genltl.cc 30.4 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
3
// Copyright (C) 2012, 2013, 2015, 2016 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

// Families defined here come from the following papers:
//
// @InProceedings{cichon.09.depcos,
//   author = {Jacek Cicho{\'n} and Adam Czubak and Andrzej Jasi{\'n}ski},
//   title = {Minimal {B\"uchi} Automata for Certain Classes of {LTL} Formulas},
//   booktitle = {Proceedings of the Fourth International Conference on
//                Dependability of Computer Systems},
//   pages = {17--24},
//   year = 2009,
//   publisher = {IEEE Computer Society},
// }
//
// @InProceedings{geldenhuys.06.spin,
//   author = {Jaco Geldenhuys and Henri Hansen},
//   title = {Larger Automata and Less Work for LTL Model Checking},
//   booktitle = {Proceedings of the 13th International SPIN Workshop},
//   year = {2006},
//   pages = {53--70},
//   series = {Lecture Notes in Computer Science},
//   volume = {3925},
//   publisher = {Springer}
// }
//
// @InProceedings{gastin.01.cav,
//   author = {Paul Gastin and Denis Oddoux},
//   title = {Fast {LTL} to {B\"u}chi Automata Translation},
46
47
//   booktitle        = {Proceedings of the 13th International Conference on
//                   Computer Aided Verification (CAV'01)},
48
49
50
51
52
53
54
55
56
57
58
59
60
//   pages = {53--65},
//   year = 2001,
//   editor = {G. Berry and H. Comon and A. Finkel},
//   volume = {2102},
//   series = {Lecture Notes in Computer Science},
//   address = {Paris, France},
//   publisher = {Springer-Verlag}
// }
//
// @InProceedings{rozier.07.spin,
//   author = {Kristin Y. Rozier and Moshe Y. Vardi},
//   title = {LTL Satisfiability Checking},
//   booktitle = {Proceedings of the 12th International SPIN Workshop on
61
//                   Model Checking of Software (SPIN'07)},
62
63
64
65
66
67
//   pages = {149--167},
//   year = {2007},
//   volume = {4595},
//   series = {Lecture Notes in Computer Science},
//   publisher = {Springer-Verlag}
// }
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
//
// @InProceedings{dwyer.98.fmsp,
//   author = {Matthew B. Dwyer and George S. Avrunin and James C. Corbett},
//   title         = {Property Specification Patterns for Finite-state
//                   Verification},
//   booktitle     = {Proceedings of the 2nd Workshop on Formal Methods in
//                   Software Practice (FMSP'98)},
//   publisher     = {ACM Press},
//   address       = {New York},
//   editor        = {Mark Ardis},
//   month         = mar,
//   year          = {1998},
//   pages         = {7--15}
// }
//
// @InProceedings{etessami.00.concur,
//   author = {Kousha Etessami and Gerard J. Holzmann},
//   title = {Optimizing {B\"u}chi Automata},
//   booktitle = {Proceedings of the 11th International Conference on
//                Concurrency Theory (Concur'00)},
//   pages = {153--167},
//   year = {2000},
//   editor = {C. Palamidessi},
//   volume = {1877},
//   series = {Lecture Notes in Computer Science},
//   address = {Pennsylvania, USA},
//   publisher = {Springer-Verlag}
// }
//
// @InProceedings{somenzi.00.cav,
//   author = {Fabio Somenzi and Roderick Bloem},
//   title = {Efficient {B\"u}chi Automata for {LTL} Formul{\ae}},
//   booktitle = {Proceedings of the 12th International Conference on
//                Computer Aided Verification (CAV'00)},
//   pages = {247--263},
//   year = {2000},
//   volume = {1855},
//   series = {Lecture Notes in Computer Science},
//   address = {Chicago, Illinois, USA},
//   publisher = {Springer-Verlag}
// }
109

110
#include "common_sys.hh"
111
112
113
114
115
116
117
118

#include <iostream>
#include <fstream>
#include <argp.h>
#include <cstdlib>
#include "error.h"
#include <vector>

119
#include "common_setup.hh"
120
#include "common_output.hh"
121
#include "common_range.hh"
122
#include "common_cout.hh"
123
124
125
126
127
128
129
130

#include <cassert>
#include <iostream>
#include <sstream>
#include <set>
#include <string>
#include <cstdlib>
#include <cstring>
131
132
#include <spot/tl/formula.hh>
#include <spot/tl/relabel.hh>
133
#include <spot/tl/parse.hh>
134
135
136
137

using namespace spot;

const char argp_program_doc[] ="\
138
Generate temporal logic formulas from predefined patterns.";
139

