minimize.cc 18.4 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
3
// Copyright (C) 2010, 2011, 2012, 2013, 2014 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19

20
21
22
23
24
25
26
27
28

//#define TRACE

#ifdef TRACE
#  define trace std::cerr
#else
#  define trace while (0) std::cerr
#endif

29
#include <queue>
30
31
32
#include <deque>
#include <set>
#include <list>
33
#include <vector>
34
#include <sstream>
35
36
37
#include "minimize.hh"
#include "ltlast/allnodes.hh"
#include "misc/hash.hh"
38
#include "misc/bddlt.hh"
39
40
#include "tgba/tgbaproduct.hh"
#include "tgba/tgbatba.hh"
41
#include "tgba/wdbacomp.hh"
42
#include "tgbaalgos/powerset.hh"
43
44
45
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/sccfilter.hh"
46
#include "tgbaalgos/scc.hh"
47
#include "tgbaalgos/ltl2tgba_fm.hh"
48
#include "tgbaalgos/bfssteps.hh"
49
#include "tgbaalgos/isdet.hh"
50
#include "tgbaalgos/dtgbacomp.hh"
51
52
53

namespace spot
{
54
55
  // FIXME: do we really want to use unordered_set instead of set here?
  // This calls for benchmarking.
56
57
58
59
  typedef std::unordered_set<const state*,
			     state_ptr_hash, state_ptr_equal> hash_set;
  typedef std::unordered_map<const state*, unsigned,
			     state_ptr_hash, state_ptr_equal> hash_map;
60

61
62
63
64
65
  namespace
  {
    static std::ostream&
    dump_hash_set(const hash_set* hs, const tgba* aut, std::ostream& out)
    {
66
      out << '{';
67
68
69
70
71
72
      const char* sep = "";
      for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
	{
	  out << sep << aut->format_state(*i);
	  sep = ", ";
	}
73
      out << '}';
74
75
76
77
78
79
80
81
82
83
84
85
      return out;
    }

    static std::string
    format_hash_set(const hash_set* hs, const tgba* aut)
    {
      std::ostringstream s;
      dump_hash_set(hs, aut, s);
      return s.str();
    }
  }

86
  // Find all states of an automaton.
87
  void build_state_set(const tgba* a, hash_set* seen)
88
  {
Felix Abecassis's avatar
Felix Abecassis committed
89
    std::queue<const state*> tovisit;
90
    // Perform breadth-first traversal.
Felix Abecassis's avatar
Felix Abecassis committed
91
    const state* init = a->get_init_state();
92
    tovisit.push(init);
93
    seen->insert(init);
94
95
    while (!tovisit.empty())
      {
96
97
98
99
	const state* src = tovisit.front();
	tovisit.pop();

	for (auto sit: a->succ(src))
100
	  {
101
102
103
104
105
106
107
108
109
110
	    const state* dst = sit->current_state();
	    // Is it a new state ?
	    if (seen->find(dst) == seen->end())
	      {
		// Register the successor for later processing.
		tovisit.push(dst);
		seen->insert(dst);
	      }
	    else
	      dst->destroy();
111
	  }
112
113
114
115
116
      }
  }

  // From the base automaton and the list of sets, build the minimal
  // resulting automaton
117
118
119
  tgba_digraph* build_result(const tgba* a,
			     std::list<hash_set*>& sets,
			     hash_set* final)
120
  {
121
122
123
124
125
126
    auto dict = a->get_dict();
    auto res = new tgba_digraph(dict);
    dict->register_all_variables_of(a, res);
    dict->unregister_all_typed_variables(bdd_dict::acc, res);
    res->set_bprop(tgba_digraph::StateBasedAcc);

127
128
129
130
131
132
    // For each set, create a state in the resulting automaton.
    // For a state s, state_num[s] is the number of the state in the minimal
    // automaton.
    hash_map state_num;
    std::list<hash_set*>::iterator sit;
    for (sit = sets.begin(); sit != sets.end(); ++sit)
133
134
135
      {
	hash_set::iterator hit;
	hash_set* h = *sit;
136
	unsigned num = res->new_state();
137
138
139
	for (hit = h->begin(); hit != h->end(); ++hit)
	  state_num[*hit] = num;
      }
140

141
142
    // For each transition in the initial automaton, add the corresponding
    // transition in res.
143
    bdd allacc = bddfalse;
144
    if (!final->empty())
145
146
147
148
149
150
151
152
      {
	int accvar =
	  dict->register_acceptance_variable(ltl::constant::true_instance(),
					     res);
	allacc = bdd_ithvar(accvar);
	res->set_acceptance_conditions(allacc);
      }

