ltl2tgba_fm.cc 44.5 KB
Newer Older
1
2
3
// Copyright (C) 2008, 2009, 2010 Laboratoire de Recherche et
// Dveloppement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire
4
5
// d'Informatique de Paris 6 (LIP6), dpartement Systmes Rpartis
// Coopratifs (SRC), Universit Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

24
#include "misc/hash.hh"
25
#include "misc/bddalloc.hh"
26
#include "misc/bddlt.hh"
27
#include "misc/minato.hh"
28
29
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
30
31
32
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/tostring.hh"
33
#include "ltlvisit/postfix.hh"
34
#include "ltlvisit/apcollect.hh"
35
36
#include "ltlvisit/mark.hh"
#include "ltlvisit/tostring.hh"
37
#include <cassert>
38
#include <memory>
39
#include "ltl2tgba_fm.hh"
40
#include "ltlvisit/contain.hh"
41
42
#include "ltlvisit/consterm.hh"
#include "tgba/bddprint.hh"
43
44
45
46
47
48
49
50

namespace spot
{
  using namespace ltl;

  namespace
  {

51
52
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
53
54
55
56
57
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
58
    class translate_dict
59
60
61
    {
    public:

62
63
      translate_dict(bdd_dict* dict)
	: dict(dict),
64
65
66
67
68
69
70
71
72
73
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
74
	  i->first->destroy();
75
	dict->unregister_all_my_variables(this);
76
77
      }

78
79
      bdd_dict* dict;

80
81
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
82
83
84
85
86
87
88
89
90

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
91
      register_proposition(const formula* f)
92
      {
93
	int num = dict->register_proposition(f, this);
94
95
96
97
98
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
99
      register_a_variable(const formula* f)
100
      {
101
	int num = dict->register_acceptance_variable(f, this);
102
103
104
105
106
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
107
      register_next_variable(const formula* f)
108
109
110
111
112
113
114
115
116
117
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
118
	    f = f->clone();
119
	    num = dict->register_anonymous_variables(1, this);
120
121
122
123
124
125
126
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
	return os;
      }

142
      formula*
143
144
145
146
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
147
	  return isi->second->clone();
148
149
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
150
	  return isi->second->clone();
151
152
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
153
	  return isi->second->clone();
154
	assert(0);
155
156
157
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
158
159
      }

160
      formula*
161
      conj_bdd_to_formula(bdd b, multop::type op = multop::And) const
162
163
      {
	if (b == bddfalse)
164
165
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
166
167
168
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
169
	    formula* res = var_to_formula(var);
170
171
172
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
173
		res = unop::instance(unop::Not, res);
174
175
176
177
		b = bdd_low(b);
	      }
	    else
	      {
178
		assert(bdd_low(b) == bddfalse);
179
180
181
182
183
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
184
	return multop::instance(op, v);
185
186
      }

187
      formula*
188
      bdd_to_formula(bdd f)
189
      {
190
	if (f == bddfalse)
191
	  return constant::false_instance();
192

193
194
195
196
197
198
199
200
201
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
202
203

      void
204
      conj_bdd_to_acc(tgba_explicit_formula* a, bdd b,
Pierre PARUTTO's avatar
Pierre PARUTTO committed
205
		      state_explicit_formula::transition* t)
206
207
208
209
210
211
212
213
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
214
		// Simply ignore negated acceptance variables.
215
216
217
218
		b = bdd_low(b);
	      }
	    else
	      {
219
		formula* ac = var_to_formula(var);
220

221
		if (!a->has_acceptance_condition(ac))
222
		  a->declare_acceptance_condition(ac->clone());
223
		a->add_acceptance_condition(t, ac);
224
225
226
227
228
229
230
231
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


232
233
234
235
236
237
238
239
240
241
242
    // Debugging function.
    std::ostream&
    trace_ltl_bdd(const translate_dict& d, bdd f)
    {
      minato_isop isop(f);
      bdd cube;
      while ((cube = isop.next()) != bddfalse)
	{
	  bdd label = bdd_exist(cube, d.next_set);
	  bdd dest_bdd = bdd_existcomp(cube, d.next_set);
	  const formula* dest = d.conj_bdd_to_formula(dest_bdd);
243
244
245
246
	  bdd_print_set(std::cerr, d.dict, label) << " => ";
	  bdd_print_set(std::cerr, d.dict, dest_bdd) << " = "
						     << to_string(dest)
						     << std::endl;
247
248
249
250
251
252
	  dest->destroy();
	}
      return std::cerr;
    }


