twa.hh 41.7 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
3
// Copyright (C) 2009, 2011, 2013, 2014, 2015, 2016 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
Guillaume Sadegh's avatar
Guillaume Sadegh committed
4
// Copyright (C) 2003, 2004, 2005 Laboratoire d'Informatique de
5
6
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
7
8
9
10
11
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
12
// the Free Software Foundation; either version 3 of the License, or
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
13
14
15
16
17
18
19
20
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
21
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
22

23
#pragma once
24

25
26
27
#include <spot/twa/fwd.hh>
#include <spot/twa/acc.hh>
#include <spot/twa/bdddict.hh>
28
29
#include <cassert>
#include <memory>
30
31
#include <unordered_map>
#include <functional>
32
#include <array>
33
#include <vector>
34
35
36
#include <spot/misc/casts.hh>
#include <spot/misc/hash.hh>
#include <spot/tl/formula.hh>
37
#include <spot/misc/trival.hh>
38
39
40

namespace spot
{
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
41
  /// \ingroup twa_essentials
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  /// \brief Abstract class for states.
  class SPOT_API state
  {
  public:
    /// \brief Compares two states (that come from the same automaton).
    ///
    /// This method returns an integer less than, equal to, or greater
    /// than zero if \a this is found, respectively, to be less than, equal
    /// to, or greater than \a other according to some implicit total order.
    ///
    /// This method should not be called to compare states from
    /// different automata.
    ///
    /// \sa spot::state_ptr_less_than
    virtual int compare(const state* other) const = 0;

    /// \brief Hash a state.
    ///
    /// This method returns an integer that can be used as a
    /// hash value for this state.
    ///
    /// Note that the hash value is guaranteed to be unique for all
    /// equal states (in compare()'s sense) for only has long has one
    /// of these states exists.  So it's OK to use a spot::state as a
    /// key in a \c hash_map because the mere use of the state as a
    /// key in the hash will ensure the state continues to exist.
    ///
    /// However if you create the state, get its hash key, delete the
    /// state, recreate the same state, and get its hash key, you may
    /// obtain two different hash keys if the same state were not
    /// already used elsewhere.  In practice this weird situation can
    /// occur only when the state is BDD-encoded, because BDD numbers
    /// (used to build the hash value) can be reused for other
    /// formulas.  That probably doesn't matter, since the hash value
    /// is meant to be used in a \c hash_map, but it had to be noted.
    virtual size_t hash() const = 0;

    /// Duplicate a state.
    virtual state* clone() const = 0;

    /// \brief Release a state.
    ///
84
    /// Methods from the tgba or twa_succ_iterator always return a
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    /// new state that you should deallocate with this function.
    /// Before Spot 0.7, you had to "delete" your state directly.
    /// Starting with Spot 0.7, you should update your code to use
    /// this function instead. destroy() usually call delete, except
    /// in subclasses that destroy() to allow better memory management
    /// (e.g., no memory allocation for explicit automata).
    virtual void destroy() const
    {
      delete this;
    }

  protected:
    /// \brief Destructor.
    ///
    /// Note that client code should call
100
101
102
    /// \code s->destroy(); \endcode
    /// instead of
    /// \code delete s; \endcode .
103
104
105
106
107
    virtual ~state()
    {
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
108
  /// \ingroup twa_essentials
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  /// \brief Strict Weak Ordering for \c state*.
  ///
  /// This is meant to be used as a comparison functor for
  /// STL \c map whose key are of type \c state*.
  ///
  /// For instance here is how one could declare
  /// a map of \c state*.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::map<spot::state*, int, spot::state_ptr_less_than> seen;
  /// \endcode
  struct state_ptr_less_than
  {
    bool
    operator()(const state* left, const state* right) const
    {
      assert(left);
      return left->compare(right) < 0;
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
130
  /// \ingroup twa_essentials
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
  /// \brief An Equivalence Relation for \c state*.
  ///
  /// This is meant to be used as a comparison functor for
  /// an \c unordered_map whose key are of type \c state*.
  ///
  /// For instance here is how one could declare
  /// a map of \c state*.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<spot::state*, int, spot::state_ptr_hash,
  ///                                    spot::state_ptr_equal> seen;
  /// \endcode
  struct state_ptr_equal
  {
    bool
    operator()(const state* left, const state* right) const
    {
      assert(left);
      return 0 == left->compare(right);
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
153
  /// \ingroup twa_essentials
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
  /// \ingroup hash_funcs
  /// \brief Hash Function for \c state*.
  ///
  /// This is meant to be used as a hash functor for
  /// an \c unordered_map whose key are of type \c state*.
  ///
  /// For instance here is how one could declare
  /// a map of \c state*.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<spot::state*, int, spot::state_ptr_hash,
  ///                                    spot::state_ptr_equal> seen;
  /// \endcode
  struct state_ptr_hash
  {
    size_t
    operator()(const state* that) const
    {
      assert(that);
      return that->hash();
    }
  };

177
178
179
180
181
  /// \brief Unordered set of abstract states
  ///
  /// Destroying each state if needed is the user's responsibility.
  ///
  /// \see state_unicity_table
182
183
184
  typedef std::unordered_set<const state*,
			     state_ptr_hash, state_ptr_equal> state_set;

185
186
187
188
189
190
  /// \brief Unordered map of abstract states
  ///
  /// Destroying each state if needed is the user's responsibility.
  template<class val>
  using state_map = std::unordered_map<const state*, val,
				       state_ptr_hash, state_ptr_equal>;
191

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
192
  /// \ingroup twa_essentials
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  /// \brief Render state pointers unique via a hash table.
  class SPOT_API state_unicity_table
  {
    state_set m;
  public:

    /// \brief Canonicalize state pointer.
    ///
    /// If this is the first time a state is seen, this return the
    /// state pointer as-is, otherwise it frees the state and returns
    /// a point to the previously seen copy.
    ///
    /// States are owned by the table and will be freed on
    /// destruction.
    const state* operator()(const state* s)
    {
      auto p = m.insert(s);
      if (!p.second)
	s->destroy();
      return *p.first;
    }

    /// \brief Canonicalize state pointer.
    ///
    /// Same as operator(), except that a nullptr
    /// is returned if the state is not new.
    const state* is_new(const state* s)
    {
      auto p = m.insert(s);
      if (!p.second)
	{
	  s->destroy();
	  return nullptr;
	}
      return *p.first;
    }

    ~state_unicity_table()
    {
      for (state_set::iterator i = m.begin(); i != m.end();)
	{
	  // Advance the iterator before destroying its key.  This
	  // avoid issues with old g++ implementations.
	  state_set::iterator old = i++;
	  (*old)->destroy();
	}
    }

    size_t
    size()
    {
      return m.size();
    }
  };



  // Functions related to shared_ptr.
  //////////////////////////////////////////////////

  typedef std::shared_ptr<const state> shared_state;

  inline void shared_state_deleter(state* s) { s->destroy(); }

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
257
  /// \ingroup twa_essentials
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  /// \brief Strict Weak Ordering for \c shared_state
  /// (shared_ptr<const state*>).
  ///
  /// This is meant to be used as a comparison functor for
  /// STL \c map whose key are of type \c shared_state.
  ///
  /// For instance here is how one could declare
  /// a map of \c shared_state.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::map<shared_state, int, spot::state_shared_ptr_less_than> seen;
  /// \endcode
  struct state_shared_ptr_less_than
  {
    bool
    operator()(shared_state left,
               shared_state right) const
    {
      assert(left);
      return left->compare(right.get()) < 0;
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
281
  /// \ingroup twa_essentials
282
283
284
285
  /// \brief An Equivalence Relation for \c shared_state
  /// (shared_ptr<const state*>).
  ///
  /// This is meant to be used as a comparison functor for
286
  /// an \c unordered_map whose key are of type \c shared_state.
287
288
289
290
291
292
293
294
295
  ///
  /// For instance here is how one could declare
  /// a map of \c shared_state
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<shared_state, int,
  ///                      state_shared_ptr_hash,
  ///                      state_shared_ptr_equal> seen;
  /// \endcode
296
297
  ///
  /// \see shared_state_set
298
299
300
301
302
303
304
305
306
307
308
  struct state_shared_ptr_equal
  {
    bool
    operator()(shared_state left,
               shared_state right) const
    {
      assert(left);
      return 0 == left->compare(right.get());
    }
  };

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
309
  /// \ingroup twa_essentials
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
  /// \ingroup hash_funcs
  /// \brief Hash Function for \c shared_state (shared_ptr<const state*>).
  ///
  /// This is meant to be used as a hash functor for
  /// an \c unordered_map whose key are of type
  /// \c shared_state.
  ///
  /// For instance here is how one could declare
  /// a map of \c shared_state.
  /// \code
  ///   // Remember how many times each state has been visited.
  ///   std::unordered_map<shared_state, int,
  ///                      state_shared_ptr_hash,
  ///                      state_shared_ptr_equal> seen;
  /// \endcode
325
326
  ///
  /// \see shared_state_set
327
328
329
330
331
332
333
334
335
336
  struct state_shared_ptr_hash
  {
    size_t
    operator()(shared_state that) const
    {
      assert(that);
      return that->hash();
    }
  };

337
  /// Unordered set of shared states
338
339
340
341
  typedef std::unordered_set<shared_state,
			     state_shared_ptr_hash,
			     state_shared_ptr_equal> shared_state_set;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
342
  /// \ingroup twa_essentials
343
344
  /// \brief Iterate over the successors of a state.
  ///
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
  /// This class provides the basic functionality required to iterate
  /// over the set of edges leaving a given state.  Instance of
  /// twa_succ_iterator should normally not be created directly.
  /// Instead, they are created by passing a "source" state to
  /// twa::succ_iter(), which will create the instance of
  /// twa_succ_iterator to iterate over the successors of that state.
  ///
  /// This twa_succ_iterator class offers two types of services,
  /// offered by two groups of methods.  The methods first(), next(),
  /// and done() allow iteration over the set of outgoing edges.
  /// The methods cond(), acc(), dst(), allow inspecting the current
  /// edge.
  ///
  /// The twa_succ_iterator is usually subclassed so that iteration
  /// methods and accessor methods can be implemented differently in
  /// different automata.  In particular, this interface allows
  /// computing the set of successor on the fly if needed.
  ///
  /// The iterator can be used to iterate over all successors in a
  /// loop as follows:
  ///
  /// \code
  ///     for (i->first(); !i->done(); i->next())
  ///       {
  ///         // use i->cond(), i->acc(), i->dst()
  ///       }
  /// \endcode
  ///
  /// If there are n successors, there will be 1 call to first(), n
  /// calls to next() and n+1 calls to done(), so a total of 2(n+1)
  /// calls to virtual methods just to handle the iteration.  For this
  /// reason, we usually favor the following more efficient way of
  /// performing the same loop:
  ///
  /// \code
  ///     if (i->first())
  ///       do
  ///         {
  ///           // use i->cond(), i->acc(), i->dst()
  ///         }
  ///       while(i->next());
  /// \endcode
  ///
  /// This loops uses the return value of first() and next() to save
  /// n+1 calls to done().
390
  class SPOT_API twa_succ_iterator
391
392
393
  {
  public:
    virtual
394
    ~twa_succ_iterator()
395
396
397
398
    {
    }

