minimize.cc 17.7 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
3
// Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19

20
21
22
23
24
25
26
27
28

//#define TRACE

#ifdef TRACE
#  define trace std::cerr
#else
#  define trace while (0) std::cerr
#endif

29
#include <queue>
30
31
32
#include <deque>
#include <set>
#include <list>
33
#include <vector>
34
#include <sstream>
35
36
37
#include "minimize.hh"
#include "ltlast/allnodes.hh"
#include "misc/hash.hh"
38
#include "misc/bddlt.hh"
39
#include "tgbaalgos/product.hh"
40
#include "tgbaalgos/powerset.hh"
41
42
43
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/sccfilter.hh"
44
#include "tgbaalgos/sccinfo.hh"
45
#include "tgbaalgos/ltl2tgba_fm.hh"
46
#include "tgbaalgos/bfssteps.hh"
47
#include "tgbaalgos/isdet.hh"
48
#include "tgbaalgos/dtgbacomp.hh"
49
50
51

namespace spot
{
52
53
  // FIXME: do we really want to use unordered_set instead of set here?
  // This calls for benchmarking.
54
55
56
57
  typedef std::unordered_set<const state*,
			     state_ptr_hash, state_ptr_equal> hash_set;
  typedef std::unordered_map<const state*, unsigned,
			     state_ptr_hash, state_ptr_equal> hash_map;
58

59
60
61
  namespace
  {
    static std::ostream&
62
63
64
    dump_hash_set(const hash_set* hs,
		  const const_tgba_ptr& aut,
		  std::ostream& out)
65
    {
66
      out << '{';
67
68
69
70
71
72
      const char* sep = "";
      for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
	{
	  out << sep << aut->format_state(*i);
	  sep = ", ";
	}
73
      out << '}';
74
75
76
77
      return out;
    }

    static std::string
78
    format_hash_set(const hash_set* hs, const_tgba_ptr aut)
79
80
81
82
83
84
85
    {
      std::ostringstream s;
      dump_hash_set(hs, aut, s);
      return s.str();
    }
  }

86
  // Find all states of an automaton.
87
  void build_state_set(const const_tgba_ptr& a, hash_set* seen)
88
  {
Felix Abecassis's avatar
Felix Abecassis committed
89
    std::queue<const state*> tovisit;
90
    // Perform breadth-first traversal.
Felix Abecassis's avatar
Felix Abecassis committed
91
    const state* init = a->get_init_state();
92
    tovisit.push(init);
93
    seen->insert(init);
94
95
    while (!tovisit.empty())
      {
96
97
98
99
	const state* src = tovisit.front();
	tovisit.pop();

	for (auto sit: a->succ(src))
100
	  {
101
102
103
104
105
106
107
108
109
110
	    const state* dst = sit->current_state();
	    // Is it a new state ?
	    if (seen->find(dst) == seen->end())
	      {
		// Register the successor for later processing.
		tovisit.push(dst);
		seen->insert(dst);
	      }
	    else
	      dst->destroy();
111
	  }
112
113
114
115
116
      }
  }

  // From the base automaton and the list of sets, build the minimal
  // resulting automaton
117
118
119
  tgba_digraph_ptr build_result(const const_tgba_ptr& a,
				std::list<hash_set*>& sets,
				hash_set* final)
120
  {
121
    auto dict = a->get_dict();
122
    auto res = make_tgba_digraph(dict);
123
    res->copy_ap_of(a);
124
    res->prop_state_based_acc();
125

126
127
128
129
130
131
    // For each set, create a state in the resulting automaton.
    // For a state s, state_num[s] is the number of the state in the minimal
    // automaton.
    hash_map state_num;
    std::list<hash_set*>::iterator sit;
    for (sit = sets.begin(); sit != sets.end(); ++sit)
132
133
134
      {
	hash_set::iterator hit;
	hash_set* h = *sit;
135
	unsigned num = res->new_state();
136
137
138
	for (hit = h->begin(); hit != h->end(); ++hit)
	  state_num[*hit] = num;
      }
139

140
141
    // For each transition in the initial automaton, add the corresponding
    // transition in res.
142

143
    if (!final->empty())
144
      res->set_single_acceptance_set();
145

146
    for (sit = sets.begin(); sit != sets.end(); ++sit)
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
      {
	hash_set::iterator hit;
	hash_set* h = *sit;