253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };

296
297
298
299
    // Rewrite rule for rational operators.
    class ratexp_trad_visitor: public const_visitor
    {
    public:
300
301
      ratexp_trad_visitor(translate_dict& dict, formula* to_concat = 0)
	: dict_(dict), to_concat_(to_concat)
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
      {
      }

      virtual
      ~ratexp_trad_visitor()
      {
	if (to_concat_)
	  to_concat_->destroy();
      }

      bdd
      result() const
      {
	return res_;
      }

      bdd next_to_concat()
      {
	if (!to_concat_)
	  to_concat_ = constant::empty_word_instance();
	int x = dict_.register_next_variable(to_concat_);
	return bdd_ithvar(x);
      }

      bdd now_to_concat()
      {
328
329
330
	if (to_concat_ && to_concat_ != constant::empty_word_instance())
	  return recurse(to_concat_);

331
	return bddfalse;
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = (bdd_ithvar(dict_.register_proposition(node))
		& next_to_concat());
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = next_to_concat();
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  case constant::EmptyWord:
	    res_ = now_to_concat();
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	  case unop::G:
	  case unop::X:
	  case unop::Finish:
369
370
	  case unop::Closure:
	  case unop::NegClosure:
371
372
	    assert(!"not a rational operator");
	    return;
373
374
375
376
377
378
379
380
381
382
	  case unop::Not:
	    {
	      // Not can only appear in front of constants or atomic
	      // propositions.
	      const formula* f = node->child();
	      assert(dynamic_cast<const atomic_prop*>(f)
		     || dynamic_cast<const constant*>(f));
	      res_ = !recurse(f) & next_to_concat();
	      return;
	    }
383
384
385
386
	  }
	/* Unreachable code.  */
	assert(0);
      }
387

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
      void
      visit(const bunop* bo)
      {
	formula* f;
	unsigned min = bo->min();
	unsigned max = bo->max();
	unsigned min2 = (min == 0) ? 0 : (min - 1);
	unsigned max2 =
	  (max == bunop::unbounded) ? bunop::unbounded : (max - 1);

	bunop::type op = bo->op();
	switch (op)
	  {
	  case bunop::Star:
	    f = bunop::instance(op, bo->child()->clone(), min2, max2);

	    if (to_concat_)
	      f = multop::instance(multop::Concat, f, to_concat_->clone());

	    res_ = recurse(bo->child(), f);
	    if (min == 0)
	      res_ |= now_to_concat();
	    return;
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const automatop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const multop* node)
      {
431
432
	multop::type op = node->op();
	switch (op)
433
	  {
434
	  case multop::AndNLM:
435
436
437
	  case multop::And:
	    {
	      unsigned s = node->size();
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

	      if (op == multop::AndNLM)
		{
		  multop::vec* final = new multop::vec;
		  multop::vec* non_final = new multop::vec;

		  for (unsigned n = 0; n < s; ++n)
		    {
		      const formula* f = node->nth(n);
		      if (constant_term_as_bool(f))
			final->push_back(f->clone());
		      else
			non_final->push_back(f->clone());
		    }

		  if (non_final->empty())
		    {
		      delete non_final;
		      // (a* & b*);c = (a*|b*);c
		      formula* f = multop::instance(multop::Or, final);
		      res_ = recurse_and_concat(f);
		      f->destroy();
		      break;
		    }
		  if (!final->empty())
		    {
		      // let F_i be final formulae
		      //     N_i be non final formula
		      // (F_1 & ... & F_n & N_1 & ... & N_m)
		      // =   (F_1 | ... | F_n);[*] && (N_1 & ... & N_m)
		      //   | (F_1 | ... | F_n) && (N_1 & ... & N_m);[*]
		      formula* f = multop::instance(multop::Or, final);
		      formula* n = multop::instance(multop::AndNLM, non_final);
471
472
		      formula* t = bunop::instance(bunop::Star,
						   constant::true_instance());
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
		      formula* ft = multop::instance(multop::Concat,
						     f->clone(), t->clone());
		      formula* nt = multop::instance(multop::Concat,
						     n->clone(), t);
		      formula* ftn = multop::instance(multop::And, ft, n);
		      formula* fnt = multop::instance(multop::And, f, nt);
		      formula* all = multop::instance(multop::Or, ftn, fnt);
		      res_ = recurse_and_concat(all);
		      all->destroy();
		      break;
		    }
		  // No final formula.
		  // Apply same rule as &&, until we reach a point where
		  // we have final formulae.
		  delete final;
		  for (unsigned n = 0; n < s; ++n)
		    (*non_final)[n]->destroy();
		  delete non_final;
		}