    /// \name Iteration
399
    ///@{
400
401
402

    /// \brief Position the iterator on the first successor (if any).
    ///
403
404
    /// This method can be called several times in order to make
    /// multiple passes over successors.
405
406
407
408
409
410
    ///
    /// \warning One should always call \c done() (or better: check
    /// the return value of first()) to ensure there is a successor,
    /// even after \c first().  A common trap is to assume that there
    /// is at least one successor: this is wrong.
    ///
411
412
413
414
    /// \return true iff there is at least one successor
    ///
    /// If first() returns false, it is invalid to call next(),
    /// cond(), acc(), or dst().
415
416
417
418
419
420
421
    virtual bool first() = 0;

    /// \brief Jump to the next successor (if any).
    ///
    /// \warning Again, one should always call \c done() (or better:
    /// check the return value of next()) ensure there is a successor.
    ///
422
423
424
425
426
    /// \return true if the iterator moved to a new successor, false
    /// if the iterator could not move to a new successor.
    ///
    /// If next() returns false, it is invalid to call next() again,
    /// or to call cond(), acc() or dst().
427
428
429
430
431
432
433
    virtual bool next() = 0;

    /// \brief Check whether the iteration is finished.
    ///
    /// This function should be called after any call to \c first()
    /// or \c next() and before any enquiry about the current state.
    ///
434
    /// The typical use case of done() is in a \c for loop such as:
435
436
437
    ///
    ///     for (s->first(); !s->done(); s->next())
    ///       ...
438
439
440
441
442
443
    ///
    /// \return false iff the iterator is pointing to a successor.
    ///
    /// It is incorrect to call done() if first() hasn't been called
    /// before.  If done() returns true, it is invalid to call
    /// next(), cond(), acc(), or dst().
444
445
    virtual bool done() const = 0;

446
    ///@}
447
448

    /// \name Inspection
449
    ///@{
450

451
    /// \brief Get the destination state of the current edge.
452
    ///
453
454
455
    /// Each call to dst() (even several times on the same edge)
    /// creates a new state that has to be destroyed (see
    /// state::destroy()).  by the caller after it is no longer used.
456
    ///
457
458
459
    /// Note that the same state may occur at different points in the
    /// iteration, as different outgoing edges (usually with different
    /// labels or acceptance membership) may go to the same state.
460
    virtual const state* dst() const = 0;
461
    /// \brief Get the condition on the edge leading to this successor.
462
463
    ///
    /// This is a boolean function of atomic propositions.
464
    virtual bdd cond() const = 0;
465
466
    /// \brief Get the acceptance mark of the edge leading to this
    /// successor.
467
    virtual acc_cond::mark_t acc() const = 0;
468

469
    ///@}
470
471
472
473
  };

  namespace internal
  {
474
    /// \brief Helper structure to iterate over the successor of a
475
    /// state using the on-the-fly interface.
476
477
478
    ///
    /// This one emulates an STL-like iterator over the
    /// twa_succ_iterator interface.
479
480
481
    struct SPOT_API succ_iterator
    {
    protected:
482
      twa_succ_iterator* it_;
483
484
    public:

485
      succ_iterator(twa_succ_iterator* it):
486
487
488
489
490
491
492
493
494
495
496
497
498
499
	it_(it)
      {
      }

      bool operator==(succ_iterator o) const
      {
	return it_ == o.it_;
      }

      bool operator!=(succ_iterator o) const
      {
	return it_ != o.it_;
      }

500
      const twa_succ_iterator* operator*() const
501
502
503
504
505
506
507
508
509
510
511
      {
	return it_;
      }

      void operator++()
      {
	if (!it_->next())
	  it_ = nullptr;
      }
    };
  }
512

513
  /// \defgroup twa TωA (Transition-based ω-Automata)
514
  ///
515
  /// Spot is centered around the spot::twa type.  This type and its
516
  /// cousins are listed \ref twa_essentials "here".  This is an
517
  /// abstract interface.  Its implementations are either \ref
518
519
520
  /// twa_representation "concrete representations", or \ref
  /// twa_on_the_fly_algorithms "on-the-fly algorithms".  Other
  /// algorithms that work on spot::twa are \ref twa_algorithms
521
522
  /// "listed separately".

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
523
  /// \addtogroup twa_essentials Essential TωA types
524
  /// \ingroup twa
525