140
141
142
143
144
145
146
enum {
  OPT_AND_F = 1,
  OPT_AND_FG,
  OPT_AND_GF,
  OPT_CCJ_ALPHA,
  OPT_CCJ_BETA,
  OPT_CCJ_BETA_PRIME,
147
148
  OPT_DAC_PATTERNS,
  OPT_EH_PATTERNS,
149
150
151
152
153
154
155
156
157
158
159
160
  OPT_GH_Q,
  OPT_GH_R,
  OPT_GO_THETA,
  OPT_OR_FG,
  OPT_OR_G,
  OPT_OR_GF,
  OPT_R_LEFT,
  OPT_R_RIGHT,
  OPT_RV_COUNTER,
  OPT_RV_COUNTER_CARRY,
  OPT_RV_COUNTER_CARRY_LINEAR,
  OPT_RV_COUNTER_LINEAR,
161
  OPT_SB_PATTERNS,
162
163
164
  OPT_U_LEFT,
  OPT_U_RIGHT,
  LAST_CLASS,
165
166
  OPT_POSITIVE,
  OPT_NEGATIVE,
167
};
168
169
170
171
172
173
174
175
176

const char* const class_name[LAST_CLASS] =
  {
    "and-f",
    "and-fg",
    "and-gf",
    "ccj-alpha",
    "ccj-beta",
    "ccj-beta-prime",
177
178
    "dac-patterns",
    "eh-patterns",
179
180
181
182
183
184
185
186
187
188
189
190
    "gh-q",
    "gh-r",
    "go-theta",
    "or-fg",
    "or-g",
    "or-gf",
    "or-r-left",
    "or-r-right",
    "rv-counter",
    "rv-counter-carry",
    "rv-counter-carry-linear",
    "rv-counter-linear",
191
    "sb-patterns",
192
193
194
195
    "u-left",
    "u-right",
  };

196

197
#define OPT_ALIAS(o) { #o, 0, nullptr, OPTION_ALIAS, nullptr, 0 }
198
199
200
201
202

static const argp_option options[] =
  {
    /**************************************************/
    // Keep this alphabetically sorted (expect for aliases).
203
    { nullptr, 0, nullptr, 0, "Pattern selection:", 1},
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    // J. Geldenhuys and H. Hansen (Spin'06): Larger automata and less
    // work for LTL model checking.
    { "and-f", OPT_AND_F, "RANGE", 0, "F(p1)&F(p2)&...&F(pn)", 0 },
    OPT_ALIAS(gh-e),
    { "and-fg", OPT_AND_FG, "RANGE", 0, "FG(p1)&FG(p2)&...&FG(pn)", 0 },
    { "and-gf", OPT_AND_GF, "RANGE", 0, "GF(p1)&GF(p2)&...&GF(pn)", 0 },
    OPT_ALIAS(ccj-phi),
    OPT_ALIAS(gh-c2),
    { "ccj-alpha", OPT_CCJ_ALPHA, "RANGE", 0,
      "F(p1&F(p2&F(p3&...F(pn)))) & F(q1&F(q2&F(q3&...F(qn))))", 0 },
    { "ccj-beta", OPT_CCJ_BETA, "RANGE", 0,
      "F(p&X(p&X(p&...X(p)))) & F(q&X(q&X(q&...X(q))))", 0 },
    { "ccj-beta-prime", OPT_CCJ_BETA_PRIME, "RANGE", 0,
      "F(p&(Xp)&(XXp)&...(X...X(p))) & F(q&(Xq)&(XXq)&...(X...X(q)))", 0 },
218
219
    { "dac-patterns", OPT_DAC_PATTERNS, "RANGE", OPTION_ARG_OPTIONAL,
      "Dwyer et al. [FMSP'98] Spec. Patterns for LTL "
220
      "(range should be included in 1..55)", 0 },
221
222
223
    { "eh-patterns", OPT_EH_PATTERNS, "RANGE", OPTION_ARG_OPTIONAL,
      "Etessami and Holzmann [Concur'00] patterns "
      "(range should be included in 1..12)", 0 },
224
    { "gh-q", OPT_GH_Q, "RANGE", 0,
225
      "(F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))", 0 },
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    { "gh-r", OPT_GH_R, "RANGE", 0,
      "(GF(p1)|FG(p2))&(GF(p2)|FG(p3))&... &(GF(pn)|FG(p{n+1}))", 0},
    { "go-theta", OPT_GO_THETA, "RANGE", 0,
      "!((GF(p1)&GF(p2)&...&GF(pn)) -> G(q->F(r)))", 0 },
    { "or-fg", OPT_OR_FG, "RANGE", 0, "FG(p1)|FG(p2)|...|FG(pn)", 0 },
    OPT_ALIAS(ccj-xi),
    { "or-g", OPT_OR_G, "RANGE", 0, "G(p1)|G(p2)|...|G(pn)", 0 },
    OPT_ALIAS(gh-s),
    { "or-gf", OPT_OR_GF, "RANGE", 0, "GF(p1)|GF(p2)|...|GF(pn)", 0 },
    OPT_ALIAS(gh-c1),
    { "r-left", OPT_R_LEFT, "RANGE", 0, "(((p1 R p2) R p3) ... R pn)", 0 },
    { "r-right", OPT_R_RIGHT, "RANGE", 0, "(p1 R (p2 R (... R pn)))", 0 },
    { "rv-counter", OPT_RV_COUNTER, "RANGE", 0,
      "n-bit counter", 0 },
    { "rv-counter-carry", OPT_RV_COUNTER_CARRY, "RANGE", 0,
      "n-bit counter w/ carry", 0 },
    { "rv-counter-carry-linear", OPT_RV_COUNTER_CARRY_LINEAR, "RANGE", 0,
      "n-bit counter w/ carry (linear size)", 0 },
    { "rv-counter-linear", OPT_RV_COUNTER_LINEAR, "RANGE", 0,
      "n-bit counter (linear size)", 0 },
246
247
248
    { "sb-patterns", OPT_SB_PATTERNS, "RANGE", OPTION_ARG_OPTIONAL,
      "Somenzi and Bloem [CAV'00] patterns "
      "(range should be included in 1..27)", 0 },
249
250
251
252
253
    { "u-left", OPT_U_LEFT, "RANGE", 0, "(((p1 U p2) U p3) ... U pn)", 0 },
    OPT_ALIAS(gh-u),
    { "u-right", OPT_U_RIGHT, "RANGE", 0, "(p1 U (p2 U (... U pn)))", 0 },
    OPT_ALIAS(gh-u2),
    OPT_ALIAS(go-phi),
254
    RANGE_DOC,
255
  /**************************************************/
256
    { nullptr, 0, nullptr, 0, "Output options:", -20 },
257
258
259
260
261
262
    { "negative", OPT_NEGATIVE, nullptr, 0,
      "output the negated versions of all formulas", 0 },
    OPT_ALIAS(negated),
    { "positive", OPT_POSITIVE, nullptr, 0,
      "output the positive versions of all formulas (done by default, unless"
      " --negative is specified without --positive)", 0 },
263
    { nullptr, 0, nullptr, 0, "The FORMAT string passed to --format may use "
264
      "the following interpreted sequences:", -19 },
265
    { "%f", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
266
      "the formula (in the selected syntax)", 0 },
267
    { "%F", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
268
      "the name of the pattern", 0 },
269
    { "%L", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
270
      "the argument of the pattern", 0 },
271
    { "%%", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
272
      "a single %", 0 },
273
    COMMON_LTL_OUTPUT_SPECS,
274
275
    { nullptr, 0, nullptr, 0, "Miscellaneous options:", -1 },
    { nullptr, 0, nullptr, 0, nullptr, 0 }
276
277
278
279
280
  };