	      res_ = bddtrue;
494
	      for (unsigned n = 0; n < s; ++n)
495
496
497
498
499
		{
		  bdd res = recurse(node->nth(n));
		  // trace_ltl_bdd(dict_, res);
		  res_ &= res;
		}
500
501
502
503
504
505

	      //std::cerr << "Pre-Concat:" << std::endl;
	      //trace_ltl_bdd(dict_, res_);

	      if (to_concat_)
		{
506
		  // If we have translated (a* && b*) in (a* && b*);c, we
507
508
509
510
511
512
513
514
515
		  // have to append ";c" to all destinations.

		  minato_isop isop(res_);
		  bdd cube;
		  res_ = bddfalse;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
516
517
		      formula* dest =
			dict_.conj_bdd_to_formula(dest_bdd, op);
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
		      formula* dest2;
		      int x;
		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & next_to_concat();
			}
		      else
			{
			  dest2 = multop::instance(multop::Concat, dest,
						   to_concat_->clone());
			  if (dest2 != constant::false_instance())
			    {
			      x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(node))
			    res_ |= label & next_to_concat();
			}
		    }
		}
539
540
	      if (constant_term_as_bool(node))
		res_ |= now_to_concat();
541
542
543
544
545
546
547

	      break;
	    }
	  case multop::Or:
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
548
549
	      for (unsigned n = 0; n < s; ++n)
		res_ |= recurse_and_concat(node->nth(n));
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
	      break;
	    }
	  case multop::Concat:
	    {
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      if (to_concat_)
		v->push_back(to_concat_->clone());
	      res_ = recurse(node->nth(0),
			     multop::instance(multop::Concat, v));
	      break;
	    }
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
	  case multop::Fusion:
	    {
	      assert(node->size() >= 2);

	      // the head
	      bdd res = recurse(node->nth(0));

	      // the tail
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s - 1);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      formula* tail = multop::instance(multop::Fusion, v);
	      bdd tail_bdd;
	      bool tail_computed = false;

	      //trace_ltl_bdd(dict_, res);

	      minato_isop isop(res);
	      bdd cube;
	      res_ = bddfalse;
	      while ((cube = isop.next()) != bddfalse)
		{
		  bdd label = bdd_exist(cube, dict_.next_set);
		  bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		  formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		  if (constant_term_as_bool(dest))
		    {
		      // The destination is a final state.  Make sure we
		      // can also exit if tail is satisfied.
		      if (!tail_computed)
			{
599
			  tail_bdd = recurse_and_concat(tail);
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
			  tail_computed = true;
			}
		      res_ |= label & tail_bdd;
		    }

		  if (dynamic_cast<constant*>(dest) == 0)
		    {
		      // If the destination is not a constant, it
		      // means it can have successors.  Fusion the
		      // tail and append anything to concatenate.
		      formula* dest2 = multop::instance(multop::Fusion, dest,
							tail->clone());
		      if (to_concat_)
			 dest2 = multop::instance(multop::Concat, dest2,
						 to_concat_->clone());
		      if (dest2 != constant::false_instance())
			{
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}

	      tail->destroy();
	      break;
	    }
627
628
629
630
631
632
	  }
      }

      bdd
      recurse(const formula* f, formula* to_concat = 0)
      {
633
	ratexp_trad_visitor v(dict_, to_concat);
634
635
636
637
	f->accept(v);
	return v.result();
      }

638
639
640
641
642
      bdd
      recurse_and_concat(const formula* f)
      {
	return recurse(f, to_concat_ ? to_concat_->clone() : 0);
      }
643
644
645
646
647
648
649

    private:
      translate_dict& dict_;
      bdd res_;
      formula* to_concat_;
    };

