ltl2tgba.org 21.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
#+TITLE: =ltl2tgba=
#+EMAIL spot@lrde.epita.fr
#+OPTIONS: H:2 num:nil toc:t
#+LINK_UP: file:tools.html

This tool translates LTL or PSL formulas into two kinds of Büchi
automata.  The default is to output Transition-based Generalized Büchi
Automata (hereinafter abbreviated TGBA), but more traditional Büchi
automata (BA) may be requested using the =-B= option.

* TGBA and BA

Formulas to translate may be specified using [[file:ioltl.org][common input options for
LTL/PSL formulas]].

#+BEGIN_SRC sh :results verbatim :exports both
ltl2tgba -f 'Fa & GFb'
#+END_SRC
#+RESULTS:
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="1"]
  1 -> 1 [label="!a\n"]
  1 -> 2 [label="a\n"]
  2 [label="2"]
  2 -> 2 [label="b\n{Acc[b]}"]
  2 -> 2 [label="!b\n"]
}
#+end_example

Actually, because =ltl2tgba= is often used with a single formula
passed on the command line, the =-f= option can be omitted and any
command-line parameter that is not the argument of some option will be
assumed to be a formula to translate (this differs from [[file:ltlfilt.org][=ltlfilt=]],
where such parameters are assumed to be filenames).

The default output format, as shown above, is [[http://http://www.graphviz.org/][GraphViz]]'s format.  This
can converted into a picture, or into vectorial format using =dot= or
=dotty=.  Typically, you could get a =pdf= of this TGBA using
#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba "Fa & GFb" | dot -Tpdf > tgba.pdf
#+END_SRC
#+RESULTS:

The result would look like this:
#+NAME: dotex
#+BEGIN_SRC sh :results verbatim :exports none
ltl2tgba "Fa & GFb" | sed 's/\\/\\\\/'
#+END_SRC
#+RESULTS: dotex
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="1"]
  1 -> 2 [label="a\\n"]
  1 -> 1 [label="!a\\n"]
  2 [label="2"]
  2 -> 2 [label="b\\n{Acc[b]}"]
  2 -> 2 [label="!b\\n"]
}
#+end_example

#+BEGIN_SRC dot :file dotex.png :cmdline -Tpng :var txt=dotex :exports results
$txt
#+END_SRC

#+RESULTS:
[[file:dotex.png]]

The string between braces, =Acc[b]=, represents an acceptance set (its
actual name is not really important): any transition labeled by
=Acc[b]= belongs to the =Acc[b]= acceptance set.  You may have many
transitions in the same acceptance set, and a transition may also
belong to multiple acceptance sets.  An infinite path through this
automaton is accepting iff it visit each acceptance set infinitely
often.  Therefore, in the above example, any accepted path will
/necessarily/ leave the initial state after a finite amount of steps,
and then it will verify the property =b= infinitely often.  It is also
possible that an automaton do not use any acceptance set at all, in
which any run is accepting.

Here is a TGBA with multiple acceptance sets (we omit the call to
=dot= to render the output of =ltl2tgba= from now on):

#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba 'GFa & GFb'
#+END_SRC
#+RESULTS:
: digraph G {
:   0 [label="", style=invis, height=0]
:   0 -> 1
:   1 [label="1"]
:   1 -> 1 [label="a & b\n{Acc[b], Acc[a]}"]
:   1 -> 1 [label="b & !a\n{Acc[b]}"]
:   1 -> 1 [label="a & !b\n{Acc[a]}"]
:   1 -> 1 [label="!b & !a\n"]
: }

#+NAME: dotex2
#+BEGIN_SRC sh :results verbatim :exports none
ltl2tgba "GFa & GFb" | sed 's/\\/\\\\/'
#+END_SRC
#+RESULTS: dotex2
: digraph G {
:   0 [label="", style=invis, height=0]
:   0 -> 1
:   1 [label="1"]
:   1 -> 1 [label="a & b\\n{Acc[b], Acc[a]}"]
:   1 -> 1 [label="b & !a\\n{Acc[b]}"]
:   1 -> 1 [label="a & !b\\n{Acc[a]}"]
:   1 -> 1 [label="!b & !a\\n"]
: }

#+BEGIN_SRC dot :file dotex2.png :cmdline -Tpng :var txt=dotex2 :exports results
$txt
#+END_SRC
#+RESULTS:
[[file:dotex2.png]]

The above TGBA has two acceptance sets: =Acc[a]= and =Acc[b]=.
The position of these acceptance sets ensures that =a= and =b= atomic
proposition must be true infinitely often.

