genltl.org 16.6 KB
Newer Older
1
# -*- coding: utf-8 -*-
2
#+TITLE: =genltl=
3
#+DESCRIPTION: Spot command-line tool that generates LTL formulas from known patterns
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
4
#+INCLUDE: setup.org
5
#+HTML_LINK_UP: tools.html
6
#+PROPERTY: header-args:sh :results verbatim :exports both
7

8
9
10
11
12
13
14
This tool outputs LTL formulas that either comes from named lists of
formulas, or from scalable patterns.

These patterns are usually taken from the literature (see the
[[./man/genltl.1.html][=genltl=]](1) man page for references).  Sometimes the same pattern is
given different names in different papers, so we alias different
option names to the same pattern.
15

16
#+BEGIN_SRC sh :exports results
17
18
19
20
21
22
23
24
25
26
27
28
29
30
genltl --help | sed -n '/Pattern selection:/,/^$/p' | sed '1d;$d'
#+END_SRC
#+RESULTS:
#+begin_example
      --and-f=RANGE, --gh-e=RANGE
                             F(p1)&F(p2)&...&F(pn)
      --and-fg=RANGE         FG(p1)&FG(p2)&...&FG(pn)
      --and-gf=RANGE, --ccj-phi=RANGE, --gh-c2=RANGE
                             GF(p1)&GF(p2)&...&GF(pn)
      --ccj-alpha=RANGE      F(p1&F(p2&F(p3&...F(pn)))) &
                             F(q1&F(q2&F(q3&...F(qn))))
      --ccj-beta=RANGE       F(p&X(p&X(p&...X(p)))) & F(q&X(q&X(q&...X(q))))
      --ccj-beta-prime=RANGE F(p&(Xp)&(XXp)&...(X...X(p))) &
                             F(q&(Xq)&(XXq)&...(X...X(q)))
31
32
33
      --dac-patterns[=RANGE], --spec-patterns[=RANGE]
                             Dwyer et al. [FMSP'98] Spec. Patterns for LTL
                             (range should be included in 1..55)
34
35
      --eh-patterns[=RANGE]  Etessami and Holzmann [Concur'00] patterns (range
                             should be included in 1..12)
36
37
38
39
40
      --fxg-or=RANGE         F(p0 | XG(p1 | XG(p2 | ... XG(pn))))
      --gf-equiv=RANGE       (GFa1 & GFa2 & ... & GFan) <-> GFz
      --gf-equiv-xn=RANGE    GF(a <-> X^n(a))
      --gf-implies=RANGE     (GFa1 & GFa2 & ... & GFan) -> GFz
      --gf-implies-xn=RANGE  GF(a -> X^n(a))
41
      --gh-q=RANGE           (F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))
42
43
44
      --gh-r=RANGE           (GF(p1)|FG(p2))&(GF(p2)|FG(p3))&...
                             &(GF(pn)|FG(p{n+1}))
      --go-theta=RANGE       !((GF(p1)&GF(p2)&...&GF(pn)) -> G(q->F(r)))
45
      --gxf-and=RANGE        G(p0 & XF(p1 & XF(p2 & ... XF(pn))))
46
47
48
49
50
51
52
      --hkrss-patterns[=RANGE], --liberouter-patterns[=RANGE]
                             Holeček et al. patterns from the Liberouter
                             project (range should be included in 1..55)
      --kr-n=RANGE           linear formula with doubly exponential DBA
      --kr-nlogn=RANGE       quasilinear formula with doubly exponential DBA
      --kv-psi=RANGE, --kr-n2=RANGE
                             quadratic formula with doubly exponential DBA
53
54
55
56
57
      --ms-example=RANGE[,RANGE]
                             GF(a1&X(a2&X(a3&...Xan)))&F(b1&F(b2&F(b3&...&Xbm)))
      --ms-phi-h=RANGE       FG(a|b)|FG(!a|Xb)|FG(a|XXb)|FG(!a|XXXb)|...
      --ms-phi-r=RANGE       (FGa{n}&GFb{n})|((FGa{n-1}|GFb{n-1})&(...))
      --ms-phi-s=RANGE       (FGa{n}|GFb{n})&((FGa{n-1}&GFb{n-1})|(...))
58
59
60
61
62
      --or-fg=RANGE, --ccj-xi=RANGE
                             FG(p1)|FG(p2)|...|FG(pn)
      --or-g=RANGE, --gh-s=RANGE   G(p1)|G(p2)|...|G(pn)
      --or-gf=RANGE, --gh-c1=RANGE
                             GF(p1)|GF(p2)|...|GF(pn)
63
64
65
      --p-patterns[=RANGE], --beem-patterns[=RANGE], --p[=RANGE]
                             Pelánek [Spin'07] patterns from BEEM (range
                             should be included in 1..20)
66
67
68
69
70
71
72
      --r-left=RANGE         (((p1 R p2) R p3) ... R pn)
      --r-right=RANGE        (p1 R (p2 R (... R pn)))
      --rv-counter=RANGE     n-bit counter
      --rv-counter-carry=RANGE   n-bit counter w/ carry
      --rv-counter-carry-linear=RANGE
                             n-bit counter w/ carry (linear size)
      --rv-counter-linear=RANGE   n-bit counter (linear size)
73
74
      --sb-patterns[=RANGE]  Somenzi and Bloem [CAV'00] patterns (range should
                             be included in 1..27)
75
76
77
78
79
80
      --sejk-f=RANGE[,RANGE] f(0,j)=(GFa0 U X^j(b)), f(i,j)=(GFai U
                             G(f(i-1,j)))
      --sejk-j=RANGE         (GFa1&...&GFan) -> (GFb1&...&GFbn)
      --sejk-k=RANGE         (GFa1|FGb1)&...&(GFan|FGbn)
      --sejk-patterns[=RANGE]   φ₁,φ₂,φ₃ from Sikert et al's [CAV'16]
                             paper (range should be included in 1..3)
81
82
83
84
85
      --tv-f1=RANGE          G(p -> (q | Xq | ... | XX...Xq)
      --tv-f2=RANGE          G(p -> (q | X(q | X(... | Xq)))
      --tv-g1=RANGE          G(p -> (q & Xq & ... & XX...Xq)
      --tv-g2=RANGE          G(p -> (q & X(q & X(... & Xq)))
      --tv-uu=RANGE          G(p1 -> (p1 U (p2 & (p2 U (p3 & (p3 U ...))))))
86
87
88
89
90
91
      --u-left=RANGE, --gh-u=RANGE
                             (((p1 U p2) U p3) ... U pn)
      --u-right=RANGE, --gh-u2=RANGE, --go-phi=RANGE
                             (p1 U (p2 U (... U pn)))
#+end_example