650

651
    // The rewrite rules used here are adapted from Jean-Michel
652
    // Couvreur's FM paper, augmented to support rational operators.
653
654
655
    class ltl_trad_visitor: public const_visitor
    {
    public:
656
657
658
659
      ltl_trad_visitor(translate_dict& dict, bool mark_all = false,
		       bool exprop = false)
	: dict_(dict), rat_seen_(false), has_marked_(false),
	  mark_all_(mark_all), exprop_(exprop)
660
661
662
663
664
665
666
667
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

668
669
670
671
672
673
674
675
      void
      reset(bool mark_all)
      {
	rat_seen_ = false;
	has_marked_ = false;
	mark_all_ = mark_all;
      }

676
677
      bdd
      result() const
678
679
680
681
      {
	return res_;
      }

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
      const translate_dict&
      get_dict() const
      {
	return dict_;
      }

      bool
      has_rational() const
      {
	return rat_seen_;
      }

      bool
      has_marked() const
      {
	return has_marked_;
      }

700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
717
	  case constant::EmptyWord:
718
719
	    assert(!"Not an LTL operator");
	    return;
720
721
722
723
724
725
726
727
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
728
729
730
	unop::type op = node->op();

	switch (op)
731
732
733
734
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
735
736
737
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
738
739
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
740
	      break;
741
742
743
	    }
	  case unop::G:
	    {
744
745
746
747
748
749
750
751
752
753
754
755
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
756
	      const formula* child = node->child();
757
	      int x = dict_.register_next_variable(node);
758
759
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
760
	      break;
761
762
763
	    }
	  case unop::Not:
	    {
764
	      // r(!y) = !r(y)
765
	      res_ = bdd_not(recurse(node->child()));
766
	      break;
767
768
769
	    }
	  case unop::X:
	    {
770
	      // r(Xy) = Next[y]
771
772
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
773
	      break;
774
	    }
775
776
777
	  case unop::Closure:
	    {
	      rat_seen_ = true;
778
779
780
781
782
783
784
	      if (constant_term_as_bool(node->child()))
		{
		  res_ = bddtrue;
		  return;
		}

	      ratexp_trad_visitor v(dict_);
785
786
787
788
	      node->child()->accept(v);
	      bdd f1 = v.result();
	      res_ = bddfalse;

789

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
	      if (exprop_)
		{
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
		    {
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		      all_props -= label;

		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));

		      const formula* dest2;
		      if (constant_term_as_bool(dest))
			{
			  dest->destroy();
			  res_ |= label;
			}
		      else
			{
			  dest2 = unop::instance(op, dest);
			  if (dest2 == constant::false_instance())
			    continue;
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		      const formula* dest2;
		      if (constant_term_as_bool(dest))
			{
			  dest->destroy();
			  res_ |= label;
			}
		      else
			{
			  dest2 = unop::instance(op, dest);
			  if (dest2 == constant::false_instance())
			    continue;
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}
	    }
	    break;

	  case unop::NegClosure:
	    {
	      rat_seen_ = true;
	      has_marked_ = true;
854
855
856
857
858
859
860
861

	      if (constant_term_as_bool(node->child()))
		{
		  res_ = bddfalse;
		  return;
		}

	      ratexp_trad_visitor v(dict_);
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
	      node->child()->accept(v);
	      bdd f1 = v.result();

	      // trace_ltl_bdd(dict_, f1);

	      bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
	      bdd all_props = bdd_existcomp(f1, dict_.var_set);

	      res_ = !all_props &
		// stick X(1) to preserve determinism.
		bdd_ithvar(dict_.register_next_variable
			   (constant::true_instance()));

	      while (all_props != bddfalse)
		{
		  bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		  all_props -= label;

		  formula* dest =
		    dict_.bdd_to_formula(bdd_exist(f1 & label,
						   dict_.var_set));

		  // !{ Exp } is false if Exp accepts the empty word.
		  if (constant_term_as_bool(dest))
		    {
		      dest->destroy();
		      continue;
		    }

		  const formula* dest2 = unop::instance(op, dest);

		  if (dest == constant::false_instance())
		    continue;

		  int x = dict_.register_next_variable(dest2);
		  dest2->destroy();
		  res_ |= label & bdd_ithvar(x);
		}
	    }
	    break;

903
904
	  case unop::Finish:
	    assert(!"unsupported operator");
905
	    break;
906
907
908
	  }
      }