struct job
{
  int pattern;
281
  struct range range;
282
283
284
285
};

typedef std::vector<job> jobs_t;
static jobs_t jobs;
286
287
bool opt_positive = false;
bool opt_negative = false;
288
289
290

const struct argp_child children[] =
  {
291
292
293
    { &output_argp, 0, nullptr, -20 },
    { &misc_argp, 0, nullptr, -1 },
    { nullptr, 0, nullptr, 0 }
294
  };
295
296

static void
297
enqueue_job(int pattern, const char* range_str)
298
299
300
{
  job j;
  j.pattern = pattern;
301
  j.range = parse_range(range_str);
302
303
304
  jobs.push_back(j);
}

305
306
307
308
309
310
311
312
313
static void
enqueue_job(int pattern, int min, int max)
{
  job j;
  j.pattern = pattern;
  j.range = {min, max};
  jobs.push_back(j);
}

314
static int
315
parse_opt(int key, char* arg, struct argp_state*)
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
{
  // This switch is alphabetically-ordered.
  switch (key)
    {
    case OPT_AND_F:
    case OPT_AND_FG:
    case OPT_AND_GF:
    case OPT_CCJ_ALPHA:
    case OPT_CCJ_BETA:
    case OPT_CCJ_BETA_PRIME:
    case OPT_GH_Q:
    case OPT_GH_R:
    case OPT_GO_THETA:
    case OPT_OR_FG:
    case OPT_OR_G:
    case OPT_OR_GF:
    case OPT_R_LEFT:
    case OPT_R_RIGHT:
    case OPT_RV_COUNTER:
    case OPT_RV_COUNTER_CARRY:
    case OPT_RV_COUNTER_CARRY_LINEAR:
    case OPT_RV_COUNTER_LINEAR:
338
339
    case OPT_U_LEFT:
    case OPT_U_RIGHT:
340
341
      enqueue_job(key, arg);
      break;
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    case OPT_DAC_PATTERNS:
      if (arg)
        enqueue_job(key, arg);
      else
        enqueue_job(key, 1, 55);
      break;
    case OPT_EH_PATTERNS:
      if (arg)
        enqueue_job(key, arg);
      else
        enqueue_job(key, 1, 12);
      break;
    case OPT_SB_PATTERNS:
      if (arg)
        enqueue_job(key, arg);
      else
        enqueue_job(key, 1, 27);
      break;
360
361
362
363
364
365
    case OPT_POSITIVE:
      opt_positive = true;
      break;
    case OPT_NEGATIVE:
      opt_negative = true;
      break;
366
367
368
369
370
371
    default:
      return ARGP_ERR_UNKNOWN;
    }
  return 0;
}

372
373
374
375
376
377
378
379
380
381
#define G_(x) formula::G(x)
#define F_(x) formula::F(x)
#define X_(x) formula::X(x)
#define Not_(x) formula::Not(x)

#define Implies_(x, y) formula::Implies((x), (y))
#define Equiv_(x, y) formula::Equiv((x), (y))
#define And_(x, y) formula::And({(x), (y)})
#define Or_(x, y) formula::Or({(x), (y)})
#define U_(x, y) formula::U((x), (y))
382
383

// F(p_1 & F(p_2 & F(p_3 & ... F(p_n))))
384
static formula
385
386
387
E_n(std::string name, int n)
{
  if (n <= 0)
388
    return formula::tt();
389

390
  formula result = nullptr;
391
392
393
394
395

  for (; n > 0; --n)
    {
      std::ostringstream p;
      p << name << n;
396
      formula f = formula::ap(p.str());
397
      if (result)
398
        result = And_(f, result);
399
      else
400
        result = f;
401
402
403
404
405
406
      result = F_(result);
    }
  return result;
}