92
An example is probably all it takes to understand how this tool works:
93

94
#+BEGIN_SRC sh
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
genltl --and-gf=1..5 --u-left=1..5
#+END_SRC
#+RESULTS:
#+begin_example
GFp1
GFp1 & GFp2
GFp1 & GFp2 & GFp3
GFp1 & GFp2 & GFp3 & GFp4
GFp1 & GFp2 & GFp3 & GFp4 & GFp5
p1
p1 U p2
(p1 U p2) U p3
((p1 U p2) U p3) U p4
(((p1 U p2) U p3) U p4) U p5
#+end_example

=genltl= supports the [[file:ioltl.org][common option for output of LTL formulas]], so you
may output these pattern for various tools.

114
115
116
117
For instance here is the same formulas, but formatted in a way that is
suitable for being included in a LaTeX table.


118
#+BEGIN_SRC sh
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
genltl --and-gf=1..5 --u-left=1..5 --latex --format='%F & %L & $%f$ \\'
#+END_SRC
#+RESULTS:
#+begin_example
and-gf & 1 & $\G \F p_{1}$ \\
and-gf & 2 & $\G \F p_{1} \land \G \F p_{2}$ \\
and-gf & 3 & $\G \F p_{1} \land \G \F p_{2} \land \G \F p_{3}$ \\
and-gf & 4 & $\G \F p_{1} \land \G \F p_{2} \land \G \F p_{3} \land \G \F p_{4}$ \\
and-gf & 5 & $\G \F p_{1} \land \G \F p_{2} \land \G \F p_{3} \land \G \F p_{4} \land \G \F p_{5}$ \\
u-left & 1 & $p_{1}$ \\
u-left & 2 & $p_{1} \U p_{2}$ \\
u-left & 3 & $(p_{1} \U p_{2}) \U p_{3}$ \\
u-left & 4 & $((p_{1} \U p_{2}) \U p_{3}) \U p_{4}$ \\
u-left & 5 & $(((p_{1} \U p_{2}) \U p_{3}) \U p_{4}) \U p_{5}$ \\
#+end_example