909
910
911
912
913
914
      void
      visit(const bunop*)
      {
	assert(!"Not an LTL operator");
      }

915
916
917
      void
      visit(const binop* node)
      {
918
	binop::type op = node->op();
919

920
	switch (op)
921
	  {
922
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
923
	  case binop::Xor:
924
925
926
927
928
929
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_xor);
	      return;
	    }
930
	  case binop::Implies:
931
932
933
934
935
936
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_imp);
	      return;
	    }
937
	  case binop::Equiv:
938
939
940
941
942
943
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_biimp);
	      return;
	    }
944
945
	  case binop::U:
	    {
946
947
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
948
949
950
951
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
952
	      break;
953
	    }
954
955
	  case binop::W:
	    {
956
957
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
958
959
960
	      // r(f1 W f2) = r(f2) + r(f1)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (f1 & bdd_ithvar(x));
961
	      break;
962
	    }
963
964
	  case binop::R:
	    {
965
966
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
967
968
969
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
970
	      break;
971
	    }
972
973
	  case binop::M:
	    {
974
975
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
976
977
978
979
	      // r(f1 M f2) = r(f1)r(f2) + a(f1)r(f2)r(X(f1 M f2))
	      int a = dict_.register_a_variable(node->first());
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (bdd_ithvar(a) & f2 & bdd_ithvar(x));
980
	      break;
981
	    }
982
983
984
	  case binop::EConcatMarked:
	    has_marked_ = true;
	    /* fall through */
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
985
	  case binop::EConcat:
986
987
	    rat_seen_ = true;
	    {
988
989
	      // Recognize f2 on transitions going to destinations
	      // that accept the empty word.
990
	      bdd f2 = recurse(node->second());
991
	      ratexp_trad_visitor v(dict_);
992
993
	      node->first()->accept(v);
	      bdd f1 = v.result();
994
	      res_ = bddfalse;
995
996
997
998
999
1000
1001

	      if (mark_all_)
		{
		  op = binop::EConcatMarked;
		  has_marked_ = true;
		}

1002
	      if (exprop_)
1003
		{
1004
1005
1006
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
1007
		    {
1008
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
1009
1010
1011
1012
1013
1014
1015
1016
1017
		      all_props -= label;

		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));

		      const formula* dest2 =
			binop::instance(op, dest, node->second()->clone());

1018
1019
		      if (dest2 != constant::false_instance())
			{
1020
			  int x = dict_.register_next_variable(dest2);
1021
1022
1023
1024
1025
1026
1027
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		      if (constant_term_as_bool(dest))
			res_ |= label & f2;
		    }
		}
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & f2;
			}
		      else
			{
			  formula* dest2 = binop::instance(op, dest,
						  node->second()->clone());
			  if (dest2 != constant::false_instance())
			    {
			      int x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(dest))
			    res_ |= label & f2;
			}
		    }
		}
1057
1058
1059
1060
1061
	    }
	    break;

	  case binop::UConcat:
	    {
1062
1063
1064
	      // Transitions going to destinations accepting the empty
	      // word should recognize f2, and the automaton for f1
	      // should be understood as universal.
1065
	      bdd f2 = recurse(node->second());
1066
	      ratexp_trad_visitor v(dict_);
1067
1068
1069
	      node->first()->accept(v);
	      bdd f1 = v.result();
	      res_ = bddtrue;
1070

1071
1072
1073
	      bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
	      bdd all_props = bdd_existcomp(f1, dict_.var_set);
	      while (all_props != bddfalse)
1074
1075
		{

1076
1077
1078
1079
		  bdd one_prop_set = bddtrue;
		  if (exprop_)
		    one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
		  all_props -= one_prop_set;
1080

1081
		  minato_isop isop(f1 & one_prop_set);
1082
1083
1084
1085
1086
1087
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
1088
1089
		      formula* dest2 =
			binop::instance(op, dest, node->second()->clone());
1090

1091
1092
		      bdd udest =
			bdd_ithvar(dict_.register_next_variable(dest2));
1093
1094
1095
1096
1097
1098

		      if (constant_term_as_bool(dest))
			udest &= f2;

		      dest2->destroy();

1099
		      res_ &= bdd_apply(label, udest, bddop_imp);
1100
		    }
1101
1102
		}
	    }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1103
	    break;
1104
1105
1106
	  }
      }

1107
1108
1109
1110
1111
1112
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