	// Pick one state.
	const state* src = *h->begin();
	unsigned src_num = state_num[src];
	bool accepting = (final->find(src) != final->end());

	// Connect it to all destinations.
	for (auto succit: a->succ(src))
	  {
	    const state* dst = succit->current_state();
	    hash_map::const_iterator i = state_num.find(dst);
	    dst->destroy();
	    if (i == state_num.end()) // Ignore useless destinations.
	      continue;
164
165
	    res->new_acc_transition(src_num, i->second,
				    succit->current_condition(), accepting);
166
167
	  }
      }
168
    res->merge_transitions();
169
170
171
172
173
174
175
    if (res->num_states() > 0)
      {
	const state* init_state = a->get_init_state();
	unsigned init_num = state_num[init_state];
	init_state->destroy();
	res->set_init_state(init_num);
      }
176
177
178
    return res;
  }

179
180
181
182
183
184

  namespace
  {

    struct wdba_search_acc_loop : public bfs_steps
    {
185
      wdba_search_acc_loop(const const_tgba_ptr& det_a,
186
			   unsigned scc_n, scc_info& sm,
187
188
189
			   power_map& pm, const state* dest)
	: bfs_steps(det_a), scc_n(scc_n), sm(sm), pm(pm), dest(dest)
      {
190
	seen(dest);
191
192
193
194
195
      }

      virtual const state*
      filter(const state* s)
      {
196
	s = seen(s);
197
198
	if (sm.scc_of(std::static_pointer_cast<const tgba_digraph>(a_)
		      ->state_number(s)) != scc_n)
199
200
201
202
203
204
205
206
207
208
209
	  return 0;
	return s;
      }

      virtual bool
      match(tgba_run::step&, const state* to)
      {
	return to == dest;
      }

      unsigned scc_n;
210
      scc_info& sm;
211
212
      power_map& pm;
      const state* dest;
213
      state_unicity_table seen;
214
215
216
217
    };


    bool
218
    wdba_scc_is_accepting(const const_tgba_digraph_ptr& det_a, unsigned scc_n,
219
			  const const_tgba_digraph_ptr& orig_a, scc_info& sm,
220
			  power_map& pm)
221
    {
222

223
      // Get some state from the SCC #n.
224
      const state* start = det_a->state_from_number(sm.one_state_of(scc_n));
225
226
227
228
229
230
231
232
233

      // Find a loop around START in SCC #n.
      wdba_search_acc_loop wsal(det_a, scc_n, sm, pm, start);
      tgba_run::steps loop;
      const state* reached = wsal.search(start, loop);
      assert(reached == start);
      (void)reached;

      // Build an automaton representing this loop.
234
      auto loop_a = make_tgba_digraph(det_a->get_dict());
235
236
      tgba_run::steps::const_iterator i;
      int loop_size = loop.size();
237
      loop_a->new_states(loop_size);
238
239
240
      int n;
      for (n = 1, i = loop.begin(); n < loop_size; ++n, ++i)
	{
241
	  loop_a->new_transition(n - 1, n, i->label);
242
	  i->s->destroy();
243
244
	}
      assert(i != loop.end());
245
      loop_a->new_transition(n - 1, 0, i->label);
246
      i->s->destroy();
247
248
      assert(++i == loop.end());

249
      loop_a->set_init_state(0U);
250
251
252
253
254

      // Check if the loop is accepting in the original automaton.
      bool accepting = false;

      // Iterate on each original state corresponding to start.
255
256
257
      const power_map::power_state& ps =
	pm.states_of(det_a->state_number(start));
      for (auto& it: ps)
258
	{
259
260
261
262
	  // Construct a product between LOOP_A and ORIG_A starting in
	  // *IT.  FIXME: This could be sped up a lot!
	  if (!product(loop_a, orig_a, 0U,
		       orig_a->state_number(it))->is_empty())
263
264
265
266
	    {
	      accepting = true;
	      break;
	    }
267
268
269
270
271
272
273
	}

      return accepting;
    }

  }

274
275
  tgba_digraph_ptr minimize_dfa(const const_tgba_digraph_ptr& det_a,
				hash_set* final, hash_set* non_final)
276
  {
277
278
279
    typedef std::list<hash_set*> partition_t;
    partition_t cur_run;
    partition_t next_run;
280