Note that for the =--lbt= syntax, each formula is relabeled using
136
=p0=, =p1=, ...  before it is output, when the pattern (like
137
138
=--ccj-alpha=) use different names.  Compare:

139
#+BEGIN_SRC sh
140
141
142
genltl --ccj-alpha=3
#+END_SRC
#+RESULTS:
143
: F(p1 & F(p2 & Fp3)) & F(q1 & F(q2 & Fq3))
144
145
146

with

147
#+BEGIN_SRC sh
148
149
150
genltl --ccj-alpha=3 --lbt
#+END_SRC
#+RESULTS:
151
: & F & p0 F & p1 F p2 F & p3 F & p4 F p5
152
153
154

This is because most tools using =lbt='s syntax require atomic
propositions to have the form =pNN=.
155

156

157
Five options provide lists of unrelated LTL formulas, taken from the
158
literature (see the [[./man/genltl.1.html][=genltl=]](1) man page for references):
159
160
161
162
=--dac-patterns=, =--eh-patterns=, =--hkrss-patterns=, =--p-patterns=,
and =--sb-patterns=.  With these options, the range is used to select
a subset of the list of formulas.  Without range, all formulas are
used.  Here is the complete list:
163

164
165
#+BEGIN_SRC sh
  genltl --dac --eh --hkrss --p --sb --format='%F=%L,%f'
166
167
168
169
#+END_SRC