1113
1114
1115
1116
1117
1118
      void
      visit(const multop* node)
      {
	switch (node->op())
	  {
	  case multop::And:
1119
1120
1121
1122
1123
1124
	    {
	      res_ = bddtrue;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		{
		  bdd res = recurse(node->nth(n));
1125
1126
1127
		  //std::cerr << "== in And (" << to_string(node->nth(n))
		  // << ")" << std::endl;
		  // trace_ltl_bdd(dict_, res);
1128
1129
		  res_ &= res;
		}
1130
1131
	      //std::cerr << "=== And final" << std::endl;
	      // trace_ltl_bdd(dict_, res_);
1132
1133
	      break;
	    }
1134
	  case multop::Or:
1135
1136
1137
1138
1139
1140
1141
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		res_ |= recurse(node->nth(n));
	      break;
	    }
1142
	  case multop::Concat:
1143
	  case multop::Fusion:
1144
	  case multop::AndNLM:
1145
1146
	    assert(!"Not an LTL operator");
	    break;
1147
	  }
1148

1149
1150
1151
1152
1153
      }

      bdd
      recurse(const formula* f)
      {
1154
	ltl_trad_visitor v(dict_, mark_all_, exprop_);
1155
	f->accept(v);
1156
1157
	rat_seen_ |= v.has_rational();
	has_marked_ |= v.has_marked();
1158
1159
1160
1161
1162
1163
1164
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
1165
1166
1167
      bool rat_seen_;
      bool has_marked_;
      bool mark_all_;
1168
      bool exprop_;
1169
1170
    };

1171

1172
1173
    // Check whether a formula has a R, W, or G operator at its
    // top-level (preceding logical operators do not count).
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
1224
	  case binop::M:
1225
1226
	    return;
	  case binop::R:
1227
	  case binop::W:
1228
1229
	    res_ = true;
	    return;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1230
1231
	  case binop::UConcat:
	  case binop::EConcat:
1232
	  case binop::EConcatMarked:
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1233
	    node->second()->accept(*this);
1234
	    // FIXME: we might need to add Acc[1]
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1235
	    return;
1236
1237
1238
1239
1240
	  }
	/* Unreachable code.  */
	assert(0);
      }

1241
1242
1243
1244
1245
1246
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

1247
1248
1249
1250
1251
1252
      void
      visit(const bunop*)
      {
	assert(!"unsupported operator");
      }

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
1275
1276
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
1277
1278
1279
1280
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
1281
	pfl_[f] = rel;
1282
1283
1284
1285
	return rel;
      }

    private:
1286
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
1287
      pfl_map pfl_;
1288
1289
    };

1290
1291
1292
    class formula_canonizer
    {
    public:
1293
      formula_canonizer(translate_dict& d,
1294
1295
			bool fair_loop_approx, bdd all_promises, bool exprop)
	: v_(d, false, exprop),
1296
	  fair_loop_approx_(fair_loop_approx),
1297
1298
	  all_promises_(all_promises),
	  d_(d)
1299
1300
1301
1302
1303
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
1304

1305
1306
      ~formula_canonizer()
      {
1307
	while (!f2b_.empty())
1308
	  {
1309
1310
1311
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
1312
	    f->destroy();
1313
	  }
1314
1315
      }

1316
1317
1318
1319
1320
1321
1322
1323
      struct translated
      {
	bdd symbolic;
	bool has_rational:1;
	bool has_marked:1;
      };

      const translated&
1324
      translate(const formula* f, bool* new_flag = 0)
1325
1326
1327
1328
1329
1330
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

1331
1332
1333
	if (new_flag)
	  *new_flag = true;

1334
	// Perform the actual translation.
1335
	v_.reset(!has_mark(f));
1336
	f->accept(v_);
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
	translated t;
	t.symbolic = v_.result();
	t.has_rational = v_.has_rational();
	t.has_marked = v_.has_marked();

//	std::cerr << "-----" << std::endl;
//	std::cerr << "Formula: " << to_string(f) << std::endl;
//	std::cerr << "Rational: " << t.has_rational << std::endl;
//	std::cerr << "Marked: " << t.has_marked << std::endl;
//	std::cerr << "Mark all: " << !has_mark(f) << std::endl;
//	std::cerr << "Transitions:" << std::endl;
//	trace_ltl_bdd(v_.get_dict(), t.symbolic);

	if (t.has_rational)
	  {
	    bdd res = bddfalse;

	    minato_isop isop(t.symbolic);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
	      {
		bdd label = bdd_exist(cube, d_.next_set);
		bdd dest_bdd = bdd_existcomp(cube, d_.next_set);
		formula* dest =
		  d_.conj_bdd_to_formula(dest_bdd);