// p & X(p & X(p & ... X(p)))
407
static formula
408
409
410
phi_n(std::string name, int n)
{
  if (n <= 0)
411
    return formula::tt();
412

413
414
  formula result = nullptr;
  formula p = formula::ap(name);
415
416
417
  for (; n > 0; --n)
    {
      if (result)
418
        result = And_(p, X_(result));
419
      else
420
        result = p;
421
422
423
424
    }
  return result;
}

425
426
static formula
N_n(std::string name, int n)
427
{
428
  return formula::F(phi_n(name, n));
429
430
431
}

// p & X(p) & XX(p) & XXX(p) & ... X^n(p)
432
static formula
433
434
435
phi_prime_n(std::string name, int n)
{
  if (n <= 0)
436
    return formula::tt();
437

438
439
  formula result = nullptr;
  formula p = formula::ap(name);
440
441
442
  for (; n > 0; --n)
    {
      if (result)
443
444
445
446
        {
          p = X_(p);
          result = And_(result, p);
        }
447
      else
448
449
450
        {
          result = p;
        }
451
452
453
454
    }
  return result;
}

455
static formula
456
457
458
459
460
461
462
463
N_prime_n(std::string name, int n)
{
  return F_(phi_prime_n(name, n));
}


// GF(p_1) & GF(p_2) & ... & GF(p_n)   if conj == true
// GF(p_1) | GF(p_2) | ... | GF(p_n)   if conj == false
464
static formula
465
466
467
GF_n(std::string name, int n, bool conj = true)
{
  if (n <= 0)
468
    return conj ? formula::tt() : formula::ff();
469

470
  formula result = nullptr;
471

472
  op o = conj ? op::And : op::Or;
473
474
475
476
477

  for (int i = 1; i <= n; ++i)
    {
      std::ostringstream p;
      p << name << i;
478
      formula f = G_(F_(formula::ap(p.str())));
479
480

      if (result)
481
        result = formula::multop(o, {f, result});
482
      else
483
        result = f;
484
485
486
487
488
489
    }
  return result;
}

// FG(p_1) | FG(p_2) | ... | FG(p_n)   if conj == false
// FG(p_1) & FG(p_2) & ... & FG(p_n)   if conj == true
490
static formula
491
492
493
FG_n(std::string name, int n, bool conj = false)
{
  if (n <= 0)
494
    return conj ? formula::tt() : formula::ff();
495

496
  formula result = nullptr;
497

498
  op o = conj ? op::And : op::Or;
499
500
501
502
503

  for (int i = 1; i <= n; ++i)
    {
      std::ostringstream p;
      p << name << i;
504
      formula f = F_(G_(formula::ap(p.str())));
505
506

      if (result)
507
        result = formula::multop(o, {f, result});
508
      else
509
        result = f;
510
511
512
513
514
515
    }
  return result;
}

//  (((p1 OP p2) OP p3)...OP pn)   if right_assoc == false
//  (p1 OP (p2 OP (p3 OP (... pn)  if right_assoc == true
516
517
static formula
bin_n(std::string name, int n, op o, bool right_assoc = false)
518
519
520
521
{
  if (n <= 0)
    n = 1;

522
  formula result = nullptr;
523
524
525
526
527

  for (int i = 1; i <= n; ++i)
    {
      std::ostringstream p;
      p << name << (right_assoc ? (n + 1 - i) : i);
528
      formula f = formula::ap(p.str());
529
      if (!result)
530
        result = f;
531
      else if (right_assoc)
532
        result = formula::binop(o, f, result);
533
      else
534
        result = formula::binop(o, result, f);
535
536
537
538
539
    }
  return result;
}

// (GF(p1)|FG(p2))&(GF(p2)|FG(p3))&...&(GF(pn)|FG(p{n+1}))"
540
static formula
541
542
543
R_n(std::string name, int n)
{
  if (n <= 0)
544
    return formula::tt();
545

546
  formula pi;
547
548
549
550

  {
    std::ostringstream p;
    p << name << 1;
551
    pi = formula::ap(p.str());
552
553
  }

554
  formula result = nullptr;
555
556
557

  for (int i = 1; i <= n; ++i)
    {
558
      formula gf = G_(F_(pi));
559
560
      std::ostringstream p;
      p << name << i + 1;
561
      pi = formula::ap(p.str());
562

563
      formula fg = F_(G_(pi));
564

565
      formula f = Or_(gf, fg);
566
567

      if (result)
568
        result = And_(f, result);
569
      else
570
        result = f;
571
572
573
574
575
    }
  return result;
}

// (F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))"
576
static formula
577
578
579
Q_n(std::string name, int n)
{
  if (n <= 0)
580
    return formula::tt();
581

582
  formula pi;
583
584
585
586

  {
    std::ostringstream p;
    p << name << 1;
587
    pi = formula::ap(p.str());
588
589
  }

590
  formula result = nullptr;
591
592
593

  for (int i = 1; i <= n; ++i)
    {
594
      formula f = F_(pi);
595
596
597

      std::ostringstream p;
      p << name << i + 1;
598
      pi = formula::ap(p.str());
599

600
      formula g = G_(pi);
601
602
603
604

      f = Or_(f, g);

      if (result)
605
        result = And_(f, result);
606
      else
607
        result = f;
608
609
610
611
612
613
    }
  return result;
}