153
    for (sit = sets.begin(); sit != sets.end(); ++sit)
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
      {
	hash_set::iterator hit;
	hash_set* h = *sit;

	// Pick one state.
	const state* src = *h->begin();
	unsigned src_num = state_num[src];
	bool accepting = (final->find(src) != final->end());

	// Connect it to all destinations.
	for (auto succit: a->succ(src))
	  {
	    const state* dst = succit->current_state();
	    hash_map::const_iterator i = state_num.find(dst);
	    dst->destroy();
	    if (i == state_num.end()) // Ignore useless destinations.
	      continue;
171
	    bdd acc = bddfalse;
172
	    if (accepting)
173
174
175
	      acc = allacc;
	    res->new_transition(src_num, i->second,
				succit->current_condition(), acc);
176
177
	  }
      }
178
    res->merge_transitions();
179
180
181
182
183
184
185
    if (res->num_states() > 0)
      {
	const state* init_state = a->get_init_state();
	unsigned init_num = state_num[init_state];
	init_state->destroy();
	res->set_init_state(init_num);
      }
186
187
188
    return res;
  }

189
190
191
192
193
194
195
196
197
198
199

  namespace
  {

    struct wdba_search_acc_loop : public bfs_steps
    {
      wdba_search_acc_loop(const tgba* det_a,
			   unsigned scc_n, scc_map& sm,
			   power_map& pm, const state* dest)
	: bfs_steps(det_a), scc_n(scc_n), sm(sm), pm(pm), dest(dest)
      {
200
	seen(dest);
201
202
203
204
205
      }

      virtual const state*
      filter(const state* s)
      {
206
	s = seen(s);
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
	if (sm.scc_of_state(s) != scc_n)
	  return 0;
	return s;
      }

      virtual bool
      match(tgba_run::step&, const state* to)
      {
	return to == dest;
      }

      unsigned scc_n;
      scc_map& sm;
      power_map& pm;
      const state* dest;
222
      state_unicity_table seen;
223
224
225
226
    };


    bool
227
    wdba_scc_is_accepting(const tgba_digraph* det_a, unsigned scc_n,
228
229
			  const tgba* orig_a, scc_map& sm, power_map& pm)
    {
230

231
232
233
234
235
236
237
238
239
240
241
      // Get some state from the SCC #n.
      const state* start = sm.one_state_of(scc_n)->clone();

      // Find a loop around START in SCC #n.
      wdba_search_acc_loop wsal(det_a, scc_n, sm, pm, start);
      tgba_run::steps loop;
      const state* reached = wsal.search(start, loop);
      assert(reached == start);
      (void)reached;

      // Build an automaton representing this loop.
242
      tgba_digraph loop_a(det_a->get_dict());
243
244
      tgba_run::steps::const_iterator i;
      int loop_size = loop.size();
245
      loop_a.new_states(loop_size);
246
247
248
      int n;
      for (n = 1, i = loop.begin(); n < loop_size; ++n, ++i)
	{
249
	  loop_a.new_transition(n - 1, n, i->label);
250
	  i->s->destroy();
251
252
	}
      assert(i != loop.end());
253
      loop_a.new_transition(n - 1, 0, i->label);
254
      i->s->destroy();
255
256
      assert(++i == loop.end());

257
      loop_a.set_init_state(0U);
258
259
260
261
262
263
      const state* loop_a_init = loop_a.get_init_state();

      // Check if the loop is accepting in the original automaton.
      bool accepting = false;

      // Iterate on each original state corresponding to start.
264
265
266
      const power_map::power_state& ps =
	pm.states_of(det_a->state_number(start));
      for (auto& it: ps)
267
268
269
	{
	  // Contrustruct a product between
	  // LOOP_A, and ORIG_A starting in *IT.
270
	  // FIXME: This could be sped up a lot!
271
	  tgba* p = new tgba_product_init(&loop_a, orig_a, loop_a_init, it);
272
273
274
275
276
	  emptiness_check* ec = couvreur99(p);
	  emptiness_check_result* res = ec->check();
	  delete res;
	  delete ec;
	  delete p;
277
278
279
280
281
282

	  if (res)
	    {
	      accepting = true;
	      break;
	    }
283
284
	}

285
      loop_a_init->destroy();
286
287
288
289
290
      return accepting;
    }