		// Handle a Miyano-Hayashi style unrolling for
		// rational operators.  Marked nodes correspond to
		// subformulae in the Miyano-Hayashi set.
		if (simplify_mark(dest))
		  {
		    // Make the promise that we will exit marked sets.
		    int a =
		      d_.register_a_variable(constant::true_instance());
		    label &= bdd_ithvar(a);
		  }
		else
		  {
		    // We have left marked operators, but still
		    // have other rational operator to check.
		    // Start a new marked cycle.
		    formula* dest2 = mark_concat_ops(dest);
		    dest->destroy();
		    dest = dest2;
		  }
		// Note that simplify_mark may have changed dest.
		dest_bdd = bdd_ithvar(d_.register_next_variable(dest));
		dest->destroy();
		res |= label & dest_bdd;
	      }
	    t.symbolic = res;
//	    std::cerr << "Marking rewriting:" << std::endl;
//	    trace_ltl_bdd(v_.get_dict(), t.symbolic);
	  }
1391
1392
1393
1394
1395
1396
1397
1398
1399

	// Apply the fair-loop approximation if requested.
	if (fair_loop_approx_)
	  {
	    // If the source cannot possibly be part of a fair
	    // loop, make all possible promises.
	    if (fair_loop_approx_
		&& f != constant::true_instance()
		&& !pflc_.check(f))
1400
	      t.symbolic &= all_promises_;
1401
1402
	  }

1403
	// Register the reverse mapping if it is not already done.
1404
1405
1406
1407
	if (b2f_.find(t.symbolic) == b2f_.end())
	  b2f_[t.symbolic] = f;

	return f2b_[f->clone()] = t;
1408
1409
1410
1411
1412
      }

      const formula*
      canonize(const formula* f)
      {
1413
	bool new_variable = false;
1414
	bdd b = translate(f, &new_variable).symbolic;
1415
1416

	bdd_to_formula_map::iterator i = b2f_.find(b);
1417
1418
	// Since we have just translated the formula, it is
	// necessarily in b2f_.
1419
1420
1421
	assert(i != b2f_.end());

	if (i->second != f)
1422
	  {
1423
	    // The translated bdd maps to an already seen formula.
1424
	    f->destroy();
1425
	    f = i->second->clone();
1426
	  }
1427
	return f;
1428
1429
      }

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;
      bdd_to_formula_map b2f_;
      // Map a representation of successors to a canonical formula.
      // We do this because many formulae (such as `aR(bRc)' and
      // `aR(bRc).(bRc)') are equivalent, and are trivially identified
      // by looking at the set of successors.
1441
      typedef std::map<const formula*, translated> formula_to_bdd_map;
1442
      formula_to_bdd_map f2b_;
1443
1444
1445
1446

      possible_fair_loop_checker pflc_;
      bool fair_loop_approx_;
      bdd all_promises_;
1447
      translate_dict& d_;
1448
1449
1450
1451
1452
    };

  }

  typedef std::map<bdd, bdd, bdd_less_than> prom_map;
1453
  typedef Sgi::hash_map<const formula*, prom_map, formula_ptr_hash> dest_map;
1454
1455
1456
1457

  static void
  fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
  {
1458
    bdd conds = bdd_existcomp(label, d.var_set);
1459
1460
    bdd promises = bdd_existcomp(label, d.a_set);

1461
1462
1463
1464
1465
1466
1467
1468
    dest_map::iterator i = dests.find(dest);
    if (i == dests.end())
      {
	dests[dest][promises] = conds;
      }
    else
      {
	i->second[promises] |= conds;
1469
	dest->destroy();
1470
1471
1472
1473
      }
  }


Pierre PARUTTO's avatar
Pierre PARUTTO committed
1474
  tgba_explicit_formula*
1475
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
1476
		 bool exprop, bool symb_merge, bool branching_postponement,
1477
		 bool fair_loop_approx, const atomic_prop_set* unobs,