//  OP(p1) | OP(p2) | ... | OP(Pn) if conj == false
//  OP(p1) & OP(p2) & ... & OP(Pn) if conj == true
614
615
static formula
combunop_n(std::string name, int n, op o, bool conj = false)
616
617
{
  if (n <= 0)
618
    return conj ? formula::tt() : formula::ff();
619

620
  formula result = nullptr;
621

622
  op cop = conj ? op::And : op::Or;
623
624
625
626
627

  for (int i = 1; i <= n; ++i)
    {
      std::ostringstream p;
      p << name << i;
628
      formula f = formula::unop(o, formula::ap(p.str()));
629
630

      if (result)
631
        result = formula::multop(cop, {f, result});
632
      else
633
        result = f;
634
635
636
637
638
639
    }
  return result;
}

// !((GF(p1)&GF(p2)&...&GF(pn))->G(q -> F(r)))
// From "Fast LTL to Büchi Automata Translation" [gastin.01.cav]
640
static formula
641
642
fair_response(std::string p, std::string q, std::string r, int n)
{
643
644
  formula fair = GF_n(p, n);
  formula resp = G_(Implies_(formula::ap(q), F_(formula::ap(r))));
645
646
647
648
649
  return Not_(Implies_(fair, resp));
}


// Builds X(X(...X(p))) with n occurrences of X.
650
651
static formula
X_n(formula p, int n)
652
653
{
  assert(n >= 0);
654
  formula res = p;
655
656
657
658
659
660
661
  while (n--)
    res = X_(res);
  return res;
}

// Based on LTLcounter.pl from Kristin Rozier.
// http://shemesh.larc.nasa.gov/people/kyr/benchmarking_scripts/
662
static formula
663
664
ltl_counter(std::string bit, std::string marker, int n, bool linear)
{
665
666
667
668
  formula b = formula::ap(bit);
  formula neg_b = Not_(b);
  formula m = formula::ap(marker);
  formula neg_m = Not_(m);
669

670
  std::vector<formula> res(4);
671
672
673
674
675
676

  // The marker starts with "1", followed by n-1 "0", then "1" again,
  // n-1 "0", etc.
  if (!linear)
    {
      // G(m -> X(!m)&XX(!m)&XXX(m))          [if n = 3]
677
      std::vector<formula> v(n);
678
      for (int i = 0; i + 1 < n; ++i)
679
        v[i] = X_n(neg_m, i + 1);
680
681
      v[n - 1] = X_n(m, n);
      res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v)))));
682
683
684
685
    }
  else
    {
      // G(m -> X(!m & X(!m X(m))))          [if n = 3]
686
      formula p = m;
687
      for (int i = n - 1; i > 0; --i)
688
        p = And_(neg_m, X_(p));
689
      res[0] = And_(m, G_(Implies_(m, X_(p))));
690
691
692
693
694
695
    }

  // All bits are initially zero.
  if (!linear)
    {
      // !b & X(!b) & XX(!b)    [if n = 3]
696
      std::vector<formula> v2(n);
697
      for (int i = 0; i < n; ++i)
698
        v2[i] = X_n(neg_b, i);
699
      res[1] = formula::And(std::move(v2));
700
701
702
703
    }
  else
    {
      // !b & X(!b & X(!b))     [if n = 3]
704
      formula p = neg_b;
705
      for (int i = n - 1; i > 0; --i)
706
        p = And_(neg_b, X_(p));
707
      res[1] = p;
708
709
710
711
712
713
    }

#define AndX_(x, y) (linear ? X_(And_((x), (y))) : And_(X_(x), X_(y)))

  // If the least significant bit is 0, it will be 1 at the next time,
  // and other bits stay the same.
714
715
716
  formula Xnm1_b = X_n(b, n - 1);
  formula Xn_b = X_(Xnm1_b);
  res[2] = G_(Implies_(And_(m, neg_b),
717
                       AndX_(Xnm1_b, U_(And_(Not_(m), Equiv_(b, Xn_b)), m))));
718
719
720

  // From the least significant bit to the first 0, all the bits
  // are flipped on the next value.  Remaining bits are identical.
721
722
723
  formula Xnm1_negb = X_n(neg_b, n - 1);
  formula Xn_negb = X_(Xnm1_negb);
  res[3] = G_(Implies_(And_(m, b),
724
725
726
727
728
729
730
                       AndX_(Xnm1_negb,
                             U_(And_(And_(b, neg_m), Xn_negb),
                                Or_(m, And_(And_(neg_m, neg_b),
                                            AndX_(Xnm1_b,
                                                  U_(And_(neg_m,
                                                          Equiv_(b, Xn_b)),
                                                     m))))))));
731
  return formula::And(std::move(res));
732
733
}

734
static formula
735
ltl_counter_carry(std::string bit, std::string marker,
736
                  std::string carry, int n, bool linear)
737
{
738
739
740
741
742
743
  formula b = formula::ap(bit);
  formula neg_b = Not_(b);
  formula m = formula::ap(marker);
  formula neg_m = Not_(m);
  formula c = formula::ap(carry);
  formula neg_c = Not_(c);
744