A Büchi automaton for the previous formula can be obtained with the
=-B= option:

#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba -B 'GFa & GFb'
#+END_SRC
#+RESULTS:
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="0", peripheries=2]
  1 -> 1 [label="a & b\n{Acc[1]}"]
  1 -> 2 [label="b & !a\n{Acc[1]}"]
  1 -> 3 [label="!b\n{Acc[1]}"]
  2 [label="1"]
  2 -> 1 [label="a\n"]
  2 -> 2 [label="!a\n"]
  3 [label="2"]
  3 -> 1 [label="a & b\n"]
  3 -> 2 [label="b & !a\n"]
  3 -> 3 [label="!b\n"]
}
#+end_example

#+NAME: dotex2ba
#+BEGIN_SRC sh :results verbatim :exports none
ltl2tgba -B 'GFa & GFb' | sed 's/\\/\\\\/'
#+END_SRC
#+RESULTS: dotex2ba
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="0", peripheries=2]
  1 -> 1 [label="a & b\\n{Acc[1]}"]
  1 -> 2 [label="b & !a\\n{Acc[1]}"]
  1 -> 3 [label="!b\\n{Acc[1]}"]
  2 [label="1"]
  2 -> 1 [label="a\\n"]
  2 -> 2 [label="!a\\n"]
  3 [label="2"]
  3 -> 1 [label="a & b\\n"]
  3 -> 2 [label="b & !a\\n"]
  3 -> 3 [label="!b\\n"]
}
#+end_example

#+BEGIN_SRC dot :file dotex2ba.png :cmdline -Tpng :var txt=dotex2ba :exports results
$txt
#+END_SRC
#+RESULTS:
[[file:dotex2ba.png]]

Although accepting states in the Büchi automaton are pictured with
double-lines, internally this automaton is still handled as a TGBA
with a single acceptance set =Acc[1]= such that the transitions
leaving the state are either all accepting, or all non-accepting.
This is the reason why the =Acc[1]= sets are still shown in the
output: it shows that a Büchi automaton is (a special case of) a TGBA.

Various options controls the output format of =ltl2tgba=:

#+BEGIN_SRC sh :results verbatim :exports results
ltl2tgba --help | sed -n '/Output format:/,/^$/p' | sed '1d;$d'
#+END_SRC
#+RESULTS:
:   -8, --utf8                 enable UTF-8 characters in output (ignored with
:                              --lbtt or --spin)
:       --dot                  GraphViz's format (default)
:       --lbtt                 LBTT's format
:   -s, --spin                 Spin neverclaim (implies --ba)
:       --spot                 SPOT's format
:       --stats=FORMAT         output statistics about the automaton


The =-8= option can be used to improve the readability of the output
if your system can display UTF-8 correctly.

#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba -B8 'GFa & GFb'
#+END_SRC
#+RESULTS:
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="0", peripheries=2]
  1 -> 1 [label="a∧b\n{Acc[1]}"]
  1 -> 2 [label="b∧a̅\n{Acc[1]}"]
  1 -> 3 [label="b̅\n{Acc[1]}"]
  2 [label="1"]
  2 -> 1 [label="a\n"]
  2 -> 2 [label="a̅\n"]
  3 [label="2"]
  3 -> 1 [label="a∧b\n"]
  3 -> 2 [label="b∧a̅\n"]
  3 -> 3 [label="b̅\n"]
}
#+end_example

#+NAME: dotex2ba8
#+BEGIN_SRC sh :results verbatim :exports none
ltl2tgba -B8 "GFa & GFb" | sed 's/\\/\\\\/'
#+END_SRC
#+RESULTS: dotex2ba8
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="0", peripheries=2]
  1 -> 1 [label="a∧b\\n{Acc[1]}"]
  1 -> 2 [label="b∧a̅\\n{Acc[1]}"]
  1 -> 3 [label="b̅\\n{Acc[1]}"]
  2 [label="1"]
  2 -> 1 [label="a\\n"]
  2 -> 2 [label="a̅\\n"]
  3 [label="2"]
  3 -> 1 [label="a∧b\\n"]
  3 -> 2 [label="b∧a̅\\n"]
  3 -> 3 [label="b̅\\n"]
}
#+end_example

#+BEGIN_SRC dot :file dotex2ba8.png :cmdline -Tpng :var txt=dotex2ba8 :exports results
$txt
#+END_SRC
#+RESULTS:
[[file:dotex2ba8.png]]

* Spin output

Using the =--spin= or =-s= option, =ltl2tgba= will produce a Büchi automaton
(the =-B= option is implied) as a never claim that can be fed to Spin.
=ltl2tgba -s= is therefore a drop-in replacement for =spin -f=.


