bdd b, std::vector<unsigned>& s)
      {
        acc_cond::mark_t m = 0U;
        while (b != bddtrue)
          {
            assert(bdd_low(b) == bddfalse);
            int v = bdd_var(b);
            auto it = var_to_state_.find(v);
            if (it != var_to_state_.end())
              s.push_back(it->second);
            else
              m.set(var_to_mark_[v]);

            b = bdd_high(b);
          }
        return m;
      }

    public:
      dualizer(const const_twa_graph_ptr& aut)
        : aut_(aut),
          state_to_var_(aut_->num_states(), bddfalse),
          true_state_(-1U),
          acc_(0U),
          has_sink(false)
      {
      }

      ~dualizer()
      {
        aut_->get_dict()->unregister_all_my_variables(this);
      }

      twa_graph_ptr run()
      {
        bool cmpl = is_complete(aut_);
        auto um = aut_->acc().unsat_mark();

        auto res = make_twa_graph(aut_->get_dict());
        res->copy_ap_of(aut_);

        if (!um.first && cmpl)
          {
            //Shortcut if dual is false
            res->new_states(1);
            res->new_edge(0, 0, bddtrue, 0U);
            res->set_init_state(0);
            res->set_acceptance(0, acc_cond::acc_code::f());

            res->prop_terminal(true);
            res->prop_complete(true);
            res->prop_universal(true);
            return res;
          }
        if (is_deterministic(aut_))
          {
            res = cleanup_acceptance_here(spot::complete(aut_));
            res->set_acceptance(res->num_sets(),
                                res->get_acceptance().complement());
            // Complementing the acceptance is likely to break the terminal
            // property, but not weakness.  We make a useless call to
            // prop_keep() just so we remember to update it in the future if a
            // new argument is added.
            res->prop_keep({true, true, true, true, true, true});
            res->prop_terminal(trival::maybe());
            return res;
          }

        const_twa_graph_ptr autptr;
        res->new_states(aut_->num_states());
        if (!cmpl)
          {
            if (!um.first)
              {
                acc_ = res->set_buchi();
                autptr = res;
              }
            else
              {
                find_sink_states(um.second);
                autptr = aut_;
              }
            if (true_state_ == -1U)
              true_state_ = res->new_state();
          }
        // This case does not cover cmpl && !um.first
        // Due to previous test shortcutting automatons that accept all words.
        else
          {
            assert(um.first);
            find_sink_states(um.second);
            autptr = aut_;
          }
        if (true_state_ != -1U)
          res->new_edge(true_state_, true_state_, bddtrue, um.second);

        res->set_acceptance(autptr->num_sets(),
                            autptr->get_acceptance().complement());
        allocate_dict_vars(res);
        find_true_states();

        copy_edges(res);

        unsigned init_state = aut_->get_init_state_number();
        if (aut_->is_univ_dest(init_state))
          univ_init(res);
        else
          res->set_init_state(init_state);

        res->merge_edges();
        res->purge_unreachable_states();

        res->prop_copy(aut_, {true, true, false, false, false, true});
        res->prop_terminal(trival::maybe());
        if (!has_sink)
          res->prop_complete(true);

        cleanup_acceptance_here(res);
        return res;
      }
    };
  }

  twa_graph_ptr dualize(const const_twa_graph_ptr& aut)
  {
    dualizer du(aut);
    return du.run();
  }
}