281
282
    // The list of equivalent states.
    partition_t done;
283

284
    hash_map state_set_map;
285

286
287
    // Size of det_a
    unsigned size = final->size() + non_final->size();
288
289
    // Use bdd variables to number sets.  set_num is the first variable
    // available.
290
291
    unsigned set_num =
      det_a->get_dict()->register_anonymous_variables(size, det_a);
292
293
294
295
296
297

    std::set<int> free_var;
    for (unsigned i = set_num; i < set_num + size; ++i)
      free_var.insert(i);
    std::map<int, int> used_var;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
298
299
    hash_set* final_copy;

300
301
302
303
304
305
    if (!final->empty())
      {
	unsigned s = final->size();
	used_var[set_num] = s;
	free_var.erase(set_num);
	if (s > 1)
306
	  cur_run.push_back(final);
307
308
309
310
311
	else
	  done.push_back(final);
	for (hash_set::const_iterator i = final->begin();
	     i != final->end(); ++i)
	  state_set_map[*i] = set_num;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
312
313

	final_copy = new hash_set(*final);
314
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
315
316
317
318
319
    else
      {
	final_copy = final;
      }

320
321
322
323
324
325
326
    if (!non_final->empty())
      {
	unsigned s = non_final->size();
	unsigned num = set_num + 1;
	used_var[num] = s;
	free_var.erase(num);
	if (s > 1)
327
	  cur_run.push_back(non_final);
328
329
330
331
332
333
	else
	  done.push_back(non_final);
	for (hash_set::const_iterator i = non_final->begin();
	     i != non_final->end(); ++i)
	  state_set_map[*i] = num;
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
334
335
336
337
    else
      {
	delete non_final;
      }
338

339
340
    // A bdd_states_map is a list of formulae (in a BDD form) associated with a
    // destination set of states.
341
342
343
344
345
    typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;

    bool did_split = true;

    while (did_split)
346
      {
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
	did_split = false;
	while (!cur_run.empty())
	  {
	    // Get a set to process.
	    hash_set* cur = cur_run.front();
	    cur_run.pop_front();

	    trace << "processing " << format_hash_set(cur, det_a) << std::endl;

	    hash_set::iterator hi;
	    bdd_states_map bdd_map;
	    for (hi = cur->begin(); hi != cur->end(); ++hi)
	      {
		const state* src = *hi;
		bdd f = bddfalse;
362
		for (auto si: det_a->succ(src))
363
364
		  {
		    const state* dst = si->current_state();
365
		    hash_map::const_iterator i = state_set_map.find(dst);
366
		    dst->destroy();
367
368
369
370
371
372
373
374
375
		    if (i == state_set_map.end())
		      // The destination state is not in our
		      // partition.  This can happen if the initial
		      // FINAL and NON_FINAL supplied to the algorithm
		      // do not cover the whole automaton (because we
		      // want to ignore some useless states).  Simply
		      // ignore these states here.
		      continue;
		    f |= (bdd_ithvar(i->second) & si->current_condition());
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
		  }

		// Have we already seen this formula ?
		bdd_states_map::iterator bsi = bdd_map.find(f);
		if (bsi == bdd_map.end())
		  {
		    // No, create a new set.
		    hash_set* new_set = new hash_set;
		    new_set->insert(src);
		    bdd_map[f] = new_set;
		  }
		else
		  {
		    // Yes, add the current state to the set.
		    bsi->second->insert(src);
		  }
	      }

	    bdd_states_map::iterator bsi = bdd_map.begin();
	    if (bdd_map.size() == 1)
	      {
		// The set was not split.
		trace << "set " << format_hash_set(bsi->second, det_a)
		      << " was not split" << std::endl;
		next_run.push_back(bsi->second);
	      }
	    else
	      {
404
		did_split = true;
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
		for (; bsi != bdd_map.end(); ++bsi)
		  {
		    hash_set* set = bsi->second;
		    // Free the number associated to these states.
		    unsigned num = state_set_map[*set->begin()];
		    assert(used_var.find(num) != used_var.end());
		    unsigned left = (used_var[num] -= set->size());
		    // Make sure LEFT does not become negative (hence bigger
		    // than SIZE when read as unsigned)
		    assert(left < size);
		    if (left == 0)
		      {
			used_var.erase(num);
			free_var.insert(num);
		      }
		    // Pick a free number
		    assert(!free_var.empty());
		    num = *free_var.begin();
		    free_var.erase(free_var.begin());
		    used_var[num] = set->size();
		    for (hash_set::iterator hit = set->begin();
			 hit != set->end(); ++hit)
		      state_set_map[*hit] = num;
		    // Trivial sets can't be splitted any further.
		    if (set->size() == 1)
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " is minimal" << std::endl;
			done.push_back(set);
		      }
		    else
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " should be processed further" << std::endl;
			next_run.push_back(set);
		      }
		  }
	      }
	    delete cur;
	  }
	if (did_split)
	  trace << "splitting did occur during this pass." << std::endl;
	else
	  trace << "splitting did not occur during this pass." << std::endl;
	std::swap(cur_run, next_run);
450
      }
451
452
453
454
455
456