  }

291
292
  tgba_digraph* minimize_dfa(const tgba_digraph* det_a,
			     hash_set* final, hash_set* non_final)
293
  {
294
295
296
    typedef std::list<hash_set*> partition_t;
    partition_t cur_run;
    partition_t next_run;
297

298
299
    // The list of equivalent states.
    partition_t done;
300

301
    hash_map state_set_map;
302

303
304
    // Size of det_a
    unsigned size = final->size() + non_final->size();
305
306
    // Use bdd variables to number sets.  set_num is the first variable
    // available.
307
308
    unsigned set_num =
      det_a->get_dict()->register_anonymous_variables(size, det_a);
309
310
311
312
313
314

    std::set<int> free_var;
    for (unsigned i = set_num; i < set_num + size; ++i)
      free_var.insert(i);
    std::map<int, int> used_var;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
315
316
    hash_set* final_copy;

317
318
319
320
321
322
    if (!final->empty())
      {
	unsigned s = final->size();
	used_var[set_num] = s;
	free_var.erase(set_num);
	if (s > 1)
323
	  cur_run.push_back(final);
324
325
326
327
328
	else
	  done.push_back(final);
	for (hash_set::const_iterator i = final->begin();
	     i != final->end(); ++i)
	  state_set_map[*i] = set_num;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
329
330

	final_copy = new hash_set(*final);
331
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
332
333
334
335
336
    else
      {
	final_copy = final;
      }

337
338
339
340
341
342
343
    if (!non_final->empty())
      {
	unsigned s = non_final->size();
	unsigned num = set_num + 1;
	used_var[num] = s;
	free_var.erase(num);
	if (s > 1)
344
	  cur_run.push_back(non_final);
345
346
347
348
349
350
	else
	  done.push_back(non_final);
	for (hash_set::const_iterator i = non_final->begin();
	     i != non_final->end(); ++i)
	  state_set_map[*i] = num;
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
351
352
353
354
    else
      {
	delete non_final;
      }
355

356
357
    // A bdd_states_map is a list of formulae (in a BDD form) associated with a
    // destination set of states.
358
359
360
361
362
    typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;

    bool did_split = true;

    while (did_split)
363
      {
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
	did_split = false;
	while (!cur_run.empty())
	  {
	    // Get a set to process.
	    hash_set* cur = cur_run.front();
	    cur_run.pop_front();

	    trace << "processing " << format_hash_set(cur, det_a) << std::endl;

	    hash_set::iterator hi;
	    bdd_states_map bdd_map;
	    for (hi = cur->begin(); hi != cur->end(); ++hi)
	      {
		const state* src = *hi;
		bdd f = bddfalse;
379
		for (auto si: det_a->succ(src))
380
381
		  {
		    const state* dst = si->current_state();
382
		    hash_map::const_iterator i = state_set_map.find(dst);
383
		    dst->destroy();
384
385
386
387
388
389
390
391
392
		    if (i == state_set_map.end())
		      // The destination state is not in our
		      // partition.  This can happen if the initial
		      // FINAL and NON_FINAL supplied to the algorithm
		      // do not cover the whole automaton (because we
		      // want to ignore some useless states).  Simply
		      // ignore these states here.
		      continue;
		    f |= (bdd_ithvar(i->second) & si->current_condition());
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
		  }

		// Have we already seen this formula ?
		bdd_states_map::iterator bsi = bdd_map.find(f);
		if (bsi == bdd_map.end())
		  {
		    // No, create a new set.
		    hash_set* new_set = new hash_set;
		    new_set->insert(src);
		    bdd_map[f] = new_set;
		  }
		else
		  {
		    // Yes, add the current state to the set.
		    bsi->second->insert(src);
		  }
	      }

	    bdd_states_map::iterator bsi = bdd_map.begin();
	    if (bdd_map.size() == 1)
	      {
		// The set was not split.
		trace << "set " << format_hash_set(bsi->second, det_a)
		      << " was not split" << std::endl;
		next_run.push_back(bsi->second);
	      }
	    else
	      {
421
		did_split = true;
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
		for (; bsi != bdd_map.end(); ++bsi)
		  {
		    hash_set* set = bsi->second;
		    // Free the number associated to these states.
		    unsigned num = state_set_map[*set->begin()];
		    assert(used_var.find(num) != used_var.end());
		    unsigned left = (used_var[num] -= set->size());
		    // Make sure LEFT does not become negative (hence bigger
		    // than SIZE when read as unsigned)
		    assert(left < size);
		    if (left == 0)
		      {
			used_var.erase(num);
			free_var.insert(num);
		      }
		    // Pick a free number
		    assert(!free_var.empty());
		    num = *free_var.begin();
		    free_var.erase(free_var.begin());
		    used_var[num] = set->size();
		    for (hash_set::iterator hit = set->begin();
			 hit != set->end(); ++hit)
		      state_set_map[*hit] = num;
		    // Trivial sets can't be splitted any further.
		    if (set->size() == 1)
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " is minimal" << std::endl;
			done.push_back(set);
		      }
		    else
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " should be processed further" << std::endl;
			next_run.push_back(set);
		      }
		  }
	      }
	    delete cur;
	  }
	if (did_split)
	  trace << "splitting did occur during this pass." << std::endl;
	else
	  trace << "splitting did not occur during this pass." << std::endl;
	std::swap(cur_run, next_run);
467
      }
468
469
470
471
472
473