#+BEGIN_SRC sh :results verbatim :exports both
ltl2tgba -s 'GFa & GFb'
#+END_SRC
#+RESULTS:
#+begin_example
never { /* G(Fa & Fb) */
accept_init:
  if
  :: ((a) && (b)) -> goto accept_init
  :: ((b) && (!((a)))) -> goto T0_S2
  :: ((!((b)))) -> goto T0_S3
  fi;
T0_S2:
  if
  :: ((a)) -> goto accept_init
  :: ((!((a)))) -> goto T0_S2
  fi;
T0_S3:
  if
  :: ((a) && (b)) -> goto accept_init
  :: ((b) && (!((a)))) -> goto T0_S2
  :: ((!((b)))) -> goto T0_S3
  fi;
}
#+end_example

Since Spin 6 extended its syntax to support arbitrary atomic
propositions, you may also need put the parser in =--lenient= mode to
support these:

#+BEGIN_SRC sh :results verbatim :exports both
ltl2tgba -s --lenient '(a < b) U (process[2]@ok)'
#+END_SRC
#+RESULTS:
: never { /* "a < b" U "process[2]@ok" */
: T0_init:
:   if
:   :: ((process[2]@ok)) -> goto accept_all
:   :: ((a < b) && (!(process[2]@ok))) -> goto T0_init
:   fi;
: accept_all:
:   skip
: }


* Do you favor deterministic or small automata?

The translation procedure can be controled by a few switches.  A first
set of options specifies the intent of the translation: whenever
possible, would you prefer a small automaton or a deterministic
automaton?

#+BEGIN_SRC sh :results verbatim :exports results
ltl2tgba --help | sed -n '/Translation intent:/,/^$/p' | sed '1d;$d'
#+END_SRC
#+RESULTS:
:   -a, --any                  no preference
:   -D, --deterministic        prefer deterministic automata
:       --small                prefer small automata (default)

The =--any= option tells the translator that it should not target any
particular form of result: any automaton denoting the given formula is
OK.  This effectively disables post-processings and speeds up the
translation.

With the =-D= option, the translator will /attempt/ to produce a
deterministic automaton, even if this requires a lot of states.  =ltl2tgba=
knows how to produce the minimal deterministic Büchi automaton for
any obligation property (this includes safety properties).

With the =--small= option (the default), the translator will not
produce a deterministic automaton when it knows how to build smaller
automaton.

An example formula where the difference between =-D= and =--small= is
flagrant is =Ga|Gb|Gc=:

#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba 'Ga|Gb|Gc'
#+END_SRC
#+RESULTS:
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="1"]
  1 -> 2 [label="b\n"]
  1 -> 3 [label="c\n"]
  1 -> 4 [label="a\n"]
  2 [label="2"]
  2 -> 2 [label="b\n"]
  3 [label="3"]
  3 -> 3 [label="c\n"]
  4 [label="4"]
  4 -> 4 [label="a\n"]
}
#+end_example

#+NAME: gagbgc1
#+BEGIN_SRC sh :results verbatim :exports none
ltl2tgba "Ga|Gb|Gc" | sed 's/\\/\\\\/'
#+END_SRC
#+RESULTS: gagbgc1
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="1"]
  1 -> 2 [label="c\\n"]
  1 -> 3 [label="b\\n"]
  1 -> 4 [label="a\\n"]
  2 [label="2"]
  2 -> 2 [label="c\\n"]
  3 [label="3"]
  3 -> 3 [label="b\\n"]
  4 [label="4"]
  4 -> 4 [label="a\\n"]
}
#+end_example

#+BEGIN_SRC dot :file gagbgc1.png :cmdline -Tpng :var txt=gagbgc1 :exports results
$txt
#+END_SRC
#+RESULTS:
[[file:gagbgc1.png]]