    done.splice(done.end(), cur_run);

#ifdef TRACE
    trace << "Final partition: ";
    for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
457
      trace << format_hash_set(*i, det_a) << ' ';
458
459
    trace << std::endl;
#endif
Felix Abecassis's avatar
Felix Abecassis committed
460
461

    // Build the result.
462
    auto res = build_result(det_a, done, final_copy);
Felix Abecassis's avatar
Felix Abecassis committed
463
464
465
466

    // Free all the allocated memory.
    delete final_copy;
    hash_map::iterator hit;
467
468
469
    for (hit = state_set_map.begin(); hit != state_set_map.end();)
      {
	hash_map::iterator old = hit++;
470
	old->first->destroy();
471
      }
Felix Abecassis's avatar
Felix Abecassis committed
472
473
474
475
    std::list<hash_set*>::iterator it;
    for (it = done.begin(); it != done.end(); ++it)
      delete *it;

476
477
    return res;
  }
478

479

480
  tgba_digraph_ptr minimize_monitor(const const_tgba_digraph_ptr& a)
481
482
  {
    hash_set* final = new hash_set;
483
    hash_set* non_final = new hash_set;
484
    tgba_digraph_ptr det_a;
485
486
487
488
489

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);
    }
490
491

    // non_final contain all states.
492
    // final is empty: there is no acceptance condition
493
    build_state_set(det_a, non_final);
494
495
496
    auto res = minimize_dfa(det_a, final, non_final);
    res->prop_deterministic();
    res->prop_inherently_weak();
497
    res->prop_state_based_acc();
498
    return res;
499
500
  }

501
  tgba_digraph_ptr minimize_wdba(const const_tgba_digraph_ptr& a)
502
503
  {
    hash_set* final = new hash_set;
504
505
    hash_set* non_final = new hash_set;

506
    tgba_digraph_ptr det_a;
507
508
509
510
511

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);

512
513
514
515
516
      // For each SCC of the deterministic automaton, determine if it
      // is accepting or not.

      // This corresponds to the algorithm in Fig. 1 of "Efficient
      // minimization of deterministic weak omega-automata" written by
517
      // Christof Löding and published in Information Processing
518
519
520
521
522
      // Letters 79 (2001) pp 105--109.

      // We also keep track of whether an SCC is useless
      // (i.e., it is not the start of any accepting word).

523
      scc_info sm(det_a);
524
      unsigned scc_count = sm.scc_count();
525
526
      // SCC that have been marked as useless.
      std::vector<bool> useless(scc_count);
527
528
529
530
531
532
533
      // The "color".  Even number correspond to
      // accepting SCCs.
      std::vector<unsigned> d(scc_count);

      // An even number larger than scc_count.
      unsigned k = (scc_count | 1) + 1;

534
      // SCC are numbered in topological order
535
      // (but in the reverse order as Löding's)
536
      for (unsigned m = 0; m < scc_count; ++m)
537
	{
538
	  bool is_useless = true;
539
540
	  bool transient = sm.is_trivial(m);
	  auto& succ = sm.succ(m);
541

542
	  if (transient && succ.empty())
543
	    {
544
545
546
547
548
549
550
551
552
553
	      // A trivial SCC without successor is useless.
	      useless[m] = true;
	      d[m] = k - 1;
	      continue;
	    }