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
526
  /// \ingroup twa_essentials
527
  /// \brief A Transition-based ω-Automaton.
528
  ///
529
530
531
532
  /// The acronym TωA stands for Transition-based ω-automaton.
  /// We may write it as TwA or twa, but never as TWA as the
  /// w is just a non-utf8 replacement for ω that should not be
  /// capitalized.
533
  ///
534
535
536
537
538
539
  /// TωAs are transition-based automata, meanings that not-only do
  /// they have labels on edges, but they also have an acceptance
  /// condition defined in term of sets of transitions.  The
  /// acceptance condition can be anything supported by the HOA format
  /// (http://adl.github.io/hoaf/).  The only restriction w.r.t. the
  /// format is that this class does not support alternating automata.
540
  ///
541
  /// Previous versions of Spot supported a type of automata called
542
  /// TGBA, which are TωA in which the acceptance condition is a set
543
  /// of sets of transitions that must be visited infinitely often.
544
545
  ///
  /// In this version, TGBAs are now represented by TωAs for which
546
  ///
547
548
549
550
551
552
553
554
  ///     aut->acc().is_generalized_buchi()
  ///
  /// returns true.
  ///
  /// Browsing a TωA is usually achieved using two methods: \c
  /// get_init_state(), and succ().  The former returns the initial
  /// state while the latter allows iterating over the outgoing edges
  /// of any given state.
555
  ///
556
  /// Note that although this is a transition-based automata, we never
557
  /// represent edges in the API.  Information about edges can be
558
559
  /// obtained by querying the iterator over the successors of a
  /// state.
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
  ///
  /// The interface presented here is what we call the on-the-fly
  /// interface of automata, because the TωA class can be subclassed
  /// to implement an object that computes its successors on-the-fly.
  /// The down-side is that all these methods are virtual, so you you
  /// pay the cost of virtual calls when iterating over automata
  /// constructed on-the-fly.  Also the interface assumes that each
  /// successor state is a new object whose memory management is the
  /// responsibility of the caller, who should then call
  /// state::destroy() to release it.
  ///
  /// If you want to work with a TωA that is explicitly stored as a
  /// graph in memory, use the spot::twa_graph subclass instead.  A
  /// twa_graph object can be used as a spot::twa (using the
  /// on-the-fly interface, even though nothing needs to be
  /// constructed), but it also offers a faster interface that do not
  /// use virtual methods.
577
  class SPOT_API twa: public std::enable_shared_from_this<twa>
578
  {
579
  protected:
580
    twa(const bdd_dict_ptr& d);
581
    /// Any iterator returned via release_iter.
582
    mutable twa_succ_iterator* iter_cache_;
583
    /// BDD dictionary used by the automaton.
584
    bdd_dict_ptr dict_;
585
  public:
586
587

#ifndef SWIG
588
589
590
591
592
    /// \brief Helper class to iterate over the successor of a state
    /// using the on-the-fly interface
    ///
    /// This one emulates an STL-like container with begin()/end()
    /// methods so that it can be iterated using a ranged-for.
593
594
595
    class succ_iterable
    {
    protected:
596
      const twa* aut_;
597
      twa_succ_iterator* it_;
598
    public:
599
      succ_iterable(const twa* aut, twa_succ_iterator* it)
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
	: aut_(aut), it_(it)
      {
      }

      succ_iterable(succ_iterable&& other)
	: aut_(other.aut_), it_(other.it_)
      {
	other.it_ = nullptr;
      }

      ~succ_iterable()
      {
	if (it_)
	  aut_->release_iter(it_);
      }

      internal::succ_iterator begin()
      {
618
	return it_->first() ? it_ : nullptr;
619
620
621
622
623
624
625
626
627
      }

      internal::succ_iterator end()
      {
	return nullptr;
      }
    };
#endif

628
    virtual ~twa();
629

630
631
632
    /// \brief Get the initial state of the automaton.
    ///
    /// The state has been allocated with \c new.  It is the
633
    /// responsability of the caller to \c destroy it when no
634
    /// longer needed.
635
    virtual const state* get_init_state() const = 0;
636

637
    /// \brief Get an iterator over the successors of \a local_state.
638
639
640
641
    ///
    /// The iterator has been allocated with \c new.  It is the
    /// responsability of the caller to \c delete it when no
    /// longer needed.
642
643
    ///
    /// \see succ()
644
    virtual twa_succ_iterator*
645
    succ_iter(const state* local_state) const = 0;
646

647
#ifndef SWIG
648
649
650
    /// \brief Build an iterable over the successors of \a s.
    ///
    /// This is meant to be used as
651
652
653
654
655
656
657
658
659
660
    ///
    /// \code
    ///    for (auto i: aut->succ(s))
    ///      {
    ///        // use i->cond(), i->acc(), i->dst()
    ///      }
    /// \endcode
    ///
    /// and the above loop is in fact syntactic sugar for
    ///
661
    /// \code
662
663
664
665
666
667
668
669
    ///    twa_succ_iterator* i = aut->succ_iter(s);
    ///    if (i->first())
    ///      do
    ///        {
    ///          // use i->cond(), i->acc(), i->dst()
    ///        }
    ///      while (i->next());
    ///    aut->release_iter(i);
670
    /// \endcode
671
    succ_iterable
672
673
674
675
    succ(const state* s) const
    {
      return {this, succ_iter(s)};
    }
676
677
678
679
680
681
#endif

    /// \brief Release an iterator after usage.
    ///
    /// This iterator can then be reused by succ_iter() to avoid
    /// memory allocation.
682
    void release_iter(twa_succ_iterator* i) const
683
684
685
686
687
688
    {
      if (iter_cache_)
	delete i;
      else
	iter_cache_ = i;
    }
689
690
691
692
693
694

    /// \brief Get a formula that must hold whatever successor is taken.
    ///
    /// \return A formula which must be verified for all successors
    ///  of \a state.
    ///
695
    /// This can be as simple as \c bddtrue, or more precisely
696
697
698
699
700
701
702
703
704
    /// the disjunction of the condition of all successors.  This
    /// is used as an hint by \c succ_iter() to reduce the number
    /// of successor to compute in a product.
    ///
    /// Sub classes should implement compute_support_conditions(),
    /// this function is just a wrapper that will cache the
    /// last return value for efficiency.
    bdd support_conditions(const state* state) const;