745
  std::vector<formula> res(6);
746
747
748
749
750
751

  // The marker starts with "1", followed by n-1 "0", then "1" again,
  // n-1 "0", etc.
  if (!linear)
    {
      // G(m -> X(!m)&XX(!m)&XXX(m))          [if n = 3]
752
      std::vector<formula> v(n);
753
      for (int i = 0; i + 1 < n; ++i)
754
        v[i] = X_n(neg_m, i + 1);
755
756
      v[n - 1] = X_n(m, n);
      res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v)))));
757
758
759
760
    }
  else
    {
      // G(m -> X(!m & X(!m X(m))))          [if n = 3]
761
      formula p = m;
762
      for (int i = n - 1; i > 0; --i)
763
        p = And_(neg_m, X_(p));
764
      res[0] = And_(m, G_(Implies_(m, X_(p))));
765
766
767
768
769
770
    }

  // All bits are initially zero.
  if (!linear)
    {
      // !b & X(!b) & XX(!b)    [if n = 3]
771
      std::vector<formula> v2(n);
772
      for (int i = 0; i < n; ++i)
773
        v2[i] = X_n(neg_b, i);
774
      res[1] = formula::And(std::move(v2));
775
776
777
778
    }
  else
    {
      // !b & X(!b & X(!b))     [if n = 3]
779
      formula p = neg_b;
780
      for (int i = n - 1; i > 0; --i)
781
        p = And_(neg_b, X_(p));
782
      res[1] = p;
783
784
    }

785
786
  formula Xn_b = X_n(b, n);
  formula Xn_negb = X_n(neg_b, n);
787
788

  // If m is 1 and b is 0 then c is 0 and n steps later b is 1.
789
  res[2] = G_(Implies_(And_(m, neg_b), And_(neg_c, Xn_b)));
790
791

  // If m is 1 and b is 1 then c is 1 and n steps later b is 0.
792
  res[3] = G_(Implies_(And_(m, b), And_(c, Xn_negb)));
793
794
795
796

  if (!linear)
    {
      // If there's no carry, then all of the bits stay the same n steps later.
797
      res[4] = G_(Implies_(And_(neg_c, X_(neg_m)),
798
                           And_(X_(Not_(c)), Equiv_(X_(b), X_(Xn_b)))));
799
800
801

      // If there's a carry, then add one: flip the bits of b and
      // adjust the carry.
802
      res[5] = G_(Implies_(c, And_(Implies_(X_(neg_b),
803
804
805
                                            And_(X_(neg_c), X_(Xn_b))),
                                   Implies_(X_(b),
                                            And_(X_(c), X_(Xn_negb))))));
806
807
808
809
    }
  else
    {
      // If there's no carry, then all of the bits stay the same n steps later.
810
      res[4] = G_(Implies_(And_(neg_c, X_(neg_m)),
811
                           X_(And_(Not_(c), Equiv_(b, Xn_b)))));
812
813
      // If there's a carry, then add one: flip the bits of b and
      // adjust the carry.
814
      res[5] = G_(Implies_(c, X_(And_(Implies_(neg_b, And_(neg_c, Xn_b)),
815
                                      Implies_(b, And_(c, Xn_negb))))));
816
    }
817
  return formula::And(std::move(res));
818
819
}

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
static void bad_number(const char* pattern, int n, int max)
{
  std::ostringstream err;
  err << "no pattern " << n << " for " << pattern
      << ", supported range is 1.." << max;
  throw std::runtime_error(err.str());
}

static formula
dac_pattern(int n)
{
  static const char* formulas[] = {
    "[](!p0)",
    "<>p2 -> (!p0 U p2)",
    "[](p1 -> [](!p0))",
    "[]((p1 & !p2 & <>p2) -> (!p0 U p2))",
    "[](p1 & !p2 -> (!p0 W p2))",

    "<>(p0)",
    "!p2 W (p0 & !p2)",
    "[](!p1) | <>(p1 & <>p0)",
    "[](p1 & !p2 -> (!p2 W (p0 & !p2)))",
    "[](p1 & !p2 -> (!p2 U (p0 & !p2)))",

    "(!p0 W (p0 W (!p0 W (p0 W []!p0))))",
    "<>p2 -> ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 |"
    " ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 | (!p0 U p2)))))))))",
    "<>p1 -> (!p1 U (p1 & (!p0 W (p0 W (!p0 W (p0 W []!p0))))))",
    "[]((p1 & <>p2) -> ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 |"
    "((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 | (!p0 U p2))))))))))",
    "[](p1 -> ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 | ((!p0 & !p2) U"
    "(p2 | ((p0 & !p2) U (p2 | (!p0 W p2) | []p0)))))))))",

    "[](p0)",
    "<>p2 -> (p0 U p2)",
    "[](p1 -> [](p0))",
    "[]((p1 & !p2 & <>p2) -> (p0 U p2))",
    "[](p1 & !p2 -> (p0 W p2))",

    "!p0 W p3",
    "<>p2 -> (!p0 U (p3 | p2))",
    "[]!p1 | <>(p1 & (!p0 W p3))",
    "[]((p1 & !p2 & <>p2) -> (!p0 U (p3 | p2)))",
    "[](p1 & !p2 -> (!p0 W (p3 | p2)))",

    "[](p0 -> <>p3)",
    "<>p2 -> (p0 -> (!p2 U (p3 & !p2))) U p2",
    "[](p1 -> [](p0 -> <>p3))",
    "[]((p1 & !p2 & <>p2) -> ((p0 -> (!p2 U (p3 & !p2))) U p2))",
    "[](p1 & !p2 -> ((p0 -> (!p2 U (p3 & !p2))) W p2))",