	  // Compute the minimum color l of the successors.
	  // Also SCCs are useless if all their successor are
	  // useless.
	  unsigned l = k;
554
	  for (auto& j: succ)
555
	    {
556
557
	      is_useless &= useless[j.dst];
	      unsigned dj = d[j.dst];
558
559
560
561
562
563
564
	      if (dj < l)
		l = dj;
	    }

	  if (transient)
	    {
	      d[m] = l;
565
566
567
568
	    }
	  else
	    {
	      // Regular SCCs are accepting if any of their loop
569
570
	      // corresponds to an accepted word in the original
	      // automaton.
571
	      if (wdba_scc_is_accepting(det_a, m, a, sm, pm))
572
573
		{
		  is_useless = false;
574
		  d[m] = l & ~1; // largest even number inferior or equal
575
576
577
		}
	      else
		{
578
		  d[m] = (l - 1) | 1; // largest odd number inferior or equal
579
		}
580
	    }
581

582
	  useless[m] = is_useless;
583

584
585
	  if (!is_useless)
	    {
586
	      hash_set* dest_set = (d[m] & 1) ? non_final : final;
587
588
	      for (auto s: sm.states_of(m))
		dest_set->insert(det_a->state_from_number(s));
589
	    }
590
591
592
	}
    }

593
594
595
596
    auto res = minimize_dfa(det_a, final, non_final);
    res->prop_deterministic();
    res->prop_inherently_weak();
    return res;
597
598
  }

599
600
601
602
  tgba_digraph_ptr
  minimize_obligation(const const_tgba_digraph_ptr& aut_f,
		      const ltl::formula* f,
		      const_tgba_digraph_ptr aut_neg_f,
603
		      bool reject_bigger)
604
  {
605
    auto min_aut_f = minimize_wdba(aut_f);
606

607
608
609
    if (reject_bigger)
      {
	// Abort if min_aut_f has more states than aut_f.
610
	unsigned orig_states = aut_f->num_states();
611
	if (orig_states < min_aut_f->num_states())
612
	  return std::const_pointer_cast<tgba_digraph>(aut_f);
613
614
      }

615
616
617
618
619
    // If the input automaton was already weak and deterministic, the
    // output is necessary correct.
    if (aut_f->is_inherently_weak() && aut_f->is_deterministic())
      return min_aut_f;

620
621
622
623
624
    // if f is a syntactic obligation formula, the WDBA minimization
    // must be correct.
    if (f && f->is_syntactic_obligation())
      return min_aut_f;

625
    // If aut_f is a guarantee automaton, the WDBA minimization must be
626
    // correct.
627
    if (is_guarantee_automaton(aut_f))
628
      return min_aut_f;
629
630
631
632

    // Build negation automaton if not supplied.
    if (!aut_neg_f)
      {
633
634
635
636
637
638
639
640
641
	if (f)
	  {
	    // If we know the formula, simply build the automaton for
	    // its negation.
	    const ltl::formula* neg_f =
	      ltl::unop::instance(ltl::unop::Not, f->clone());
	    aut_neg_f = ltl_to_tgba_fm(neg_f, aut_f->get_dict());
	    neg_f->destroy();
	    // Remove useless SCCs.
642
	    aut_neg_f = scc_filter(aut_neg_f, true);
643
644
645
646
647
	  }
	else if (is_deterministic(aut_f))
	  {
	    // If the automaton is deterministic, complementing is
	    // easy.
648
	    aut_neg_f = dtgba_complement(aut_f);
649
650
651
652
	  }
	else
	  {
	    // Otherwise, we cannot check if the minimization is safe.
653
	    return nullptr;
654
	  }
655
656
      }

657
    // If the negation is a guarantee automaton, then the
658
    // minimization is correct.
659
    if (is_guarantee_automaton(aut_neg_f))
660
661
662
663
664
665
      {
	return min_aut_f;
      }

    bool ok = false;

666
    if (product(min_aut_f, aut_neg_f)->is_empty())
667
      {
668
	// Complement the minimized WDBA.
669
670
	assert(min_aut_f->is_inherently_weak());
	auto neg_min_aut_f = dtgba_complement(min_aut_f);
671
672
673
674
	if (product(aut_f, neg_min_aut_f)->is_empty())
	  // Finally, we are now sure that it was safe
	  // to minimize the automaton.
	  ok = true;
675
676
677
678
      }

    if (ok)
      return min_aut_f;
679
    return std::const_pointer_cast<tgba_digraph>(aut_f);
680
  }
681
}