#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba -D 'Ga|Gb|Gc'
#+END_SRC
#+RESULTS:
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="6"]
  1 -> 1 [label="a & b & c\n{Acc[1]}"]
  1 -> 2 [label="b & c & !a\n{Acc[1]}"]
  1 -> 3 [label="a & c & !b\n{Acc[1]}"]
  1 -> 4 [label="c & !a & !b\n{Acc[1]}"]
  1 -> 5 [label="a & b & !c\n{Acc[1]}"]
  1 -> 6 [label="b & !a & !c\n{Acc[1]}"]
  1 -> 7 [label="a & !b & !c\n{Acc[1]}"]
  2 [label="2"]
  2 -> 2 [label="b & c\n{Acc[1]}"]
  2 -> 4 [label="c & !b\n{Acc[1]}"]
  2 -> 6 [label="b & !c\n{Acc[1]}"]
  3 [label="4"]
  3 -> 3 [label="a & c\n{Acc[1]}"]
  3 -> 4 [label="c & !a\n{Acc[1]}"]
  3 -> 7 [label="a & !c\n{Acc[1]}"]
  4 [label="1"]
  4 -> 4 [label="c\n{Acc[1]}"]
  5 [label="5"]
  5 -> 5 [label="a & b\n{Acc[1]}"]
  5 -> 6 [label="b & !a\n{Acc[1]}"]
  5 -> 7 [label="a & !b\n{Acc[1]}"]
  6 [label="3"]
  6 -> 6 [label="b\n{Acc[1]}"]
  7 [label="0"]
  7 -> 7 [label="a\n{Acc[1]}"]
}
#+end_example

#+NAME: gagbgc2
#+BEGIN_SRC sh :results verbatim :exports none
ltl2tgba -D 'Ga|Gb|Gc' | sed 's/\\/\\\\/'
#+END_SRC
#+RESULTS: gagbgc2
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="6"]
  1 -> 1 [label="a & b & c\\n{Acc[1]}"]
  1 -> 2 [label="b & c & !a\\n{Acc[1]}"]
  1 -> 3 [label="a & c & !b\\n{Acc[1]}"]
  1 -> 4 [label="c & !a & !b\\n{Acc[1]}"]
  1 -> 5 [label="a & b & !c\\n{Acc[1]}"]
  1 -> 6 [label="b & !a & !c\\n{Acc[1]}"]
  1 -> 7 [label="a & !b & !c\\n{Acc[1]}"]
  2 [label="1"]
  2 -> 2 [label="b & c\\n{Acc[1]}"]
  2 -> 4 [label="c & !b\\n{Acc[1]}"]
  2 -> 6 [label="b & !c\\n{Acc[1]}"]
  3 [label="2"]
  3 -> 3 [label="a & c\\n{Acc[1]}"]
  3 -> 4 [label="c & !a\\n{Acc[1]}"]
  3 -> 7 [label="a & !c\\n{Acc[1]}"]
  4 [label="0"]
  4 -> 4 [label="c\\n{Acc[1]}"]
  5 [label="4"]
  5 -> 5 [label="a & b\\n{Acc[1]}"]
  5 -> 6 [label="b & !a\\n{Acc[1]}"]
  5 -> 7 [label="a & !b\\n{Acc[1]}"]
  6 [label="3"]
  6 -> 6 [label="b\\n{Acc[1]}"]
  7 [label="5"]
  7 -> 7 [label="a\\n{Acc[1]}"]
}
#+end_example

#+BEGIN_SRC dot :file gagbgc2.png :cmdline -Tpng :var txt=gagbgc2 :exports results
$txt
#+END_SRC
#+RESULTS:
[[file:gagbgc2.png]]

You can augment the number of terms in the disjunction to magnify the
difference.  For N terms, the =--small= automaton has N+1 states,
while the =--deterministic= automaton needs 2^N-1 states.

A last parameter that can be used to tune the translation is the amount
of pre- and post-processing performed.  These two steps can be adjusted
via a common set of switches:
#+BEGIN_SRC sh :results verbatim :exports results
ltl2tgba --help | sed -n '/Optimization level:/,/^$/p' | sed '1d;$d'
#+END_SRC
#+RESULTS:
:       --high                 all available optimizations (slow, default)
:       --low                  minimal optimizations (fast)
:       --medium               moderate optimizations

Pre-processings are rewritings done on the LTL formulas, usually to
reduce its size, but mainly to put it in a form that will help the
translator (for instance =F(a|b)= is easier to translate than
=F(a)|F(b)=).  At =--low= level, only simple syntactic rewritings are
performed.  At =--medium= level, additional simplifications based on
syntactic implications are performed.  At =--high= level, language
containment is used instead of syntactic implications.