    "<>p0 -> (!p0 U (p3 & !p0 & X(!p0 U p4)))",
    "<>p2 -> (!p0 U (p2 | (p3 & !p0 & X(!p0 U p4))))",
    "([]!p1) | (!p1 U (p1 & <>p0 -> (!p0 U (p3 & !p0 & X(!p0 U p4)))))",
    "[]((p1 & <>p2) -> (!p0 U (p2 | (p3 & !p0 & X(!p0 U p4)))))",
    "[](p1 -> (<>p0 -> (!p0 U (p2 | (p3 & !p0 & X(!p0 U p4))))))",

    "(<>(p3 & X<>p4)) -> ((!p3) U p0)",
    "<>p2 -> ((!(p3 & (!p2) & X(!p2 U (p4 & !p2)))) U (p2 | p0))",
    "([]!p1) | ((!p1) U (p1 & ((<>(p3 & X<>p4)) -> ((!p3) U p0))))",
    "[]((p1 & <>p2) -> ((!(p3 & (!p2) & X(!p2 U (p4 & !p2)))) U (p2 | p0)))",
    "[](p1 -> (!(p3 & (!p2) & X(!p2 U (p4 & !p2))) U (p2 | p0) |"
    " [](!(p3 & X<>p4))))",

    "[] (p3 & X<> p4 -> X(<>(p4 & <> p0)))",
    "<>p2 -> (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0))) U p2",
    "[] (p1 -> [] (p3 & X<> p4 -> X(!p4 U (p4 & <> p0))))",
    "[] ((p1 & <>p2) -> (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0))) U p2)",
    "[] (p1 -> (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0))) U (p2 |"
    "[] (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0)))))",

    "[] (p0 -> <>(p3 & X<>p4))",
    "<>p2 -> (p0 -> (!p2 U (p3 & !p2 & X(!p2 U p4)))) U p2",
    "[] (p1 -> [] (p0 -> (p3 & X<> p4)))",
    "[] ((p1 & <>p2) -> (p0 -> (!p2 U (p3 & !p2 & X(!p2 U p4)))) U p2)",
    "[] (p1 -> (p0 -> (!p2 U (p3 & !p2 & X(!p2 U p4)))) U (p2 | []"
    "(p0 -> (p3 & X<> p4))))",

    "[] (p0 -> <>(p3 & !p5 & X(!p5 U p4)))",
    "<>p2 -> (p0 -> (!p2 U (p3 & !p2 & !p5 & X((!p2 & !p5) U p4)))) U p2",
    "[] (p1 -> [] (p0 -> (p3 & !p5 & X(!p5 U p4))))",
    "[] ((p1 & <>p2) -> (p0 -> (!p2 U (p3 & !p2 & !p5 & X((!p2 & !p5) U"
    " p4)))) U p2)",
    "[] (p1 -> (p0 -> (!p2 U (p3 & !p2 & !p5 & X((!p2 & !p5) U p4)))) U (p2 |"
    "[] (p0 -> (p3 & !p5 & X(!p5 U p4)))))",
  };

  constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
  if (n < 1 || (unsigned) n > max)
    bad_number("--dac-patterns", n, max);
  return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
}

static formula
eh_pattern(int n)
{
  static const char* formulas[] = {
    "p0 U (p1 & G(p2))",
    "p0 U (p1 & X(p2 U p3))",
    "p0 U (p1 & X(p2 & (F(p3 & X(F(p4 & X(F(p5 & X(F(p6))))))))))",
    "F(p0 & X(G(p1)))",
    "F(p0 & X(p1 & X(F(p2))))",
    "F(p0 & X(p1 U p2))",
    "(F(G(p0))) | (G(F(p1)))",
    "G(p0 -> (p1 U p2))",
    "G(p0 & X(F(p1 & X(F(p2 & X(F(p3)))))))",
    "(G(F(p0))) & (G(F(p1))) & (G(F(p2))) & (G(F(p3))) & (G(F(p4)))",
    "(p0 U (p1 U p2)) | (p1 U (p2 U p0)) | (p2 U (p0 U p1))",
    "G(p0 -> (p1 U ((G(p2)) | (G(p3)))))",
  };

  constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
  if (n < 1 || (unsigned) n > max)
    bad_number("--eh-patterns", n, max);
  return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
}

static formula
sb_pattern(int n)
{
  static const char* formulas[] = {
    "p0 U p1",
    "p0 U (p1 U p2)",
    "!(p0 U (p1 U p2))",
    "G(F(p0)) -> G(F(p1))",
    "(F(p0)) U (G(p1))",
    "(G(p0)) U p1",
    "!((F(F(p0))) <-> (F(p)))",
    "!((G(F(p0))) -> (G(F(p))))",
    "!((G(F(p0))) <-> (G(F(p))))",
    "p0 R (p0 | p1)",
    "(Xp0 U Xp1) | !X(p0 U p1)",
    "(Xp0 U p1) | !X(p0 U (p0 & p1))",
    "G(p0 -> F(p1)) & (((X(p0)) U p1) | !X(p0 U (p0 & p1)))",
    "G(p0 -> F(p1)) & (((X(p0)) U X(p1)) | !X(p0 U p1))",
    "G(p0 -> F(p1))",
    "!G(p0 -> X(p1 R p2))",
    "!(F(G(p0)) | F(G(p1)))",
    "G(F(p0) & F(p1))",
    "F(p0) & F(!p0)",
    "(X(p1) & p2) R X(((p3 U p0) R p2) U (p3 R p2))",
    "(G(p1 | G(F(p0))) & G(p2 | G(F(!p0)))) | G(p1) | G(p2)",
    "(G(p1 | F(G(p0))) & G(p2 | F(G(!p0)))) | G(p1) | G(p2)",
    "!((G(p1 | G(F(p0))) & G(p2 | G(F(!p0)))) | G(p1) | G(p2))",
    "!((G(p1 | F(G(p0))) & G(p2 | F(G(!p0)))) | G(p1) | G(p2))",
    "(G(p1 | X(G p0))) & (G (p2 | X(G !p0)))",
    "G(p1 | (Xp0 & X!p0))",
    // p0 U p0 can't be represented other than as p0 in Spot
    "(p0 U p0) | (p1 U p0)",
  };

  constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
  if (n < 1 || (unsigned) n > max)
    bad_number("--sb-patterns", n, max);
  return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
}
976
977
978
979

static void
output_pattern(int pattern, int n)
{
980
  formula f = nullptr;
981
982
983
984
  switch (pattern)
    {
      // Keep this alphabetically-ordered!
    case OPT_AND_F:
985
      f = combunop_n("p", n, op::F, true);
986
987
988
989
990
991
992
993
      break;
    case OPT_AND_FG:
      f = FG_n("p", n, true);
      break;
    case OPT_AND_GF:
      f = GF_n("p", n, true);
      break;
    case OPT_CCJ_ALPHA:
994
      f = formula::And({E_n("p", n), E_n("q", n)});
995
996
      break;
    case OPT_CCJ_BETA:
997
      f = formula::And({N_n("p", n), N_n("q", n)});
998
999
      break;
    case OPT_CCJ_BETA_PRIME:
1000
      f = formula::And({N_prime_n("p", n), N_prime_n("q", n)});
1001
      break;
1002
1003
1004
1005
1006
1007
    case OPT_DAC_PATTERNS:
      f = dac_pattern(n);
      break;
    case OPT_EH_PATTERNS:
      f = eh_pattern(n);
      break;
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    case OPT_GH_Q:
      f = Q_n("p", n);
      break;
    case OPT_GH_R:
      f = R_n("p", n);
      break;
    case OPT_GO_THETA:
      f = fair_response("p", "q", "r", n);
      break;
    case OPT_OR_FG:
      f = FG_n("p", n, false);
      break;
    case OPT_OR_G:
1021
      f = combunop_n("p", n, op::G, false);
1022
1023
1024
1025
1026
      break;
    case OPT_OR_GF:
      f = GF_n("p", n, false);
      break;
    case OPT_R_LEFT:
1027
      f = bin_n("p", n, op::R, false);
1028
1029
      break;
    case OPT_R_RIGHT:
1030
      f = bin_n("p", n, op::R, true);
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
      break;
    case OPT_RV_COUNTER_CARRY:
      f = ltl_counter_carry("b", "m", "c", n, false);
      break;
    case OPT_RV_COUNTER_CARRY_LINEAR:
      f = ltl_counter_carry("b", "m", "c", n, true);
      break;
    case OPT_RV_COUNTER:
      f = ltl_counter("b", "m", n, false);
      break;
    case OPT_RV_COUNTER_LINEAR:
      f = ltl_counter("b", "m", n, true);
      break;
1044
1045
1046
    case OPT_SB_PATTERNS:
      f = sb_pattern(n);
      break;
1047
    case OPT_U_LEFT:
1048
      f = bin_n("p", n, op::U, false);
1049
1050
      break;
    case OPT_U_RIGHT:
1051
      f = bin_n("p", n, op::U, true);
1052
1053
1054
1055
1056
      break;
    default:
      error(100, 0, "internal error: pattern not implemented");
    }

1057
1058
  // Make sure we use only "p42"-style of atomic propositions
  // in lbt's output.
1059
1060
  if (output_format == lbt_output && !f.has_lbt_atomic_props())
    f = relabel(f, Pnn);
1061

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
  if (opt_positive || !opt_negative)
    {
      output_formula_checked(f, class_name[pattern - 1], n);
    }
  if (opt_negative)
    {
      std::string tmp = "!";
      tmp += class_name[pattern - 1];
      output_formula_checked(spot::formula::Not(f), tmp.c_str(), n);
    }
1072
1073
1074
1075
1076
}

static void
run_jobs()
{
1077
  for (auto& j: jobs)
1078
    {
1079
1080
      int inc = (j.range.max < j.range.min) ? -1 : 1;
      int n = j.range.min;
1081
      for (;;)
1082
1083
1084
1085
1086
1087
        {
          output_pattern(j.pattern, n);
          if (n == j.range.max)
            break;
          n += inc;
        }
1088
1089
1090
1091
1092
1093
1094
    }
}


int
main(int argc, char** argv)
{
1095
  setup(argv);
1096

1097
  const argp ap = { options, parse_opt, nullptr, argp_program_doc,
1098
                    children, nullptr, nullptr };
1099

1100
  if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, nullptr, nullptr))
1101
1102
1103
1104
    exit(err);

  if (jobs.empty())
    error(1, 0, "Nothing to do.  Try '%s --help' for more information.",
1105
          program_name);
1106

1107
1108
1109
1110
1111
1112
1113
1114
1115
  try
    {
      run_jobs();
    }
  catch (const std::runtime_error& e)
    {
      error(2, 0, "%s", e.what());
    }

1116
  flush_cout();
1117
1118
  return 0;
}