#+RESULTS:
#+begin_example
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
dac-patterns=1,G!p0
dac-patterns=2,Fp0 -> (!p1 U p0)
dac-patterns=3,G(p0 -> G!p1)
dac-patterns=4,G((p0 & !p1 & Fp1) -> (!p2 U p1))
dac-patterns=5,G((p0 & !p1) -> (!p2 W p1))
dac-patterns=6,Fp0
dac-patterns=7,!p0 W (!p0 & p1)
dac-patterns=8,G!p0 | F(p0 & Fp1)
dac-patterns=9,G((p0 & !p1) -> (!p1 W (!p1 & p2)))
dac-patterns=10,G((p0 & !p1) -> (!p1 U (!p1 & p2)))
dac-patterns=11,!p0 W (p0 W (!p0 W (p0 W G!p0)))
dac-patterns=12,Fp0 -> ((!p0 & !p1) U (p0 | ((!p0 & p1) U (p0 | ((!p0 & !p1) U (p0 | ((!p0 & p1) U (p0 | (!p1 U p0)))))))))
dac-patterns=13,Fp0 -> (!p0 U (p0 & (!p1 W (p1 W (!p1 W (p1 W G!p1))))))
dac-patterns=14,G((p0 & Fp1) -> ((!p1 & !p2) U (p1 | ((!p1 & p2) U (p1 | ((!p1 & !p2) U (p1 | ((!p1 & p2) U (p1 | (!p2 U p1))))))))))
dac-patterns=15,G(p0 -> ((!p1 & !p2) U (p2 | ((p1 & !p2) U (p2 | ((!p1 & !p2) U (p2 | ((p1 & !p2) U (p2 | (!p1 W p2) | Gp1)))))))))
dac-patterns=16,Gp0
dac-patterns=17,Fp0 -> (p1 U p0)
dac-patterns=18,G(p0 -> Gp1)
dac-patterns=19,G((p0 & !p1 & Fp1) -> (p2 U p1))
dac-patterns=20,G((p0 & !p1) -> (p2 W p1))
dac-patterns=21,!p0 W p1
dac-patterns=22,Fp0 -> (!p1 U (p0 | p2))
dac-patterns=23,G!p0 | F(p0 & (!p1 W p2))
dac-patterns=24,G((p0 & !p1 & Fp1) -> (!p2 U (p1 | p3)))
dac-patterns=25,G((p0 & !p1) -> (!p2 W (p1 | p3)))
dac-patterns=26,G(p0 -> Fp1)
dac-patterns=27,Fp0 -> ((p1 -> (!p0 U (!p0 & p2))) U p0)
dac-patterns=28,G(p0 -> G(p1 -> Fp2))
dac-patterns=29,G((p0 & !p1 & Fp1) -> ((p2 -> (!p1 U (!p1 & p3))) U p1))
dac-patterns=30,G((p0 & !p1) -> ((p2 -> (!p1 U (!p1 & p3))) W p1))
dac-patterns=31,Fp0 -> (!p0 U (!p0 & p1 & X(!p0 U p2)))
dac-patterns=32,Fp0 -> (!p1 U (p0 | (!p1 & p2 & X(!p1 U p3))))
dac-patterns=33,G!p0 | (!p0 U ((p0 & Fp1) -> (!p1 U (!p1 & p2 & X(!p1 U p3)))))
dac-patterns=34,G((p0 & Fp1) -> (!p2 U (p1 | (!p2 & p3 & X(!p2 U p4)))))
dac-patterns=35,G(p0 -> (Fp1 -> (!p1 U (p2 | (!p1 & p3 & X(!p1 U p4))))))
dac-patterns=36,F(p0 & XFp1) -> (!p0 U p2)
dac-patterns=37,Fp0 -> (!(!p0 & p1 & X(!p0 U (!p0 & p2))) U (p0 | p3))
dac-patterns=38,G!p0 | (!p0 U (p0 & (F(p1 & XFp2) -> (!p1 U p3))))
dac-patterns=39,G((p0 & Fp1) -> (!(!p1 & p2 & X(!p1 U (!p1 & p3))) U (p1 | p4)))
dac-patterns=40,G(p0 -> ((!(!p1 & p2 & X(!p1 U (!p1 & p3))) U (p1 | p4)) | G!(p2 & XFp3)))
dac-patterns=41,G((p0 & XFp1) -> XF(p1 & Fp2))
dac-patterns=42,Fp0 -> (((p1 & X(!p0 U p2)) -> X(!p0 U (p2 & Fp3))) U p0)
dac-patterns=43,G(p0 -> G((p1 & XFp2) -> X(!p2 U (p2 & Fp3))))
dac-patterns=44,G((p0 & Fp1) -> (((p2 & X(!p1 U p3)) -> X(!p1 U (p3 & Fp4))) U p1))
dac-patterns=45,G(p0 -> (((p1 & X(!p2 U p3)) -> X(!p2 U (p3 & Fp4))) U (p2 | G((p1 & X(!p2 U p3)) -> X(!p2 U (p3 & Fp4))))))
dac-patterns=46,G(p0 -> F(p1 & XFp2))
dac-patterns=47,Fp0 -> ((p1 -> (!p0 U (!p0 & p2 & X(!p0 U p3)))) U p0)
dac-patterns=48,G(p0 -> G(p1 -> (p2 & XFp3)))
dac-patterns=49,G((p0 & Fp1) -> ((p2 -> (!p1 U (!p1 & p3 & X(!p1 U p4)))) U p1))
dac-patterns=50,G(p0 -> ((p1 -> (!p2 U (!p2 & p3 & X(!p2 U p4)))) U (p2 | G(p1 -> (p3 & XFp4)))))