Post-processings are cleanups and simplifications of the automaton
produced by the core translator.  The algorithms used during post-processing
are
- SCC filtering: removing useless strongly connected components,
  and useless acceptance sets.
- direct simulation: merge states based on suffix inclusion.
- iterated simulations: merge states based on suffix inclusion,
  or prefix inclusion, in a loop.
- WDBA minimization: determinize and minimize automata representing
  obligation properties.
- degeneralization: convert a TGBA into a BA

The chaining of these various algorithms depends on the selected
combination of optimization level (=--low=, =--medium=, =--high=),
translation intent (=--small=, =--deterministic=) and type of
automaton desired (=--tgba=, =--ba=).

A notable configuration is =--any --low=, which will produce a TGBA as
fast as possible.  In this case, post-processing is disabled, and only
syntactic rewritings are performed.  This can be used for
satisfiability checking, although in this context even building an
automaton is overkill (you only need an accepted run).

Finally, it should be noted that the default optimization options
(=--small --high=) are usually overkill.  =--low= will produce good
automata most of the time.  Most of pattern formulas of [[file:genltl.org][=genltl=]] will
be efficiently translated in this configuration (meaning that =--small
--high= will not produce a better automaton).  If you are planning to
generate automata for large family of pattern formulas, it makes sense
to experiment with the different settings on a small version of the
pattern, and select the lowest setting that satisfies your
expectations.

* Translating multiple formulas for statistics

If multiple formulas are given to =ltl2tgba=, the corresponding
automata will be output one after the other.  This is not very
convenient, since most of these output formats are not designed to
represent multiple automata, and tools like =dot= will only display
the first one.

One situation where passing many formulas to =ltl2tgba= is useful is
in combination with the =--stats=FORMAT= option.  This option will
output statistics about the translated automata instead of the
automata themselves.  The =FORMAT= string should indicate which
statistics should be output, and how they should be output using the
following sequence of characters (other characters are output as-is):

#+BEGIN_SRC sh :results verbatim :exports results
ltl2tgba --help | sed -n '/^ *%/p'
#+END_SRC
#+RESULTS:
:   %%                         a single %
:   %a                         number of acceptance sets
:   %d                         1 if the automaton is deterministic, 0 otherwise
:   %e                         number of edges
:   %f                         the formula, in Spot's syntax
:   %n                         number of nondeterministic states
:   %s                         number of states
:   %S                         number of SCCs
:   %t                         number of transitions

For instance we can study the size of the automata generated for the
right-nested =U= formulas as follows:

#+BEGIN_SRC sh :results verbatim :exports both
genltl --u-right=1..8 | ltl2tgba -F - --stats '%s states and %e edges for "%f"'
#+END_SRC
#+RESULTS:
: 2 states and 2 edges for "p1"
: 2 states and 3 edges for "p1 U p2"
: 3 states and 6 edges for "p1 U (p2 U p3)"
: 4 states and 10 edges for "p1 U (p2 U (p3 U p4))"
: 5 states and 15 edges for "p1 U (p2 U (p3 U (p4 U p5)))"
: 6 states and 21 edges for "p1 U (p2 U (p3 U (p4 U (p5 U p6))))"
: 7 states and 28 edges for "p1 U (p2 U (p3 U (p4 U (p5 U (p6 U p7)))))"
: 8 states and 36 edges for "p1 U (p2 U (p3 U (p4 U (p5 U (p6 U (p7 U p8))))))"

Here =-F -= means that formulas should be read from the standard input.

When computing the size of an automaton, we distinguish /transitions/
and /edges/.  An edge between two states is labeled by a Boolean
formula and may in fact represent several transitions labeled by
compatible Boolean assignment.

For instance if the atomic propositions are =x= and =y=, an edge labeled
by the formula =!x= actually represents two transitions labeled respectively
with =!x&y= and =!x&!y=.

Two automata with the same structures (states and edges) but differing
labels, may have a different count of transitions, e.g., if one has
more restricted labels.

* Building Monitors

In addition to TGBA and BA, =ltl2tgba= can output /monitor/ using the
=-M= option.  These are finite automata that accept all prefixes of a
formula.  The idea is that you can use these automata to monitor a
system as it is running, and report a violation as soon as no
compatible outgoing transition exist.