    done.splice(done.end(), cur_run);

#ifdef TRACE
    trace << "Final partition: ";
    for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
474
      trace << format_hash_set(*i, det_a) << ' ';
475
476
    trace << std::endl;
#endif
Felix Abecassis's avatar
Felix Abecassis committed
477
478

    // Build the result.
479
    auto* res = build_result(det_a, done, final_copy);
Felix Abecassis's avatar
Felix Abecassis committed
480
481
482
483

    // Free all the allocated memory.
    delete final_copy;
    hash_map::iterator hit;
484
485
486
    for (hit = state_set_map.begin(); hit != state_set_map.end();)
      {
	hash_map::iterator old = hit++;
487
	old->first->destroy();
488
      }
Felix Abecassis's avatar
Felix Abecassis committed
489
490
491
492
493
    std::list<hash_set*>::iterator it;
    for (it = done.begin(); it != done.end(); ++it)
      delete *it;
    delete det_a;

494
495
    return res;
  }
496

497

498
  tgba_digraph* minimize_monitor(const tgba* a)
499
500
  {
    hash_set* final = new hash_set;
501
    hash_set* non_final = new hash_set;
502
    tgba_digraph* det_a;
503
504
505
506
507

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);
    }
508
509

    // non_final contain all states.
510
    // final is empty: there is no acceptance condition
511
    build_state_set(det_a, non_final);
512
513

    return minimize_dfa(det_a, final, non_final);
514
515
  }

516
  tgba_digraph* minimize_wdba(const tgba* a)
517
518
  {
    hash_set* final = new hash_set;
519
520
    hash_set* non_final = new hash_set;

521
    tgba_digraph* det_a;
522
523
524
525
526

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);

527
528
529
530
531
      // For each SCC of the deterministic automaton, determine if it
      // is accepting or not.

      // This corresponds to the algorithm in Fig. 1 of "Efficient
      // minimization of deterministic weak omega-automata" written by
532
      // Christof Löding and published in Information Processing
533
534
535
536
537
      // Letters 79 (2001) pp 105--109.

      // We also keep track of whether an SCC is useless
      // (i.e., it is not the start of any accepting word).

538
539
540
      scc_map sm(det_a);
      sm.build_map();
      unsigned scc_count = sm.scc_count();
541
542
      // SCC that have been marked as useless.
      std::vector<bool> useless(scc_count);
543
544
545
546
547
548
549
      // The "color".  Even number correspond to
      // accepting SCCs.
      std::vector<unsigned> d(scc_count);

      // An even number larger than scc_count.
      unsigned k = (scc_count | 1) + 1;

550
      // SCC are numbered in topological order
551
      // (but in the reverse order as Löding's)
552
      for (unsigned m = 0; m < scc_count; ++m)
553
	{
554
	  bool is_useless = true;
555
556
	  bool transient = sm.trivial(m);
	  const scc_map::succ_type& succ = sm.succ(m);
557

558
	  if (transient && succ.empty())
559
	    {
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
	      // A trivial SCC without successor is useless.
	      useless[m] = true;
	      d[m] = k - 1;
	      continue;
	    }

	  // Compute the minimum color l of the successors.
	  // Also SCCs are useless if all their successor are
	  // useless.
	  unsigned l = k;
	  for (scc_map::succ_type::const_iterator j = succ.begin();
	       j != succ.end(); ++j)
	    {
	      is_useless &= useless[j->first];
	      unsigned dj = d[j->first];
	      if (dj < l)
		l = dj;
	    }

	  if (transient)
	    {
	      d[m] = l;
582
583
584
585
	    }
	  else
	    {
	      // Regular SCCs are accepting if any of their loop
586
587
	      // corresponds to an accepted word in the original
	      // automaton.
588
	      if (wdba_scc_is_accepting(det_a, m, a, sm, pm))
589
590
		{
		  is_useless = false;
591
		  d[m] = l & ~1; // largest even number inferior or equal
592
593
594
		}
	      else
		{
595
		  d[m] = (l - 1) | 1; // largest odd number inferior or equal
596
		}
597
	    }
598