705
706
    /// \brief Get the dictionary associated to the automaton.
    ///
707
708
709
710
711
712
713
714
715
716
717
718
719
720
    /// Automata are labeled by Boolean formulas over atomic
    /// propositions.  These Boolean formula are represented as BDDs.
    /// The dictionary allows to map BDD variables back to atomic
    /// propositions, and vice versa.
    ///
    /// Usually automata that are involved in the same computations
    /// should share their dictionaries so that operations between
    /// BDDs of the two automata work naturally.
    ///
    /// It is however possible to declare automata that use different
    /// sets of atomic propositions with different dictionaries.  That
    /// way a BDD variable associated to some atomic proposition in
    /// one automaton might be reused for another atomic proposition
    /// in the other automaton.
721
722
    bdd_dict_ptr get_dict() const
    {
723
      return dict_;
724
    }
725

726
727
728
729
730
731
732
733
734
    ///@{
    /// \brief Register an atomic proposition designated by \a ap.
    ///
    /// This is the preferred way to declare that an automaton is using
    /// a given atomic proposition.
    ///
    /// This adds the atomic proposition to the list of atomic
    /// proposition of the automaton, and also register it to the
    /// bdd_dict.
735
    ///
736
737
    /// \return The BDD variable number assigned for this atomic
    /// proposition.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
738
    int register_ap(formula ap)
739
    {
740
741
742
743
744
745
746
      int res = dict_->has_registered_proposition(ap, this);
      if (res < 0)
	{
	  aps_.push_back(ap);
	  res = dict_->register_proposition(ap, this);
	  bddaps_ &= bdd_ithvar(res);
	}
747
748
749
      return res;
    }

750
    int register_ap(std::string ap)
751
    {
752
      return register_ap(formula::ap(ap));
753
    }
754
    ///@}
755

756
    /// \brief The vector of atomic propositions registered by this
757
    /// automaton.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
758
    const std::vector<formula>&  ap() const
759
760
761
762
    {
      return aps_;
    }

763
    /// \brief The set of atomic propositions as a conjunction.
764
765
766
767
768
    bdd ap_var() const
    {
      return bddaps_;
    }

769
770
    /// \brief Format the state as a string for printing.
    ///
771
772
773
774
775
    /// Formating is the responsability of the automata that owns the
    /// state, so that state objects could be implemented as very
    /// small objects, maybe sharing data with other state objects via
    /// data structure stored in the automaton.
    virtual std::string format_state(const state* s) const = 0;
776

777
778
779
    /// \brief Return a possible annotation for the transition
    /// pointed to by the iterator.
    ///
780
781
782
783
784
    /// You may decide to use annotations when building a tgba class
    /// that represents the state space of a model, for instance to
    /// indicate how the tgba transitions relate to the original model
    /// (e.g. the annotation could be the name of a PetriNet
    /// transition, or the line number of some textual formalism).
785
    ///
786
787
788
    /// Implementing this method is optional; the default annotation
    /// is the empty string.
    ///
789
    /// This method is used for instance in replay_twa_run().
790
    ///
791
    /// \param t a non-done twa_succ_iterator for this automaton
792
    virtual std::string
793
    transition_annotation(const twa_succ_iterator* t) const;
794

795
    /// \brief Project a state on an automaton.
796
797
798
799
800
801
802
803
804
805
806
    ///
    /// This converts \a s, into that corresponding spot::state for \a
    /// t.  This is useful when you have the state of a product, and
    /// want restrict this state to a specific automata occuring in
    /// the product.
    ///
    /// It goes without saying that \a s and \a t should be compatible
    /// (i.e., \a s is a state of \a t).
    ///
    /// \return 0 if the projection fails (\a s is unrelated to \a t),
    ///    or a new \c state* (the projected state) that must be
807
    ///    destroyed by the caller.
808
    virtual state* project_state(const state* s,
809
				 const const_twa_ptr& t) const;
810

811
812
    ///@{
    /// \brief The acceptance condition of the automaton.
813
814
815
816
    const acc_cond& acc() const
    {
      return acc_;
    }
817

818
819
820
821
    acc_cond& acc()
    {
      return acc_;
    }
822
    ///@}
823

824
    /// Check whether the language of the automaton is empty.
825
826
    virtual bool is_empty() const;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
827
  private:
828
829
    acc_cond acc_;

830
831
832
833
834
835
836
837
838
839
    void set_num_sets_(unsigned num)
    {
      if (num < acc_.num_sets())
	{
	  acc_.~acc_cond();
	  new (&acc_) acc_cond;
	}
      acc_.add_sets(num - acc_.num_sets());
    }

840
  public:
841
    /// Number of acceptance sets used by the automaton.
842
843
844
845
846
    unsigned num_sets() const
    {
      return acc_.num_sets();
    }

847
    /// Acceptance formula used by the automaton.
848
    const acc_cond::acc_code& get_acceptance() const
849
850
851
    {
      return acc_.get_acceptance();
    }
852

853
854
855
856
    /// \brief Set the acceptance condition of the automaton.
    ///
    /// \param num the number of acceptance sets used
    /// \param c the acceptance formula
857
858
    void set_acceptance(unsigned num, const acc_cond::acc_code& c)
    {
859
      set_num_sets_(num);
860
861
      acc_.set_acceptance(c);
      if (num == 0)
862
	prop_state_acc(true);
863
864
    }

865
    /// Copy the acceptance condition of another TωA.
866
    void copy_acceptance_of(const const_twa_ptr& a)
867
868
869
870
    {
      acc_ = a->acc();
      unsigned num = acc_.num_sets();
      if (num == 0)
871
	prop_state_acc(true);
872
873
    }

874
    /// Copy the atomic propositions of another TωA
875
    void copy_ap_of(const const_twa_ptr& a)
876
    {
877
      for (auto f: a->ap())
878
	this->register_ap(f);
879
880
    }