dac-patterns=51,G(p0 -> F(p1 & !p2 & X(!p2 U p3)))
dac-patterns=52,Fp0 -> ((p1 -> (!p0 U (!p0 & p2 & !p3 & X((!p0 & !p3) U p4)))) U p0)
dac-patterns=53,G(p0 -> G(p1 -> (p2 & !p3 & X(!p3 U p4))))
dac-patterns=54,G((p0 & Fp1) -> ((p2 -> (!p1 U (!p1 & p3 & !p4 & X((!p1 & !p4) U p5)))) U p1))
dac-patterns=55,G(p0 -> ((p1 -> (!p2 U (!p2 & p3 & !p4 & X((!p2 & !p4) U p5)))) U (p2 | G(p1 -> (p3 & !p4 & X(!p4 U p5))))))
eh-patterns=1,p0 U (p1 & Gp2)
eh-patterns=2,p0 U (p1 & X(p2 U p3))
eh-patterns=3,p0 U (p1 & X(p2 & F(p3 & XF(p4 & XF(p5 & XFp6)))))
eh-patterns=4,F(p0 & XGp1)
eh-patterns=5,F(p0 & X(p1 & XFp2))
eh-patterns=6,F(p0 & X(p1 U p2))
eh-patterns=7,FGp0 | GFp1
eh-patterns=8,G(p0 -> (p1 U p2))
eh-patterns=9,G(p0 & XF(p1 & XF(p2 & XFp3)))
eh-patterns=10,GFp0 & GFp1 & GFp2 & GFp3 & GFp4
eh-patterns=11,(p0 U (p1 U p2)) | (p1 U (p2 U p0)) | (p2 U (p0 U p1))
eh-patterns=12,G(p0 -> (p1 U (Gp2 | Gp3)))
hkrss-patterns=1,G(Fp0 & F!p0)
hkrss-patterns=2,GFp0 & GF!p0
hkrss-patterns=3,GF(!(p1 <-> Xp1) | !(p0 <-> Xp0))
hkrss-patterns=4,GF(!(p1 <-> Xp1) | !(p0 <-> Xp0) | !(p2 <-> Xp2) | !(p3 <-> Xp3))
hkrss-patterns=5,G!p0
hkrss-patterns=6,G((p0 -> F!p0) & (!p0 -> Fp0))
hkrss-patterns=7,G(p0 -> F(p0 & p1))
hkrss-patterns=8,G(p0 -> F((!p0 & p1 & p2 & p3) -> Fp4))
hkrss-patterns=9,G(p0 -> F!p1)
hkrss-patterns=10,G(p0 -> Fp1)
hkrss-patterns=11,G(p0 -> F(p1 -> Fp2))
hkrss-patterns=12,G(p0 -> F((p1 & p2) -> Fp3))
hkrss-patterns=13,G((p0 -> Fp1) & (p2 -> Fp3) & (p4 -> Fp5) & (p6 -> Fp7))
hkrss-patterns=14,G(!p0 & !p1)
hkrss-patterns=15,G!(p0 & p1)
hkrss-patterns=16,G(p0 -> p1)
hkrss-patterns=17,G((p0 -> !p1) & (p1 -> !p0))
hkrss-patterns=18,G(!p0 -> (p1 <-> !p2))
hkrss-patterns=19,G((!p0 & (p1 | p2 | p3)) -> p4)
hkrss-patterns=20,G((p0 & p1) -> (p2 | !(p3 & p4)))
hkrss-patterns=21,G((!p0 & p1 & !p2 & !p3 & !p4) -> F(!p5 & !p6 & !p7 & !p8))
hkrss-patterns=22,G((p0 & p1 & !p2 & !p3 & !p4) -> F(p5 & !p6 & !p7 & !p8))
hkrss-patterns=23,G(!p0 -> !(p1 & p2 & p3 & p4 & p5))
hkrss-patterns=24,G(!p0 -> ((p1 & p2 & p3 & p4) -> !p5))
hkrss-patterns=25,G((p0 & p1) -> (p2 | p3 | !(p4 & p5)))
hkrss-patterns=26,G((!p0 & (p1 | p2 | p3 | p4)) -> (!p5 <-> p6))
hkrss-patterns=27,G((p0 & p1) -> (p2 | p3 | p4 | !(p5 & p6)))
hkrss-patterns=28,G((p0 & p1) -> (p2 | p3 | p4 | p5 | !(p6 & p7)))
hkrss-patterns=29,G((p0 & p1 & !p2 & Xp2) -> X(p3 | X(!p1 | p3)))
hkrss-patterns=30,G((p0 & p1 & !p2 & Xp2) -> X(X!p1 | (p2 U (!p2 U (p2 U (!p1 | p3))))))
hkrss-patterns=31,G(p0 & p1 & !p2 & Xp2) -> X(X!p1 | (p2 U (!p2 U (p2 U (!p1 | p3)))))
hkrss-patterns=32,G(p0 -> (p1 U (!p1 U (!p2 | p3))))
hkrss-patterns=33,G(p0 -> (p1 U (!p1 U (p2 | p3))))
hkrss-patterns=34,G((!p0 & p1) -> Xp2)
hkrss-patterns=35,G(p0 -> X(p0 | p1))
hkrss-patterns=36,G((!(p1 <-> Xp1) | !(p0 <-> Xp0) | !(p2 <-> Xp2) | !(p3 <-> Xp3)) -> (X!p4 & X(!(!(p1 <-> Xp1) | !(p0 <-> Xp0) | !(p2 <-> Xp2) | !(p3 <-> Xp3)) U p4)))
hkrss-patterns=37,G((p0 & !p1 & Xp1 & Xp0) -> (p2 -> Xp3))
hkrss-patterns=38,G(p0 -> X(!p0 U p1))