599
	  useless[m] = is_useless;
600

601
602
	  if (!is_useless)
	    {
603
	      hash_set* dest_set = (d[m] & 1) ? non_final : final;
604
	      const std::list<const state*>& l = sm.states_of(m);
605
606
607
608
	      std::list<const state*>::const_iterator il;
	      for (il = l.begin(); il != l.end(); ++il)
		dest_set->insert((*il)->clone());
	    }
609
610
611
	}
    }

612
    return minimize_dfa(det_a, final, non_final);
613
614
  }

615
616
  tgba_digraph*
  minimize_obligation(const tgba_digraph* aut_f,
617
		      const ltl::formula* f, const tgba_digraph* aut_neg_f,
618
		      bool reject_bigger)
619
  {
620
    auto min_aut_f = minimize_wdba(aut_f);
621

622
623
624
    if (reject_bigger)
      {
	// Abort if min_aut_f has more states than aut_f.
625
	unsigned orig_states = aut_f->num_states();
626
	if (orig_states < min_aut_f->num_states())
627
628
	  {
	    delete min_aut_f;
629
	    return const_cast<tgba_digraph*>(aut_f);
630
631
632
	  }
      }

633
634
635
636
637
    // if f is a syntactic obligation formula, the WDBA minimization
    // must be correct.
    if (f && f->is_syntactic_obligation())
      return min_aut_f;

638
    // If aut_f is a guarantee automaton, the WDBA minimization must be
639
    // correct.
640
    if (is_guarantee_automaton(aut_f))
641
      return min_aut_f;
642
643
644
645
646
647

    const tgba* to_free = 0;

    // Build negation automaton if not supplied.
    if (!aut_neg_f)
      {
648
649
650
651
652
653
654
655
656
657
	if (f)
	  {
	    // If we know the formula, simply build the automaton for
	    // its negation.
	    const ltl::formula* neg_f =
	      ltl::unop::instance(ltl::unop::Not, f->clone());
	    aut_neg_f = ltl_to_tgba_fm(neg_f, aut_f->get_dict());
	    neg_f->destroy();

	    // Remove useless SCCs.
658
	    auto tmp = scc_filter(aut_neg_f, true);
659
660
661
662
663
664
665
	    delete aut_neg_f;
	    to_free = aut_neg_f = tmp;
	  }
	else if (is_deterministic(aut_f))
	  {
	    // If the automaton is deterministic, complementing is
	    // easy.
666
	    to_free = aut_neg_f = dtgba_complement(aut_f);
667
668
669
670
671
	  }
	else
	  {
	    // Otherwise, we cannot check if the minimization is safe.
	    delete min_aut_f;
672
	    return nullptr;
673
	  }
674
675
      }

676
    // If the negation is a guarantee automaton, then the
677
    // minimization is correct.
678
    if (is_guarantee_automaton(aut_neg_f))
679
680
681
682
683
684
685
686
687
688
689
690
691
692
      {
	delete to_free;
	return min_aut_f;
      }

    bool ok = false;

    tgba* p = new tgba_product(min_aut_f, aut_neg_f);
    emptiness_check* ec = couvreur99(p);
    emptiness_check_result* res = ec->check();
    if (!res)
      {
	delete ec;
	delete p;
693

694
	// Complement the minimized WDBA.
695
696
697
	tgba* neg_min_aut_f = wdba_complement(min_aut_f);

	tgba* p = new tgba_product(aut_f, neg_min_aut_f);
698
699
700
701
	emptiness_check* ec = couvreur99(p);
	res = ec->check();

	if (!res)
702
703
704
705
706
	  {
	    // Finally, we are now sure that it was safe
	    // to minimize the automaton.
	    ok = true;
	  }
707
708
709
710

	delete res;
	delete ec;
	delete p;
711
	delete neg_min_aut_f;
712
713
714
715
716
717
718
719
720
721
722
723
      }
    else
      {
	delete res;
	delete ec;
	delete p;
      }
    delete to_free;

    if (ok)
      return min_aut_f;
    delete min_aut_f;
724
    return const_cast<tgba_digraph*>(aut_f);
725
  }
726
}