881
882
883
884
885
886
887
888
889
890
891
892
    /// \brief Set generalized Büchi acceptance
    ///
    /// \param num the number of acceptance sets to used
    ///
    /// The acceptance formula of the form
    /// \code
    /// Inf(0)&Inf(1)&...&Inf(num-1)
    /// \endcode
    /// is generated.
    ///
    /// In the case where \a num is null, the state-acceptance
    /// property is automatically turned on.
893
894
895
896
897
    void set_generalized_buchi(unsigned num)
    {
      set_num_sets_(num);
      acc_.set_generalized_buchi();
      if (num == 0)
898
	prop_state_acc(true);
899
900
    }

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
    /// \brief Set Büchi acceptance.
    ///
    /// This declares a single acceptance set, and \c Inf(0)
    /// acceptance.  The returned mark \c {0} can be used to tag
    /// accepting transition.
    ///
    /// Note that this does not make the automaton as using
    /// state-based acceptance.  If you want to create a Büchi
    /// automaton with state-based acceptance, call
    /// \code
    /// prop_state_acc(true)
    /// \endcode
    /// in addition.
    ///
    /// \see prop_state_acc
916
917
918
919
920
921
    acc_cond::mark_t set_buchi()
    {
      set_generalized_buchi(1);
      return acc_.mark(0);
    }

922
  protected:
923
924
925
    /// Do the actual computation of tgba::support_conditions().
    virtual bdd compute_support_conditions(const state* state) const = 0;
    mutable const state* last_support_conditions_input_;
926
927
  private:
    mutable bdd last_support_conditions_output_;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
928
    std::vector<formula> aps_;
929
    bdd bddaps_;
930

931
    /// Helper structure used to store property flags.
932
933
    struct bprop
    {
934
935
936
937
938
939
940
      trival::repr_t state_based_acc:2;   // State-based acceptance.
      trival::repr_t inherently_weak:2;   // Inherently Weak automaton.
      trival::repr_t weak:2;	       // Weak automaton.
      trival::repr_t terminal:2;	       // Terminal automaton.
      trival::repr_t deterministic:2;     // Deterministic automaton.
      trival::repr_t unambiguous:2;       // Unambiguous automaton.
      trival::repr_t stutter_invariant:2; // Stutter invariant language.
941
942
943
944
945
946
947
    };
    union
    {
      unsigned props;
      bprop is;
    };

948
949
950
951
952
953
#ifndef SWIG
    // Dynamic properties, are given with a name and a destructor function.
    std::unordered_map<std::string,
		       std::pair<void*,
				 std::function<void(void*)>>> named_prop_;
#endif
954
955
    void* get_named_prop_(std::string s) const;

956
957
  public:

958
#ifndef SWIG
959
960
961
962
963
964
965
966
967
968
969
    /// \brief Declare a named property
    ///
    /// Arbitrary object can be attached to automata.  Those are called
    /// named properties.  They are used for instance to name all the
    /// state of an automaton.
    ///
    /// This function attaches the object \a val to the current automaton,
    /// under the name \a s.
    ///
    /// When the automaton is destroyed, the \a destructor function will
    /// be called to destroy the attached object.
970
971
    void set_named_prop(std::string s,
			void* val, std::function<void(void*)> destructor);
972

973
974
975
976
977
978
979
980
981
982
983
    /// \brief Declare a named property
    ///
    /// Arbitrary object can be attached to automata.  Those are called
    /// named properties.  They are used for instance to name all the
    /// state of an automaton.
    ///
    /// This function attaches the object \a val to the current automaton,
    /// under the name \a s.
    ///
    /// The object will be automatically destroyed when the automaton
    /// is destroyed.
984
985
986
987
988
989
    template<typename T>
    void set_named_prop(std::string s, T* val)
    {
      set_named_prop(s, val, [](void *p) { delete static_cast<T*>(p); });
    }

990
991
992
993
994
995
996
997
998
999
1000
1001
    /// \brief Retrieve a named property
    ///
    /// Because named property can be object of any type, retrieving
    /// the object requires knowing its type.
    ///
    /// \param s the name of the object to retrieve
    /// \tparam T the type of the object to retrieve
    ///
    /// Note that the return is a pointer to \c T, so the type should
    /// not include the pointer.
    ///
    /// Returns a nullptr if no such named property exists.
1002
1003
1004
1005
1006
1007
1008
1009
    template<typename T>
    T* get_named_prop(std::string s) const
    {
      void* p = get_named_prop_(s);
      if (!p)
	return nullptr;
      return static_cast<T*>(p);
    }
1010
1011
#endif

1012
1013
1014
1015
    /// \brief Destroy all named properties.
    ///
    /// This is used by the automaton destructor, but it could be used
    /// by any algorithm that want to get rid of all named properties.
1016
1017
1018
1019
1020
1021
1022
1023
    void release_named_properties()
    {
      // Destroy all named properties.
      for (auto& np: named_prop_)
	np.second.second(np.second.first);
      named_prop_.clear();
    }

1024
1025
1026
1027
1028
1029
    /// \brief Whether the automaton uses state-based acceptance.
    ///
    /// From the point of view of Spot, this means that all
    /// transitions leaving a state belong to the same acceptance
    /// sets.  Then it is equivalent to pretend that the state is in
    /// the acceptance set.
1030
    trival prop_state_acc() const
1031
1032
1033
1034
    {
      return is.state_based_acc;
    }

1035
1036
1037
1038
    /// \brief Set the state-based-acceptance property.
    ///
    /// If this property is set to true, then all transitions leaving
    /// a state must belong to the same acceptance sets.
1039
    void prop_state_acc(trival val)
1040
    {
1041
      is.state_based_acc = val.val();
1042
1043
    }