=ltl2tgba -M= may output non-deterministic monitors while =ltl2tgba
-MD= (short for =--monitor --deterministic=) will output the minimal
deterministic monitor for the given formula.

#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba -M '(Xa & Fb) | Gc'
#+END_SRC
#+RESULTS:
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="1", peripheries=2]
  1 -> 2 [label="1\n"]
  1 -> 3 [label="c\n"]
  2 [label="2", peripheries=2]
  2 -> 4 [label="a\n"]
  3 [label="3", peripheries=2]
  3 -> 3 [label="c\n"]
  4 [label="4", peripheries=2]
  4 -> 4 [label="1\n"]
}
#+end_example
#+NAME: monitor1
#+BEGIN_SRC sh :results verbatim :exports none
ltl2tgba -M '(Xa & Fb) | Gc' | sed 's/\\/\\\\/'
#+END_SRC

#+RESULTS: monitor1
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="1", peripheries=2]
  1 -> 2 [label="1\\n"]
  1 -> 3 [label="c\\n"]
  2 [label="2", peripheries=2]
  2 -> 4 [label="a\\n"]
  3 [label="3", peripheries=2]
  3 -> 3 [label="c\\n"]
  4 [label="4", peripheries=2]
  4 -> 4 [label="1\\n"]
}
#+end_example

#+BEGIN_SRC dot :file monitor1.png :cmdline -Tpng :var txt=monitor1 :exports results
$txt
#+END_SRC

#+RESULTS:
[[file:monitor1.png]]

#+BEGIN_SRC sh :results verbatim :exports code
ltl2tgba -M '(Xa & Fb) | Gc'
#+END_SRC
#+RESULTS:
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="1", peripheries=2]
  1 -> 2 [label="1\n"]
  1 -> 3 [label="c\n"]
  2 [label="2", peripheries=2]
  2 -> 4 [label="a\n"]
  3 [label="3", peripheries=2]
  3 -> 3 [label="c\n"]
  4 [label="4", peripheries=2]
  4 -> 4 [label="1\n"]
}
#+end_example
#+NAME: monitor2
#+BEGIN_SRC sh :results verbatim :exports none
ltl2tgba -MD '(Xa & Fb) | Gc' | sed 's/\\/\\\\/'
#+END_SRC

#+RESULTS: monitor2
#+begin_example
digraph G {
  0 [label="", style=invis, height=0]
  0 -> 1
  1 [label="1", peripheries=2]
  1 -> 2 [label="c\\n"]
  1 -> 3 [label="!c\\n"]
  2 [label="4", peripheries=2]
  2 -> 4 [label="a\\n"]
  2 -> 5 [label="c & !a\\n"]
  3 [label="3", peripheries=2]
  3 -> 4 [label="a\\n"]
  4 [label="2", peripheries=2]
  4 -> 4 [label="1\\n"]
  5 [label="0", peripheries=2]
  5 -> 5 [label="c\\n"]
}
#+end_example

#+BEGIN_SRC dot :file monitor2.png :cmdline -Tpng :var txt=monitor2 :exports results
$txt
#+END_SRC

#+RESULTS:
[[file:monitor2.png]]

Because they accept all finite executions that could be extended to
match the formula, monitor cannot be used to check for eventualities
such as =F(a)=.  Any finite execution can be extended to match =F(a)=.

# Local variables:
# eval: (setenv "PATH" (concat "../../src/bin" path-separator (getenv "PATH")))
# eval: (org-babel-do-load-languages 'org-babel-load-languages '((sh . t) (dot . t)))
# eval: (setq org-confirm-babel-evaluate nil)
# End:


#  LocalWords:  ltl tgba num toc PSL Büchi automata SRC GFb invis Acc
#  LocalWords:  ltlfilt filenames GraphViz vectorial pdf Tpdf dotex
#  LocalWords:  sed png cmdline Tpng txt iff GFa ba utf UTF lbtt Fb
#  LocalWords:  GraphViz's LBTT's neverclaim SPOT's init goto fi Gb
#  LocalWords:  controled Gc gagbgc disjunction pre rewritings SCC Xa
#  LocalWords:  WDBA determinize degeneralization satisfiability SCCs
#  LocalWords:  genltl nondeterministic eval setenv concat getenv
#  LocalWords:  setq