hkrss-patterns=39,G((!p0 & Xp0) -> X((p0 U p1) | Gp0))
hkrss-patterns=40,G((!p0 & Xp0) -> X(p0 U (p0 & !p1 & X(p0 & p1))))
hkrss-patterns=41,G((!p0 & Xp0) -> X(p0 U (p0 & !p1 & X(p0 & p1 & (p0 U (p0 & !p1 & X(p0 & p1)))))))
hkrss-patterns=42,G((p0 & X!p0) -> X(!p0 U (!p0 & !p1 & X(!p0 & p1 & (!p0 U (!p0 & !p1 & X(!p0 & p1)))))))
hkrss-patterns=43,G((p0 & X!p0) -> X(!p0 U (!p0 & !p1 & X(!p0 & p1 & (!p0 U (!p0 & !p1 & X(!p0 & p1 & (!p0 U (!p0 & !p1 & X(!p0 & p1))))))))))
hkrss-patterns=44,G((!p0 & Xp0) -> X(!(!p0 & Xp0) U (!p1 & Xp1)))
hkrss-patterns=45,G(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X!p0)))))))))))
hkrss-patterns=46,G((Xp0 -> p0) -> (p1 <-> Xp1))
hkrss-patterns=47,G((Xp0 -> p0) -> ((p1 -> Xp1) & (!p1 -> X!p1)))
hkrss-patterns=48,!p0 U G!((p1 & p2) | (p3 & p4) | (p2 & p3) | (p2 & p4) | (p1 & p4) | (p1 & p3))
hkrss-patterns=49,!p0 U p1
hkrss-patterns=50,(p0 U p1) | Gp0
hkrss-patterns=51,p0 & XG!p0
hkrss-patterns=52,XG(p0 -> (G!p1 | (!Xp1 U p2)))
hkrss-patterns=53,XG((p0 & !p1) -> (G!p1 | (!p1 U p2)))
hkrss-patterns=54,XG((p0 & p1) -> ((p1 U p2) | Gp1))
hkrss-patterns=55,Xp0 & G((!p0 & Xp0) -> XXp0)
p-patterns=1,G(p0 -> Fp1)
p-patterns=2,(GFp1 & GFp0) -> GFp2
p-patterns=3,G(p0 -> (p1 & (p2 U p3)))
p-patterns=4,F(p0 | p1)
p-patterns=5,GF(p0 | p1)
p-patterns=6,(p0 U p1) -> ((p2 U p3) | Gp2)
p-patterns=7,G(p0 -> (!p1 U (p1 U (!p1 & (p2 R !p1)))))
p-patterns=8,G(p0 -> (p1 R !p2))
p-patterns=9,G(!p0 -> Fp0)
p-patterns=10,G(p0 -> F(p1 | p2))
p-patterns=11,!(!(p0 | p1) U p2) & G(p3 -> !(!(p0 | p1) U p2))
p-patterns=12,G!p0 -> G!p1
p-patterns=13,G(p0 -> (G!p1 | (!p2 U p1)))
p-patterns=14,G(p0 -> (p1 R (p1 | !p2)))
p-patterns=15,G((p0 & p1) -> (!p1 R (p0 | !p1)))
p-patterns=16,G(p0 -> F(p1 & p2))
p-patterns=17,G(p0 -> (!p1 U (p1 U (p1 & p2))))
p-patterns=18,G(p0 -> (!p1 U (p1 U (!p1 U (p1 U (p1 & p2))))))
p-patterns=19,GFp0 -> GFp1
p-patterns=20,GF(p0 | p1) & GF(p1 | p2)
sb-patterns=1,p0 U p1
sb-patterns=2,p0 U (p1 U p2)
sb-patterns=3,!(p0 U (p1 U p2))
sb-patterns=4,GFp0 -> GFp1
sb-patterns=5,Fp0 U Gp1
sb-patterns=6,Gp0 U p1
sb-patterns=7,!(Fp0 <-> Fp1)
sb-patterns=8,!(GFp0 -> GFp1)
sb-patterns=9,!(GFp0 <-> GFp1)
sb-patterns=10,p0 R (p0 | p1)
sb-patterns=11,(Xp0 U Xp1) | !X(p0 U p1)
sb-patterns=12,(Xp0 U p1) | !X(p0 U (p0 & p1))
sb-patterns=13,G(p0 -> Fp1) & ((Xp0 U p1) | !X(p0 U (p0 & p1)))
sb-patterns=14,G(p0 -> Fp1) & ((Xp0 U Xp1) | !X(p0 U p1))
sb-patterns=15,G(p0 -> Fp1)
sb-patterns=16,!G(p0 -> X(p1 R p2))
sb-patterns=17,!(FGp0 | FGp1)
sb-patterns=18,G(Fp0 & Fp1)
sb-patterns=19,Fp0 & F!p0
sb-patterns=20,(p0 & Xp1) R X(((p2 U p3) R p0) U (p2 R p0))
sb-patterns=21,Gp2 | (G(p0 | GFp1) & G(p2 | GF!p1)) | Gp0
sb-patterns=22,Gp0 | Gp2 | (G(p0 | FGp1) & G(p2 | FG!p1))
sb-patterns=23,!(Gp2 | (G(p0 | GFp1) & G(p2 | GF!p1)) | Gp0)
sb-patterns=24,!(Gp0 | Gp2 | (G(p0 | FGp1) & G(p2 | FG!p1)))
sb-patterns=25,G(p0 | XGp1) & G(p2 | XG!p1)
sb-patterns=26,G(p0 | (Xp1 & X!p1))
sb-patterns=27,p0 | (p1 U p0)
339
340
341
#+end_example