1044
1045
1046
1047
    /// \brief Whether this is a state-based Büchi automaton.
    ///
    /// An SBA has a Büchi acceptance, and should have its
    /// state-based acceptance property set.
1048
    trival is_sba() const
1049
    {
1050
      return prop_state_acc() && acc().is_buchi();
1051
1052
    }

1053
1054
1055
1056
1057
1058
1059
1060
    /// \brief Whether the automaton is inherently weak.
    ///
    /// An automaton is inherently weak if accepting cycles and
    /// rejecting cycles are never mixed in the same strongly
    /// connected component.
    ///
    /// \see prop_weak()
    /// \see prop_terminal()
1061
    trival prop_inherently_weak() const
1062
1063
1064
1065
    {
      return is.inherently_weak;
    }

1066
1067
1068
1069
1070
1071
1072
    /// \brief Set the "inherently weak" proeprty.
    ///
    /// Setting "inherently weak" to false automatically
    /// disables "terminal" and "weak".
    ///
    /// \see prop_weak()
    /// \see prop_terminal()
1073
    void prop_inherently_weak(trival val)
1074
    {
1075
1076
1077
      is.inherently_weak = val.val();
      if (!val)
	is.terminal = is.weak = val.val();
1078
1079
    }

1080
1081
1082
1083
1084
1085
1086
1087
1088
    /// \brief Whether the automaton is terminal.
    ///
    /// An automaton is terminal if it is weak, no non-accepting cycle
    /// can be reached from an accepting cycle, and the accepting
    /// strongly components are complete (i.e., any suffix is accepted
    /// as soon as we enter an accepting component).
    ///
    /// \see prop_weak()
    /// \see prop_inherently_weak()
1089
    trival prop_terminal() const
1090
1091
1092
1093
    {
      return is.terminal;
    }

1094
1095
1096
1097
1098
1099
1100
    /// \brief Set the terminal property.
    ///
    /// Marking an automaton as "terminal" automatically marks it as
    /// "weak" and "inherently weak".
    ///
    /// \see prop_weak()
    /// \see prop_inherently_weak()
1101
    void prop_terminal(trival val)
1102
    {
1103
      is.terminal = val.val();
1104
      if (val)
1105
	is.inherently_weak = is.weak = val.val();
1106
1107
    }

1108
1109
1110
1111
1112
1113
1114
    /// \brief Whether the automaton is weak.
    ///
    /// An automaton is weak if inside each strongly connected
    /// component, all transitions belong to the same acceptance sets.
    ///
    /// \see prop_terminal()
    /// \see prop_inherently_weak()
1115
    trival prop_weak() const
1116
1117
1118
1119
    {
      return is.weak;
    }

1120
1121
1122
1123
1124
1125
1126
1127
    /// \brief Set the weak property.
    ///
    /// Marking an automaton as "weak" automatically marks it as
    /// "inherently weak".  Marking an automaton as "not weak"
    /// automatically marks are as "not terminal".
    ///
    /// \see prop_terminal()
    /// \see prop_inherently_weak()
1128
    void prop_weak(trival val)
1129
    {
1130
      is.weak = val.val();
1131
      if (val)
1132
1133
1134
	is.inherently_weak = val.val();
      if (!val)
	is.terminal = val.val();
1135
1136
    }

1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
    /// \brief Whether the automaton is deterministic.
    ///
    /// An automaton is deterministic if the conjunction between the
    /// labels of two transitions leaving a state is always false.
    ///
    /// Note that this method may return trival::maybe() when it is
    /// unknown whether the automaton is deterministic or not.  If you
    /// need a true/false answer, prefer the is_deterministic() function.
    ///
    /// \see prop_unambiguous()
    /// \see is_deterministic()
1148
    trival prop_deterministic() const
1149
1150
1151
1152
    {
      return is.deterministic;
    }

1153
1154
1155
1156
1157
1158
    /// \brief Set the deterministic property.
    ///
    /// Setting the "deterministic" property automatically
    /// sets the "unambiguous" property.
    ///
    /// \see prop_unambiguous()
1159
    void prop_deterministic(trival val)
1160
    {
1161
      is.deterministic = val.val();
1162
      if (val)
1163
1164
	// deterministic implies unambiguous
	is.unambiguous = val.val();
1165
1166
    }

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
    /// \brief Whether the automaton is unambiguous
    ///
    /// An automaton is unambiguous if any accepted word is recognized
    /// by exactly one accepting path in the automaton.  Any word
    /// (accepted or not) may be recognized by several rejecting paths
    /// in the automaton.
    ///
    /// Note that this method may return trival::maybe() when it is
    /// unknown whether the automaton is unambiguous or not.  If you
    /// need a true/false answer, prefer the is_unambiguous() function.
    ///
    /// \see prop_deterministic()
    /// \see is_unambiguous()
1180
    trival prop_unambiguous() const
1181
1182
1183
1184
    {
      return is.unambiguous;
    }

1185
1186
1187
1188
1189
1190
    /// \brief Sets the unambiguous property
    ///
    /// Marking an automaton as "non unambiguous" automatically
    /// marks it as "non deterministic".
    ///
    /// \see prop_deterministic()
1191
    void prop_unambiguous(trival val)
1192
    {
1193
1194
1195
      is.unambiguous = val.val();
      if (!val)
	is.deterministic = val.val();
1196
1197
    }

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    /// \brief Whether the automaton is stutter-invariant.
    ///
    /// An automaton is stutter-invariant iff any accepted word
    /// remains accepted after removing a finite number of duplicate
    /// letters, or after duplicating finite number of letters.
    ///
    /// Note that this method may return trival::maybe() when it is
    /// unknown whether the automaton is stutter-invariant or not.  If
    /// you need a true/false answer, prefer one using of the the
    /// is_stutter_invariant() function.
    ///
    /// \see is_stutter_invariant
1210
    trival prop_stutter_invariant() const
1211
    {
1212
1213
1214
      return is.stutter_invariant;
    }

1215
    /// \brief Set the stutter-invariant property
1216
    void prop_stutter_invariant(trival val)
1217
    {
1218
      is.stutter_invariant = val.val();
1219
1220
    }

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
    /// \brief A structure for selecting a set of automaton properties
    /// to copy.
    ///
    /// When an algorithm copies an automaton before making some
    /// modification on that automaton, it should use a \c prop_set
    /// structure to indicate which properties should be copied from
    /// the original automaton.
    ///
    /// This structure does not list all supported properties, because
    /// properties are copied by groups of related properties.  For
    /// instance if an algorithm breaks the "inherent_weak"
    /// properties, it usually also breaks the "weak" and "terminal"
    /// properties.
    ///
    /// Set the flags to true to copy the value of the original
    /// property, and to false to ignore the original property
    /// (leaving the property of the new automaton to its default
    /// value, which is trival::maybe()).
    ///
    /// This can be used for instance as:
    /// \code
    ///    aut->prop_copy(other_aut, {true, false, false, true});
    /// \endcode
    /// This would copy the "state-based acceptance" and
    /// "stutter invariant" properties from \c other_aut to \c code.
    ///
    /// The reason there is no default value for these flags is that
    /// whenever we add a new property that do not fall into any of
    /// these groups, we will be forced to review all algorithm to
    /// decide if the property should be preserved or not.
    ///
    /// \see make_twa_graph_ptr
    /// \see prop_copy
1254
    struct prop_set
1255
    {
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
      bool state_based;		///< preserve state-based acceptnace
      bool inherently_weak;	///< preserve inherently weak, weak, & terminal
      bool deterministic;	///< preserve deterministic and unambiguous
      bool stutter_inv;		///< preserve stutter invariance

      /// \brief An all-true \c prop_set
      ///
      /// Use that only in algorithms that copy an automaton without
      /// performing any modification.
      ///
      /// If an algorithm X does modifications, but preserves all the
      /// properties currently implemented, use an explicit
      ///
      /// \code
      ///    {true, true, true, true}
      /// \endcode
      ///
      /// instead of calling \c all().  This way, the day a new
      /// property is added, we will still be forced to review
      /// algorithm X, in case that new property is not preserved.
1276
1277
      static prop_set all()
      {
1278
	return { true, true, true, true };
1279
1280
1281
      }
    };

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
    /// \brief Copy the properties of another automaton.
    ///
    /// Copy the property speciefied with \a p from \a other to the
    /// current automaton.
    ///
    /// There is no default value for \a p on purpose.  This way any
    /// time we add a new property we have to update every call to
    /// prop_copy().
    ///
    /// \see prop_set
1292
    void prop_copy(const const_twa_ptr& other, prop_set p)
1293
1294
    {
      if (p.state_based)
1295
	prop_state_acc(other->prop_state_acc());
1296
      if (p.inherently_weak)
1297
	{
1298
	  prop_terminal(other->prop_terminal());
1299
1300
1301
	  prop_weak(other->prop_weak());
	  prop_inherently_weak(other->prop_inherently_weak());
	}
1302
      if (p.deterministic)
1303
	{
1304
1305
	  prop_deterministic(other->prop_deterministic());
	  prop_unambiguous(other->prop_unambiguous());
1306
	}
1307
      if (p.stutter_inv)
1308
	prop_stutter_invariant(other->prop_stutter_invariant());
1309
1310
    }

1311
1312
1313
1314
1315
    /// \brief Keep only a subset of properties of the current
    /// automaton.
    ///
    /// All properties part of a group set to \c false in \a p are reset
    /// to their default value of trival::maybe().
1316
1317
1318
    void prop_keep(prop_set p)
    {
      if (!p.state_based)
1319
	prop_state_acc(trival::maybe());
1320
      if (!p.inherently_weak)
1321
	{
1322
1323
1324
	  prop_terminal(trival::maybe());
	  prop_weak(trival::maybe());
	  prop_inherently_weak(trival::maybe());
1325
	}
1326
      if (!p.deterministic)
1327
	{
1328
1329
	  prop_deterministic(trival::maybe());
	  prop_unambiguous(trival::maybe());
1330
	}
1331
      if (!p.stutter_inv)
1332
	prop_stutter_invariant(trival::maybe());
1333
1334
    }

1335
  };
1336

1337
  /// \addtogroup twa_representation TωA representations
1338
  /// \ingroup twa
1339

1340
  /// \addtogroup twa_algorithms TωA algorithms
1341
  /// \ingroup twa
1342

1343
  /// \addtogroup twa_on_the_fly_algorithms TωA on-the-fly algorithms
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1344
  /// \ingroup twa_algorithms
1345

1346
  /// \addtogroup twa_io Input/Output of TωA
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1347
  /// \ingroup twa_algorithms
1348

1349
  /// \addtogroup twa_ltl Translating LTL formulas into TωA
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1350
  /// \ingroup twa_algorithms
1351

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1352
1353
  /// \addtogroup twa_generic Algorithm patterns
  /// \ingroup twa_algorithms
1354

1355
  /// \addtogroup twa_reduction TωA simplifications
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1356
  /// \ingroup twa_algorithms
1357

1358
  /// \addtogroup twa_misc Miscellaneous algorithms on TωA
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1359
  /// \ingroup twa_algorithms
1360
}