Note that ~--sb-patterns=2 --sb-patterns=4 --sb-patterns=21..22~ also
342
have their complement formulas listed as ~--sb-patterns=3
343
--sb-patterns=8 --sb-patterns=23..24~.  So if you build the set of
344
formulas output by =genltl --sb-patterns= plus their negations, it will
345
346
contain only 46 formulas, not 54.

347
#+BEGIN_SRC sh
348
genltl --sb | ltlfilt --uniq --count
349
genltl --sb --pos --neg | ltlfilt --uniq --count
350
351
352
353
354
#+END_SRC
#+RESULTS:
: 27
: 46

355
#  LocalWords:  genltl num toc LTL scalable SRC sed gh pn fg FG gf qn
356
357
358
#  LocalWords:  ccj Xp XXp Xq XXq rv GFp lbt utf SETUPFILE html dac
#  LocalWords:  Dwyer et al FMSP Etessami Holzmann sb Somenzi Bloem
#  LocalWords:  CAV LaTeX Fq Fp pNN Gp XFp XF XGp FGp XG ltlfilt uniq
359
360
361
#  LocalWords:  args fxg GFa GFan GFz xn gxf hkrss liberouter Holeček
#  LocalWords:  kr DBA nlogn quasilinear kv Xb XXb XXXb FGa GFb beem
#  LocalWords:  Pelánek sejk GFai GFbn FGb FGbn Sikert al's tv uu pos